
Multivariate Classification of Smokers and Nonsmokers Using 
SVM-RFE on Structural MRI Images

Xiaoyu Ding, Yihong Yang, Elliot A. Stein, and Thomas J. Ross*

Neuroimaging Research Branch, Intramural Research Program, National Institute on Drug Abuse, 
National Institutes of Health, Baltimore, MD 21224, USA

Abstract

Voxel-based morphometry (VBM) studies have revealed gray matter alterations in smokers but this 

type of analysis has poor predictive value for individual cases, which limits its applicability in 

clinical diagnoses and treatment. A predictive model would essentially embody a complex 

biomarker that could be used to evaluate treatment efficacy. In this study, we applied VBM along 

with a multivariate classification method consisting of a support vector machine with recursive 

feature elimination to discriminate smokers from nonsmokers using their structural MRI data. 

Mean gray matter volumes in 1024 cerebral cortical regions of interest created using a sub-

parcellated version of the Automated Anatomical Labeling template were calculated from 60 

smokers and 60 nonsmokers, and served as input features to the classification procedure. The 

classifier achieved the highest accuracy of 69.6% when taking the 139 highest ranked features via 

10-fold cross-validation. Critically, these features were later validated on an independent testing 

set that consisted of 28 smokers and 28 nonsmokers, yielding a 64.04% accuracy level (binomial p 
= 0.01). Following classification, exploratory post-hoc regression analyses were performed, which 

revealed that gray matter volumes in the putamen, hippocampus, prefrontal cortex, cingulate 

cortex, caudate, thalamus, pre-/postcentral gyrus, precuneus, and the parahippocampal gyrus, were 

inversely related to smoking behavioral characteristics. These results not only indicate that 

smoking related gray matter alterations can provide predictive power for group membership, but 

also suggest that machine learning techniques can reveal underlying smoking-related 

neurobiology.
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INTRODUCTION

Cigarette smoking is the most common form of recreational drug use despite its association 

with numerous negative health consequences on multiple organ systems (Fagerström, 2002; 

Yanbaeva, et al., 2007). Brain pathology, including stroke and silent brain infarcts, are also 
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associated with chronic smoking (Swan and Lessov-Schlaggar, 2007; Whincup, et al., 2004). 

Despite these serious and often lethal consequences, about 20% of the United States 

population (and often higher percentages elsewhere) remain active smokers (Agaku, et al., 

2014). Since treatment outcomes for smoking addiction is notoriously poor (Gifford, et al., 

2004; Reitzel, et al., 2011; Rose, et al., 1994), and the negative consequences widely 

appreciated, better treatments are desperately needed. One reason for the poor treatment 

outcomes is that, as for many neuropsychiatric diseases, there are no clinically useful 

addiction disease biomarkers, which if available, could directly lead to improve treatment 

outcomes.

Magnetic resonance imaging (MRI) provides an effective and noninvasive approach to 

assess damage to the central nervous system. Voxel-based morphometry (VBM), which 

measures structural gray matter volume/density (GMV/GMD) (Ashburner and Friston, 

2000), has consistently identified brain morphological abnormalities in smokers. These 

include reduced regional GMV/GMD in the prefrontal cortex (PFC), anterior cingulate 

cortex (ACC), thalamus, and the insula (Brody, et al., 2004; Fritz, et al., 2014; Gallinat, et 

al., 2006; Liao, et al., 2012; Zhang, et al., 2011).

The above gray-matter alterations were identified using conventional univariate analysis in 

which a voxel-by-voxel comparison of GMV/GMD is applied to groups of smokers and 

controls in order to identify regions of statistical difference. While this type of statistical 

comparison can help to localize differences in brain regions as a function of smoking 

addiction, it cannot generally differentiate the samples from two or more groups (i.e. it is not 

very useful in detecting group membership). Moreover, univariate approaches treat each 

voxel independently, which is an overly simplistic assumption of brain structural 

organization (Bullmore and Sporns, 2012; He, et al., 2007).

In contrast to univariate approaches, machine-learning-based pattern classification is a class 

of multivariate analyses. These types of analyses learn discriminative rules from an exemplar 

dataset that can subsequently automatically categorize group membership of a novel data 

sample. Machine learning techniques have been applied to structural MRI (sMRI) data in 

multiple brain disorders including schizophrenia (Kasparek, et al., 2011; Nieuwenhuis, et al., 

2012), autism (Calderoni, et al., 2012; Ecker, et al., 2010; Jiao, et al., 2010; Uddin, et al., 

2011), dementia (Chen and Herskovits, 2010; Oliveira, et al., 2010), depression (Gong, et 

al., 2011), supranuclear palsy/Parkinson syndrome (Focke, et al., 2011) and borderline 

personality disorder (Sato, et al., 2012). Among these techniques, support vector machines 

(SVM) (Cortes and Vapnik, 1995), which determine a hyperplane that optimally 

distinguishes samples into two groups (e.g., patients and controls), have been widely used 

due to their reliable performance when handling high dimensional data. They are usually 

embedded in a cross-validation framework, in which samples are alternatively treated as 

testing data in order to validate the trained classification model.

Our group previously applied SVM-based classification to resting-state functional 

connectivity data from 21 smokers and 21 nonsmokers to predict their smoking status 

(Pariyadath, et al., 2014). Three network characteristics, including network 

representativeness, within network connectivity, and between network connectivity were 
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tested. Among these, within network connectivity offered maximal information for 

predicting smoking status with an accuracy of 78.6% using leave-one-out cross-validation 

(LOOCV). To the best of our knowledge, no study has yet utilized machine learning 

techniques with sMRI data from smokers (or any other drug dependent population) to 

identify disease characteristics. Characterizing useful biomarkers and developing effective 

diagnostic models will benefit not only clinical diagnoses but also treatment outcome by 

using discriminant features to identified potential novel treatment targets. Thus, the aim of 

our study was to: 1) classify smokers from nonsmokers using sMRI data with the aid of a 

SVM embedded cross-validation machine learning approach; and 2) determine those gray 

matter regions that are the most important discriminative features. In addition to the cross-

validation method, we also validated our model on a completely independent dataset of 

smokers and nonsmokers, something rarely reported in the literature. We further explored 

the relationship between identified discriminative features and smoking characterization 

measures using regression analyses.

MATERIALS AND METHODS

Participants

Eighty-eight cigarette smokers and 88 nonsmoking healthy control participants (see Table 1 

for demographics) were enrolled under several protocols approved by the Institutional 

Review Board of the National Institute on Drug Abuse Intramural Research Program 

(NIDA-IRP). All participants provided written informed consent and received monetary 

compensation for their participation. None of the smokers were currently trying to quit or 

seeking smoking cessation treatment. Controls were included if they had smoked fewer than 

25 cigarettes in their lifetime and none in the past year. Potential participants were assessed 

with a comprehensive history and physical exam, general urine and blood laboratory panels, 

a computerized Structured Clinical Interview for DSM-IV with follow-up clinical interview, 

and a drug use survey. Participants were excluded if they had any major medical illness, 

history of neurological or psychiatric disorders, or current or past dependence on any drug 

other than nicotine.

Data acquisition

Structural MRI data were collected at the NIDA-IRP on a 3T Siemens Allegra MRI scanner 

(Erlangen, Germany) equipped with a standard radio frequency birdcage head coil. High-

resolution anatomical images were acquired using a 3D magnetization prepared rapid 

gradient-echo (MPRAGE) T1-weighted sequence in 1mm3 isotropic voxels (TR = 2500 

msec, TE = 4.38 msec, flip angle = 8°, FOV = 256×256 mm).

Analysis overview

Fig. 1 illustrates the overall analytical pipeline of our classification approach. VBM analysis 

was applied to the structural images to calculate the GMV in 1024 cerebral cortical regions 

of interest (ROIs) defined using a sub-parcellated version of the Automated Anatomical 

Labeling (AAL) template (Cao, et al., 2013; Tzourio-Mazoyer, et al., 2002; Zalesky, et al., 

2010) described below, and whose mean values were input to the classification procedure. 

Before classification, the entire dataset was randomly divided into a cross-validation set (60 
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smokers and 60 nonsmokers) and an independent testing set (28 smokers and 28 

nonsmokers). To identify the set of features with the highest discriminative power, a SVM 

with recursive feature elimination (SVM-RFE) algorithm embedded in a balanced 10-fold 

cross-validation framework was performed on the cross-validation set. Before SVM-RFE, 

GMV in the training set was regressed against age and gender (Fjell and Walhovd, 2010; Xu, 

et al., 2000). The resulting beta-maps were applied to both the cross-validation and 

independent testing sets to calculate GMV residuals, which served as input features. The 

resulting models were then validated against the independent testing set. Final validation 

results for each independent testing sample was determined via majority voting of all of the 

SVM classifiers from the 10-fold cross-validation step. The entire procedure was repeated 

100 times to avoid biased selection of the independent testing set.

Voxel-based morphometry

GMV calculation was conducted using SPM8 software (Statistical Parametric Mapping, 

Wellcome Department of Imaging Neuroscience, London, UK, http://

www.fil.ion.ucl.ac.uk/spm/software/spm8/) and VBM8 toolbox (http://dbm.neuro.uni-

jena.de/vbm/). The VBM8 toolbox in SPM8 extends the unified segmentation model 

(Ashburner and Friston, 2005) with Maximum A Posterior (MAP) (Rajapakse, et al., 1997) 

and Partial Volume Estimation (PVE) (Tohka, et al., 2004) techniques, which achieves a 

more accurate brain segmentation. Structural images were skull stripped and spatially 

normalized to MNI (Montreal Neurological Institute) space (Ashburner, 2007) at a 

resolution of 1.5×1.5×1.5 mm3, then segmented into gray matter (GM), white matter (WM), 

and cerebrospinal fluid (CSF) using the following parameter settings: bias regularization = 

0.0001, bias full width at half maximum (FWHM) cutoff = 60 mm, sampling distance = 3, 

hidden Markov random field (MRF) weighting = 0.15, and thorough cleanup of the 

partitions. The normalized segmented images were non-linear modulated, which ensured 

that further statistical comparisons were made on relative rather than absolute measures of 

volume (i.e., corrected for individual brain size). The resulting GMV data were spatially 

smoothed with an 8 mm FWHM isotropic Gaussian kernel, and were resampled to a 2×2×2 

mm3 voxel size for further analysis.

Generation of the 1024 region AAL template

Smoking related structural brain alterations have mostly been identified in the cerebral 

cortex at smaller spatial scales than the standard AAL atlas (Brody, et al., 2004; Fritz, et al., 

2014; Gallinat, et al., 2006; Zhang, et al., 2011). As such, and following the example of 

others (Cao, et al., 2013; Hagmann, et al., 2008; Zalesky, et al., 2010), we randomly 

subdivided the cortex described in the standard AAL atlas into 1024 equi-sized ROIs. The 

number of subdivisions was suggested by studies showing that a parcellation of about 1000 

regions provides a reasonable trade-off between spatial resolution and signal-to-noise ratio 

(Fornito, et al., 2010; Zalesky, et al., 2010). Mean GMV values from the 1024 ROIs then 

served as the inputs to the classification procedure. As a validation of this approach, we did 

a preliminary study that applied a SVM-RFE embedded leave-one-out cross-validation 

(LOOCV) procedure on raw GMVs and mean GMVs from the standard AAL atlas 

separately to demonstrate the efficiency of the sub-parcellated AAL approach over either a 

voxel-wise or a standard AAL approach (see Supplementary Materials).
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SVM with recursive feature elimination (SVM-RFE)

As a supervised machine learning algorithm, SVM (Cortes and Vapnik, 1995) performs 

pattern classification by finding a separating hyperplane defined by a weight vector w that 

maximizes the margin between samples. Those samples closest to the hyperplane are called 

support vectors (See (Burges, 1998) for a more detailed description of SVM). In this study, 

SVM was performed with LIBSVM toolbox (http://www.csie.ntu.edu.tw/~cjlin/libsvm/) 

(Chang and Lin, 2011). Since our feature dimension is much larger than the sample size, 
according to the LIBSVM manual, transforming these features to a higher dimensional 
space with a nonlinear kernel is unnecessary; thus a linear kernel SVM was adopted to 
reduce the risk of over-fitting. The linear kernel SVM has only one hyper-parameter: C, a 

trade-off between the margin width and the misclassification penalty. Data were scaled to [0, 

1] in the SVM classifier. The value of the hyper-parameter C was selected to be 1 using a 

grid-search method (Hsu, et al., 2003) among the values [0.125, 0.25, 0.5, 1, 2, 4, 8] in a 

nested 10-fold cross-validation.

In order to identify the set of features with the greatest discriminative ability, we modified 

the SVM-RFE algorithm (De Martino, et al., 2008; Guyon, et al., 2002), which uses SVM 

iteratively to exclude non-informative features from the dataset while retaining 

discriminative features, into a cross-validation procedure since our purpose focuses on both 

feature selection and classifier evaluation. During each SVM-RFE iteration, an SVM 

classifier was trained and features were sorted according to a ranking criterion. For linear 

kernel SVM, a crucial advantage is that the importance of each original feature is directly 

related to its weight coefficient, which allows us to simply identify the most discriminative 

features in original space and perform the post-hoc regression analysis described below. 

Here we used the square of the weight vector coefficients ( ) as our ranking criterion. 

Features with the lowest ranking scores (low ) were removed from the dataset recursively.

10-fold cross-validation

As illustrated in Fig. 1 and the Appendix, the SVM-RFE algorithm was embedded in a 

balanced 10-fold cross-validation procedure to validate the classifier on the cross-validation 

set. In each trial, 6 smokers and 6 nonsmokers were removed for testing the classifier that 

was trained using all the other subjects in the cross-validation set, and the classification 

quality was assessed by the following five quantities:

(1)

(2)

(3)
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(4)

(5)

Here, TP, FN, TN, and FP denote, respectively, the number of smokers correctly classified, 

the number of smokers predicted to be nonsmokers, the number of nonsmokers correctly 

classified, and the number of nonsmokers predicted to be smokers.

After cross-validation, accuracy was calculated over all cross-validation subjects for each 

feature set size (sizes from 1 to 1024), and the minimum feature set size at which the 

classifiers reached the highest accuracy was determined. Finally, the resulting SVM 

classifiers were validated on an independent testing set using the above-determined 

discriminative feature sets. Final validation results of each independent testing sample was 

determined via majority voting, i.e., creating a binary decision rule that selects the class that 

gets more than half of the votes of the SVM classifiers.

Regression analyses between consistent ROIs and smoking measures

Candidate biomarkers are those brain regions that consistently appear discriminative during 

10-fold cross-validation. To determine the threshold of consistent ROIs (i.e. the number of 

times a region had to be discriminative to be considered greater than chance), we performed 

a permutation analysis: We first randomly reassigned subject labels and then performed the 

10-fold cross-validation classification. This procedure was repeated 100 iterations. We 

calculated the number of cross-validation folds in which an ROI was selected in random 

permutation among the previously determined minimum number of features from actual 

data. We then calculated the probability p that an ROI was selected in N folds (N=1~900) 

among all cross-validation folds (900 in total). The actual data were thresholded at p<0.001 

of the randomly permuted data, i.e., for any given ROI, there is a 1‰ probability that a 

region would occur by chance. We then investigated the relationship between GMVs within 

these consistent ROIs and smoking measures. Mean GMVs in significant ROIs were 

separately regressed against the Fagerström Test for Nicotine Dependence (FTND), a 

measure of dependence severity (Heatherton, et al., 1991), and lifetime usage scores while 

controlling for age and gender.

RESULTS

Classification performance

Over the 100 random iterations, the classifiers achieved sensitivity = 69.13% ± 5.34% (mean 

± SD), specificity = 70.07% ± 4.96%, accuracy = 69.60% ± 4.15%, precision = 69.84% 

± 4.27%, and f score = 69.42% ± 4.36%. The median (± MAD) number of features retained 

was 139 (± 84). Validation on the independent testing set via majority voting had a lower, 

but still statistically significant accuracy (p = 0.01, binomial test) of 64.04% ± 6.17% (mean 
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± SD) (sensitivity = 64.46% ± 9.64%, specificity = 63.61% ± 9.89%, precision = 64.29% 

± 6.86%, f score = 64.01% ± 6.61%).

Map of consistent ROIs

Using the permutation method described above, the threshold for a consistent ROI was 

determined to be 304 folds out of 100 rounds of 10-fold cross-validation. That is, if an ROI 

was selected more than 304 times in 100 rounds of 10-fold cross-validation (i.e. 900 

chances), then that ROI is considered a consistent feature. Among the 1024 ROIs, 150 

surpassed that threshold and were considered to be consistent features. These ROIs are 

mainly located within the PFC, cingulate cortex, insula, caudate, putamen, cuneus, 

precuneus, thalamus, hippocampus, and parahippocampal, temporal, lingual, and pre-/

postcentral gyri (see Fig. 2).

Relationship between significant ROIs and smoking measures

We performed regression analyses between the mean GMVs in the 150 consistent ROIs and 

smoking measures (FTND and lifetime usage), controlling for both age and gender. Multiple 

regions showed a significant regression coefficient of p < 0.05 (Table 2 and Fig. 3). GMVs 

in the putamen, hippocampus, and the calcarine gyrus were inversely related to lifetime 

smoking history, while GMVs in the PFC, ACC, lingual gyrus, and the thalamus were 

inversely related to FTND scores. Finally, GMVs in the middle cingulate cortex, superior 

medial gyrus, pre-/postcentral gyrus, precuneus, caudate, and the parahippocampal gyrus 

were inversely related to both lifetime usage and FTND scores. However, due to the large 

number of regions, these results did not withstand rigorous multiple comparisons corrections 

and should be considered exploratory.

DISCUSSION

To the best of our knowledge, this is the first study that employed a machine learning 

approach to structural images in an addiction related clinical application. Given the massive 

medical and societal costs caused by cigarette use, we chose smoking as our model addiction 

system. We designed an SVM-RFE embedded 10-fold cross-validation framework to 

classify smokers from nonsmokers and validated our model on an independent test dataset. 

The whole procedure was repeated 100 times, and was followed by an exploration of the 

relationship between consistent features and smoking behavioral measures.

Feature extraction was carried out with the aid of a pre-generated 1024 region AAL 

template, which increased the spatial specificity of the original 90 AAL cerebral cortical 

region template. The ROI approach also led to improved classification over using raw, voxel-

wise, GMVs, as the spatial averaging improves signal-to-noise. Since our template was 

created by random parcellation of the standard AAL atlas (Cao, et al., 2013; Hagmann, et 

al., 2008; Zalesky, et al., 2010), classifier performance might be further improved by 

applying various regional optimization algorithms (e.g., genetic algorithm) to the ROIs 

chosen for our template.

Supervised machine learning approaches are usually confirmed through cross-validation 

procedures, whose goal is to estimate the model fit to a dataset that is not used in training the 
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model. In the present study, in addition to cross-validation, we critically tested our SVM 

classifiers on a completely independent dataset. Although the performance was consistently 

lower when the classifier was applied to the independent set, accuracy nevertheless remained 

statistically significant. To date, few neuroimaging machine learning studies have validated 

their model on a completely independent dataset (Kawasaki, et al., 2007; Nieuwenhuis, et 

al., 2012; Whelan, et al., 2014). The accuracies of these studies were either increased, likely 

a consequence of small sample size as the cross-validation accuracy should asymptotically 

be maximal (Kawasaki, et al., 2007) or, as with our study, decreased (Nieuwenhuis, et al., 

2012; Whelan, et al., 2014). The decrement in accuracy on the independent test set implies 

that an over-fitting problem still exists in cross-validation, which is likely caused by a 

limited sample size. Since the ultimate goal of applying machine learning techniques to 

neuroimaging data is to build computer-assisted systems for clinical diagnoses of 

neuropsychological diseases, good generalization performance is required for classification 

models. Due to the problem of over-fitting caused by limited sample size in cross-validation, 

the best approach to test a model’s generalizability is validating the model on a new and 

independent dataset that was not used in any training iteration, thus we strongly suggest that 

machine learning models developed using neuroimaging data should be tested on an 

independent dataset not only with cross-validation (Gabrieli, et al., 2015).

A previous work by our group achieved an accuracy of 78.6% via LOOCV using resting-

state network characteristics to predict smoking status on 21 smokers and 21 nonsmokers 

(Pariyadath, et al., 2014). In contrast, this experiment was generated on a larger dataset of 

structural images, which makes the classification result more stable and reliable. Besides 

differences in classifiers (i.e., SVM vs. SVMRFE), the decrement in classification accuracy 

may also be caused by disparate feature characters (i.e., resting-state network characteristics 

vs. structural GMV) and different cross-validation procedures (i.e., LOOCV vs. 10-fold 

cross-validation).

Previous studies analyzed with traditional univariate methods have reported that smokers 

have gray matter alternations in the PFC, cingulate cortex, lingual gyrus, cuneus, precuneus, 

thalamus, pre-/postcentral gyrus, temporal lobe including parahippocampal gyrus and the 

insula (Brody, et al., 2004; Fritz, et al., 2014; Gallinat, et al., 2006; Liao, et al., 2012; Zhang, 

et al., 2011). In the present multivariate study, ROIs within these regions were also 

consistently selected as discriminative features. Further, our subsequent regression analyses 

indicated a significant inverse relationship between the GMV in multiple discriminative 

ROIs and smoking intensity measures. Fritz et al. (2014) also found GMV loss in the 

cingulate and prefrontal cortex that was inversely related with lifetime usage. However, like 

the results from our study, these data need to be interpreted with caution as they did not pass 

stringent, multiple comparisons correction (Fritz, et al., 2014).

Overall, our findings demonstrate that smoking is associated with GMV alterations in a wide 

range of cortical regions. Standing out among these regions, the insula has been shown to be 

a critical neural substrate for nicotine addiction, and has been implicated in multiple 

addictive behaviors, including craving and a lack of inhibitory control (Naqvi, et al., 2014; 

Naqvi, et al., 2007). Being a locus for interoceptive representation, the posterior insula is 

thought to process low-level sensory signals and sequentially pass the information towards 
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the anterior insula for higher-level awareness and affective processing and integration 

(Craig, 2010). Indeed, the insula, along with the ACC, as part of the so called salience 

network (SN) (Seeley, et al., 2007), is thought to be involved in switching activity between 

brain networks processing introspection (default mode network) and executive processing 

(executive control network) (Ding and Lee, 2013; Naqvi, et al., 2014; Sutherland, et al., 

2012). Critically, traumatic alteration to insular functioning has been shown to dramatically 

affect craving and smoking behavior (Naqvi, et al., 2007).

In addition to the insula, other cortical areas also showed GMV alterations. The ACC, 

involved in interconnecting functional circuits with the striatum, as well as being constituent 

of the SN, is strongly associated with nicotine addiction. Nicotine enhances the functional 

connectivity coherence strength of various cingulate-neocortical circuits, while critically, 

and in a double dissociation fashion, the strength of a functional circuit between the dorsal 

ACC and striatum is negatively correlated with nicotine addiction severity (FTND) and not 

altered by acute nicotine administration (Hong, et al., 2009). Results of an exploratory VBM 

analysis showed that striatal and hippocampal GMV are associated with a smoking cessation 

treatment outcome (Froeliger, et al., 2010). Compared to individuals who relapsed, those 

who quit had significantly higher GMV in the putamen and occipital lobe, while 

demonstrating lower GMV in hippocampus and cuneus. GMV alterations observed in the 

PFC and the thalamus have also been related to the neurobiology of substance addiction 

including smoking (Goldstein and Volkow, 2011; Sutherland, et al., 2012; Zhang, et al., 

2011). Smaller GMVs in these regions may be causally related to the fact that smokers have 

less efficient processing ability in working memory (Xu, et al., 2005), faster cognitive 

decline in executive function (Sabia, et al., 2012), and worse mood and interpersonal skills 

(Lyvers, et al., 2008).

This study represents an important first step toward making clinical diagnoses and matching 

addiction treatment options to individuals with the aid of machine learning techniques. The 

limitations of this study include a limited data size and a single imaging modality. Future 

studies will need to address these two issues by increasing the number of participants and 

introducing machine learning techniques to multi-modal neuroimaging data. Further, given 

the cross-sectional nature of this design, we cannot determine if the smaller GMVs in more 

addicted/longer using individuals was a consequence of use or an antecedent of use.

CONCLUSION

We investigated anatomical abnormalities in smokers using a multivariate classification 

approach and explored the predictive value of GMVs in smokers using an SVM-RFE 

embedded framework. The SVMs achieved an accuracy of 69.60% in 10-fold cross-

validation and provided good group separation even on an independent test set. Thus, either 

through years of cigarette smoking or as a consequence of predisposing genetic based 

antecedents of addiction or some gene × environment interaction, smokers have sufficient 

gray matter alterations to be distinguished from nonsmokers at greater than chance levels. 

Instantiating this finding, subsequent regression analyses showed that greater nicotine 

addiction/duration of use is associated with smaller GMVs in multiple brain regions. Our 

study not only identified structural biomarkers of smokers, but also revealed their 
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discriminative power in predicting group memberships. It further highlights the potential of 

using machine learning approaches to aid the clinical diagnoses of drug addiction.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX

Algorithm 1

SVM-RFE embedded N-fold cross-validation

Randomly partition subjects into equal-sized N folds, each fold contains the same number of smokers and nonsmokers

For S = 1…N-fold

 Exclude subjects in S-fold for testing

 Initialize FeatureSet to all features

 While FeatureSet is not empty

  Train SVM using FeatureSet

  Test SVM on S-fold

  Compute weight vector of SVM

  Rank features according to 

  Remove one feature with the lowest ranking

 End While

End For

Compute accuracy over all subjects for each FeatureSet size

Find the minimum FeatureSet size on which SVM get the highest accuracy
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Fig. 1. 
Flow diagram of the classification approach employed in the study
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Fig. 2. 
Consistent ROIs (n=150) based on permutation analysis; the color of each ROI (see color bar 

for scale) denotes the number of times (hits) that it was selected by the 100 iterations of the 

10-fold cross-validation procedure.
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Fig. 3. 
ROIs that are inversely related with smoking measures: (a) Green color: ROIs having 

negative regression coefficients with FTND scores; yellow color: ROIs having negative 

regression coefficients with lifetime cigarette usage; red color: ROIs having negative 

regression coefficients with both smoking measures. (b) An example of the inverse 

relationship between an ROI in middle cingulate cortex (red region with green cross in (a)) 

and smoking measures.
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Table 1

Demographics of the participants

Smokers Healthy controls

Number 88 88

Age 32.3 ± 8.7 31.6 ± 8.0

Gender 44 M, 44 F 44 M, 44 F

FTND 5.4 ± 1.9 --

CPD 19.8 ± 7.2 --

Smoking years 14.0 ± 7.6 --

Lifetime usage 13.7 ± 9.4 --

FTND: Fagerström Test for Nicotine Dependence

CPD: cigarettes per day

Lifetime usage: measured in pack-years (= CPD × smoking years / 20)

M/F: male/female

Age, FTND, CPD, smoking years and lifetime usage are calculated in mean ± SD.
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