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Abstract

One of the major findings from multi-modal neuroimaging studies in the past decade is that the 

human brain is anatomically and functionally organized into large-scale networks. In resting state 

fMRI (rs-fMRI), spatial patterns emerge when temporal correlations between various brain 

regions are tallied, evidencing networks of ongoing intercortical cooperation. However, the 

dynamic structure governing the brain’s spontaneous activity is far less understood due to the 

short and noisy nature of the rs-fMRI signal. Here we develop a wavelet-based regularity analysis 

based on noise estimation capabilities of the wavelet transform to measure recurrent temporal 

pattern stability within the rs-fMRI signal across multiple temporal scales. The method consists of 

performing a stationary wavelet transform (SWT) to preserve signal structure, followed by 

construction of “lagged” subsequences to adjust for correlated features, and finally the calculation 

of sample entropy across wavelet scales based on an “objective” estimate of noise level at each 

scale. We found that the brain’s default mode network (DMN) areas manifest a higher level of 

irregularity in rs-fMRI time series than rest of the brain. In 25 aged subjects with mild cognitive 

impairment and 25 matched healthy controls, wavelet based regularity analysis showed improved 

sensitivity in detecting changes in the regularity of rs-fMRI signals between the two groups within 

the DMN and executive control networks, compared to standard multiscale entropy analysis. 

Wavelet based regularity analysis based on noise estimation capabilities of the wavelet transform 

is a promising technique to characterize the dynamic structure of rs-fMRI as well as other 

biological signals.
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Introduction

Spontaneous neuronal activity patterns occur over a multitude of spatial and temporal scales 

and intricately relate to how the brain encodes and stores information (Logothetis et al. 
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1995; Ainsworth et al. 2012). Recurring spatial patterns observed using functional MRI 

(fMRI) suggested the existence of intercortical networks spanning the brain (Biswal et al. 

1995; Lowe et al. 1998). This evidenced the brain dynamically employing multiple regions 

of the brain, even structurally distant ones, in parallel during both task and rest conditions 

(Raichle et al. 2001; Beckmann et al. 2005; Damoiseaux et al. 2006). In particular, the 

functional connectivity of the brain at rest has drawn considerable interest from the 

observance that many cortical regions involved in higher level processing (e.g. learning, 

decision making, and memory) are integrated into several resting-state networks (RSN) 

(Greicius et al. 2004; Seeley et al. 2007). However, the spatial pattern announcing a 

network’s presence is typically constructed from time-averaged correlations in the fMRI 

signal; this paints a static picture of the brain that reveals little about the temporal structure 

and the ensuing dynamics. In this paper, we investigate the repetitive nature of the RSN 

spatial patterns by evaluating the regularity of the resting-state fMRI (rs-fMRI) signal, i.e. 

the similarity of repeating temporal patterns to previous realizations.

The observed rs-fMRI time series signal represents intrinsic blood oxygen level dependent 

(BOLD) activity that is directly correlated with neuronal activation (Logothetis et al. 2001). 

Evidence of spontaneous BOLD fluctuations suggests stochastic processes govern neuronal 

activity. The spectrum of such a process can be estimated from the time-series and describes 

its second central moment. The rs-fMRI spectrum exhibits a power-law shape at low 

frequencies f−β for f ≤ 0.2 Hz) (He et al. 2010). Power-law behaviors are ubiquitous natural 

phenomena that typically indicating an underlying complexity. Famously, they arise from 

scale-free organization and are the hallmark of ‘emergent’ systems described by self-

organized criticality (Bak et al. 1987). In the brain, they lay a general dynamic foundation 

describing how neurons can rapidly reorganize to communicate over both small and large 

distances with equal ease (Chialvo, 2010). However, a given spectral shape describes a 

variety of stochastic processes, and does not determine the temporal dynamics.

A powerful approach to describing temporal dynamics involves characterizing the entropy, a 

measure of the average uncertainty associated with predicting future values or sequence of 

values. In particular, scale-free measures based on predicting future values, given some prior 

knowledge, accurately describe the nonlinear behavior of chaotic systems (Grassberger and 

Procaccia, 1983; Eckmann and Ruelle, 1985). However, these scale-free measures rely on 

long, (largely) noise free signals that are not typically obtained in measurements of 

biological systems (e.g. rs-fMRI). Efforts to understand the complexity of brief 

physiological signals in the presence of noise led to practical measures based on pattern 

recurrence within a single scale. In a seminal study, Pincus introduced approximate entropy 

(ApEn) as a regularity measure of closely repeating signal patterns (Pincus, 1991). In words, 

ApEn and its variants (e.g. sample entropy (Richman and Moorman, 2000)) measure the 

(negative logarithmic) likelihood of m+1-length patterns closely repeating (i.e. separated by 

less than a threshold r), provided they were close for the first m points. Higher values 

implicate increasingly unpredictable intrinsic behavior, in the absence of noise. However, 

noise is also characterized by unpredictability.

Subsequently, multiscale entropy (MSE) analysis was developed to differentiate complex 

processes from random fluctuations by exploiting dissimilarities between the signal and 
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noise across multiple time scales (Costa et al. 2002). In MSE analysis, the entropy of a 

signal is calculated across multiple, coarse-grained temporal scales obtained with a series 

moving average filters. Systems with a f−1 power spectrum exhibit constant entropy over 

various time scales, whereas random noise shows a marked decrease in entropy at longer 

time scales (as random fluctuations are smoothed out). Recently, using MSE analysis, we 

showed gray matter rs-fMRI signal fluctuations to be highly irregular with a close 

resemblance to a f−1-like signal (Smith et al. 2014); highlighting the multiscale approach to 

rs-fMRI signal analysis over single scale measures with greater noise sensitivity (Liu et al. 

2012; Wang et al. 2014). However, MSE analysis dramatically reduces signal length at each 

scale, reducing statistical power, and inextricably ties the resulting entropy to changes in 

SNR across scales (Nikulin and Brismar, 2004).

In this report, we aim to characterize the repetitive nature of rs-fMRI temporal structure 

across multiple scales with a maximal distinction from the effects of noise. To this end, we 

describe a wavelet-based approach that provides significant improvement to the 

characterization of rs-fMRI signal regularity in the following ways. First, in addition to any 

nonlinear structure, the presence of intrinsic nonstationary processes, i.e. how variable the 

moments of the signal distribution are over time, within the rs-fMRI signal (Chang and 

Glover, 2010) will also contribute to the measured regularity. This nonstationary structure is 

preserved with high fidelity across multiple scales using the stationary wavelet transform 

(SWT). Second, the voxel noise level is estimated using wavelet-based de-noising schemes 

(Donoho and Johnstone, 1994; Donoho, 1995; Chang et al. 2000) and used to tune 

sensitivity to the irregularity of the intrinsic signal.

Theory

A step-by-step outline of the wavelet-based regularity algorithm is given in Table I, and a 

visual depiction is shown in figure 1. A brief description is given here. First, we perform a 

voxelwise SWT decomposition of the rs-fMRI signal in to J sequences, where the maximum 

scale depends on the signal length, and the sampling rate. Second, we estimate the voxel 

noise level from its D1 scale using a data driven approach. Third, at each of the remaining 

voxel sequences D2-DJ, we construct a set of time-delayed subsequences. Lastly, for each 

sequence D2-DJ, we measure the average regularity with which m+1-length subsequences 

recur within the estimated voxel noise level.

Wavelet Decomposition

We seek to investigate the dynamic structure of the intrinsic BOLD signal through 

decomposition of the observed rs-fMRI signal into multiple sequences describing distinct 

temporal scales. Spontaneous BOLD activity can be modeled from a stochastic process 

where the measured BOLD time series represents the output from an ordered sequence of 

discrete random variables {X(ti), i =1, …, N}. Recent work shows BOLD activity to be 

locally nonstationary (Chang and Glover, 2010), meaning the realization of a single random 

variable, i.e. the measured value at a particular point in time, is determined according to a 

time-dependent marginal probability mass function, p(x, t) = Pr{X(ti) = x}. This intrinsically 

nonstationary structure contains important information about the dynamics of the BOLD 

signal. Wavelet-based analyses are built upon a local frequency representation that makes 
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them ideally suited for nonstationary systems. Local decomposition presents a major 

advantage over conventional methods such as Fourier analyses that spread local information 

across the entire signal. A second advantage of wavelet decomposition arises from its noise 

estimation capabilities. The observed rs-fMRI signal is contaminated by additive Gaussian 

noise:

(1)

where ε(i) are independent and identically distributed (iid) with N(0, σε). Wavelet 

thresholding procedures estimate a threshold based on σε that can be used for local noise 

adaptation.

The SWT is a common tool in pattern analysis due to its preservation of signal length and 

temporal structures (Nason and Silverman, 1995). Its primary advantage over the discrete 

wavelet transform (DWT) lies in its shift invariance, meaning temporal translations of the 

signal yield the same set of coefficients. Specifically, the DWT critically subsamples the 

total number of wavelet coefficients at each scale, capturing only the minimal amount of 

information to reconstruct the original signal. However, small translations of the original 

signal can lead to large changes in the wavelet coefficients and obscure local features that 

are not precisely aligned with the DWT subsampling lattice (Strickland, 1997; Olivo-Marin, 

2002; Starck et al., 2007; Hasan and Anbarjafari, 2011). The SWT is performed by 

convolving y with a set of orthogonal low pass (scaling) and high pass (wavelet) functions: 

ϕj(k) and ψj(k), respectively. These functio ns are formed through dilations and translations 

of a ‘father’, ϕ, and ‘mother’, ψ, wavelet (Mallat, 1989):

(2a)

(2b)

where the level, j, and translation, k, indices parameterize the frequency subband and 

temporal window, respectively. The resulting coefficients, aj(k) and dj(k), represent 

temporally local energy densities of a given subband:

(3a)

(3b)

where ωn = (2 * TR)−1 is the highest sampled frequency. The subbands form a dyadic set 

with the lowest scale D1 arising from the highest half of the full frequency range. Overall, a 

J-level decomposition yields J band-pass sequences {D1, …, DJ} and a single low-pass 

sequence AJ:

(4a)
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(4b)

where J is the coarsest selected level, with a temporal resolution ~2J, containing two 

subbands, DJ and AJ. The band-pass scales Dj are ideal for analysis of the non-stationary rs-

fMRI signal due to their local time-frequency characteristic. The AJ sequence is a low-pass 

filtered version of the original signal that is excluded. This is a complementary approach to 

the typical procedure in rs-fMRI analysis where the Fourier transform is used to band-pass 

the signal within a specified range.

Experimental and theoretical work strongly indicates the rs-fMRI signal is described by a f−β 

distribution (Bullmore et al. 2003; He et al. 2010). A subsampled (by 2j) set of f−β wavelet 

coefficients is normally distributed and strongly stationary within each scale (Wornell, 

1993). As in equation 1, the band-pass coefficients can be expressed as a sum:

(5)

where the noise coefficients, εj(k), are also iid and normally distributed, N(0, σε). The set of 

coefficients, {Xj}, represent the filtered BOLD signal within the Dj scale with:

(6)

where  is the total variance of the subsampled Dj sequence.

Subsequence Construction

The presence of serial correlated behavior within a signal naturally inflates subsequence 

recurrence (i.e. neighboring subsequences remain close), and decreases entropy. Intrinsic 

correlations in rs-fMRI are induced by, e.g. cardiac and respiratory fluctuations (Friston et 

al. 2000; Smith et al. 2001), and are preserved by the SWT. We use a time delay approach 

employed in scale-free measures of chaotic systems (Grassberger and Procaccia, 1983; 

Eckmann and Ruelle, 1985) to construct strongly decorrelated m-length subsequences. The 

q-th subsequence is written as:

(7)

where τ is the delay. In this report we use the auto-mutual information function (Fraser, 

1986) to estimate the total correlation (not just linear) present between coefficients within 

each sequence Dj separately. The degree of correlation is minimized using a time delay τ 

equal to the function’s first minimum. The resulting number of patterns is then Nm = N − (m 

− 1)τ, where N is the signal length and τ is scale dependent.

Regularity

We are interested in the regularity of the intrinsic signal Xj within each scale Dj. We 

measure regularity using the sample entropy (HS):
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(8)

where Cm(r) is the correlation sum (Eckmann and Ruelle, 1985). The correlation sum 

measures the recurrence probability of m-length subsequences within a tolerance distance r:

(9)

where  is the distance between  and , two m-length 

subsequences, and Θ is the Heaviside function. Typically r is set as a percentage of the 

signal standard deviation, r = r0σDj, where r0 is adjusted such that r is greater than most of 

the noise. However, this conventional approach results in high HS values for both noisy 

signals, and intrinsically irregular signals.

In this report, we seek to estimate the noise level directly from the voxel time series and 

obtain an approximate measure of . From equations 5 and 7 the relationship between 

 and the difference between observed signal subsequences, , is:

(10)

Here  is the difference between Dj subsequences of noise whose components are 

distributed such that:

(11)

In signals with a majority of the power concentrated at low frequencies the noise level, σε, 

can be approximated from the median absolute deviation of high frequency scale (D1) 

coefficients (Donoho and Johnstone, 1994):

(12)

Note that σε is calculated using a subsampled (by 2) D1 sequence to reduce any residual 

correlation between d1 coefficients. Most of the power in rs-fMRI signals is focused below 

0.1 Hz. This corresponds to a maximum sampling time TRmax = 2.5 s, such that the D1 scale 

corresponds to the frequency range 0.1 – 0.2 Hz. While longer sampling times will result in 

an overestimation of the noise level (the D1 scale will dip below 0.1 Hz), the median 

absolute deviation is a robust measure that mitigates signal bias, compared to the standard 
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deviation. From equation 6, the distribution of the components for  can be similarly 

estimated by:

(13)

We approximate  using a soft wavelet thresholding (Antonini et al. 1992) of the 

observed subsequence differences, :

(14)

where (a)+ represents the maximum between the argument a and zero, and t is a noise level 

threshold to be estimated. The effect of equation 16 is to reduce each coordinate of 

towards zero by t. Several thresholds have been developed and employed in signal denoising 

schemes (Donoho and Johnstone, 1994; Donoho, 1995). The data driven BayesShrink 

approach is suited for signals with information situated across several scales (Chang et al. 

2000). BayesShrink defines a scale-dependent threshold that minimizes the Bayes risk of the 

estimate, :

(15)

In this report we calculate the distance between subsequences using the maximum norm, ||

a||∞ = max(|a(1)|, …, |a(m)|), which returns the absolute value of the component with the 

largest magnitude. The estimated distance between the intrinsic subsequences is then given 

by:

(16)

The overall result of equations 14–16 is to find the components of two subsequences with 

the largest absolute distance between them, and reduce that distance by a factor t that 

depends on both the noise and signal levels. This threshold optimally (Bayes risk) retains 

information pertaining to the intrinsic signal, while suppressing the random effects of noise. 

Further, t will quickly converge zero as SNR increases above σxj/σε = 1. Substituting 

equation 16 into equation 9 we obtain an upper estimate of Cm:

(17)
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The (a)+ condition is dropped since the Heaviside function equals one for arguments greater 

than zero. This allows the t to be folded into the definition of threshold distance, r, which is 

defined to be  (and ) are inserted into equation 8 to obtain an estimate to 

HS:

(18)

In general we find equation 18 represents a lower bound to the true regularity, H̃
S ≤ HS, 

where equality is approached as the noise level decreases. H̃
S yields high values for 

intrinsically irregular signals, and low values for regular and or noisy signals.

r0 determination

In wavelet-based regularity analysis we introduce a minimum threshold size, t, for each 

voxel time series. t represents the smallest resolution at which repeating patterns of the 

intrinsic signal can be reliably confirmed. This minimum threshold enables the adjustment 

of the total threshold, rt = r0σX + t, to produce the maximum HS attributable to the intrinsic 

signal (minimal noise contribution). This adjustment entails minimizing and fine-tuning the 

scaling factor r0 of the intrinsic signal variance, σX. However, in this report, we seek to 

maximize the distribution of HS obtained across a set of signals with the constraint that the 

same r0 be used for all time series (all voxels across all brains). We employ a simple scheme 

to find the smallest r0 that maximizes the range of observed HS values:

1. For each signal, determine the smallest r0 that results in the largest HS (taken across 

all scales):r0v = min{r0 ≥ 0: HS = max{HS ∈ ℝ}}

2. Select the largest r0v across the set of all signals: r0b = max{r0v}

In words, these two steps involve varying r0 separately for each voxel until the local HS 

reaches a maximum (while still remaining defined). The maximum r0 obtained from the set 

of all voxels (across all brains) is then selected. This ensures each voxel (across all brains) is 

normalized with the same scaling factor and that all voxels have a defined (non-infinite) HS. 

In this manuscript, we computed HS for the range of scaling factors r0 = 0 – 0.5, in 0.05 

increments. We observed r0 = 0.1 to be the lowest scaling factor such that all voxel HS 

values, taken across both groups, remained defined.

Methods

The wavelet-based regularity analysis was applied to three data sets: 1) A simulated data set 

to quantify the dependence on serially correlated fluctuations, and SNR. 2) A multiband rs-

fMRI data set to investigate the intrinsic irregularity across an extended number of time 

scales. 3) A cognitive data set to investigate the sensitivity of the proposed method on a 

clinical population. Results are compared to conventional MSE analysis.
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Simulated Data

To quantify the effects of temporal correlation, noise and signal length on H̃
S and provide a 

comparison with MSE analysis, we simulated time series with power spectrums of the form 

f−1 corresponding to pink noise. Time series were generated by convolving a 1/fα impulse 

response function with a white noise time series. Convolution is implemented in the 

frequency domain by multiplying the corresponding discrete transfer function with a white 

noise spectrum. Taking the discrete Fourier transform of the product results in a discrete 

time series whose power spectrum coefficients approximate a continuous 1/fα noise process 

(Mandelbrot and Van Ness, 1968; Papoulis, 1984). The specific steps for generating a 1/fα 

noise time series have been previously described (Kasdin, 1995) and are listed in Appendix 

A. The method of modeling 1/fα noise time series has two primary advantages over 

conventional methods such as autoregressive moving average (ARMA) based models: 1) it 

is scale invariant, and 2) it has no limitation to a particular band size. The dependence on the 

signal signal-to-noise ratio was investigated by adding iid Gaussian white noise to the 

generated f−1 time series. The SNR of the resulting signal, y, is evaluated as:

(19)

To illustrate the effect of serial correlated behavior on the measured regularity, we compare 

the τ-delay approach described in this report to two additional approaches for constructing 

subsequences (Fig. 2a), a multilevel SWT decomposition with no time delay and a DWT 

decomposition approach with no time delay. The latter approach is carried out in an identical 

fashion to the second approach, with the exception that a DWT is used to decompose the 

simulated time series.

Experimental Data

Two sets of rs-fMRI scans were performed. 1) Resting state MRI was performed with a 3T 

Siemens TIM Trio system. A long rs-fMRI scan was performed on 5 healthy young 

volunteers (age 21 ± 2 years), using multiband gradient-echo EPI with a fourfold 

acceleration factor. Imaging parameters were: FOV = 256 mm, TR=500 ms, 1032 time 

points, TE = 30 ms. 2) Analysis of 50 data sets, 25 cognitively normal (clinical dementia 

rating scale (CDR) = 0, 70 ± 4 years) and 25 mild cognitively impaired (CDR = 0.5, 74 ± 5 

years) individuals, from Healthy Aging and Senile Dementia (HASD) program project have 

also been carried out. For the HASD data, resting state fMRI data were collected on a 3T 

Siemens TIM Trio system. Each subject had 2 rs-fMRI scans using standard gradient echo 

EPI (FOV = 256 mm, matrix = 64×64, 36×4 mm slices, TR|TE = 2200|27ms, FA = 80, 164 

acquisitions for 6 minutes each scan), along with a high-resolution (1×1×1 mm3) 3D T1-

weighted MPRAGE scan. Subjects were instructed to keep their eyes open and focus on a 

fixation cross during the scan.

Preprocessing

The rs-fMRI data were pre-processed as follows: compensation for rigid body correction for 

head movement using the MCFLIRT (Jenkinson et al. 2002) algorithm in the FSL software 
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(default parameters, with final sinc interpolation), linear detrend and reduction of spurious 

variance by regression of nuisance waveforms derived from head motion correction 

(including derivatives of motion) and ROI extracted time series in white matter and 

cerebrospinal fluid (CSF). White matter and CSF time series were obtained similar to 

(Chang and Glover, 2009) by reverse-normalizing (see Normalizaion and Group Analysis 

section below) 6 mm spheres at MNI coordinates (26, −12, 35) and (19, −33, 18), 

respectively, to the native space of each subject.

Wavelet-based Regularity Analysis parameters

The stationary wavelet transform was performed voxel-wise on fMRI data sets using the 

WaveLab850 toolbox (Buckheit et al. 2005). The Daubechies wavelet (fourth order 

smoothness, db4) was used in this study for its balanced temporal and frequency specificity. 

HS is calculated voxel-wise and scale-wise using the parameters m(+1) = 1(2), r0 = 0.1. The 

adjustable parameter r0 is chosen to maximize the total range of entropy values measured 

across all voxels. The m-length subsequences are formed from time delayed points where 

the delay time is determined by the first minimum in the auto-mutual information function 

(Fraser and Swinney, 1986; Roulston, 1999) using the CRP toolbox (Marwan et al. 2007). 

The median absolute deviation of the highest temporal frequency scale is more robust to 

outliers than the standard deviation and is used to estimate the noise level in all data sets.

Multiscale Entropy Analysis parameters

MSE analysis (Costa et al. 2002; Costa et al. 2005) is a widely technique employed to 

understand signal regularity across multiple time scales. MSE analysis has been used to 

understand gait dynamics in humans (Costa et al. 2003), EEG signal irregularity in 

schizophrenia and autism (Takahashi et al. 2010; Catarino et al. 2011), and age dependent 

changes in heart rate irregularity (Costa and Healy 2003; Costa et al. 2008). To mitigate the 

effects of noise, MSE analysis implements a coarse graining procedure that behaves as a 

low-pass moving average filter (see Supporting Information (SI)). MSE analysis takes 

advantage of the tendency for uncorrelated noise to converge to its mean through successive 

averaging. The coarse graining procedure averages s-consecutive time points to create a new 

time series . Note the length of the new time series is reduced by a factor s. 

Each new time point is given by the sum:

(20)

Sample entropy is then calculated for each new time series gs. MSE analysis of the CDR 0 

and CDR 0.5 groups were performed by coarse graining voxel time series across three 

scales: s = 2, 3, and 4. The corresponding signal lengths for each scale were Ns = 80, 53, and 

40. Sample entropy parameters were varied with the greatest group differences occurring for 

m(+1) = 1(2), r0= 0.3.
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Group Analysis

The transformation from each subjects brain to the MNI space was carried out using FSL’s 

FLIRT (Jenkinson and Smith, 2001; Jenkinson et al. 2002) and FNIRT (Anderson et al. 

2010) algorithms in the following steps: 1) The mean functional volume for each subject 

was co-registered to their structural volume using an affine registration with 6 DOF. 2) The 

structural volume was transformed to the MNI 2 mm structural template using an affine 

registration with 12 DOF followed by a nonlinear registration using FNIRT (default 

parameters). Univariate group statistics were investigated scalewise with one sample and 

two sample t-tests. A single voxel and single scale threshold of p=0.005 was selected. Single 

scale cluster size statistics were obtained within a whole brain mask using AlphaSim 

(Forman, 1995; Ward, 2000) implemented in the REST toolbox (Song et al., 2011). 

Additional AlphaSim parameters used were a cluster connection radius of 3mm (i.e. 

approximately the distance between the center of two 2 mm voxels sharing an edge) and a 

Gaussian filter width of 4 mm. A single scale cluster threshold of P=0.0125 was then 

selected corresponding to a minimum cluster size of 60 voxels. This size corresponds to 

~1/1500th of the total gray matter volume (Luders et al., 2002). This provides good cortical 

resolution while still being able to detect diffuse activation. A scalewise corrected P-value 

of P=0.05 was obtained (Bonferroni) for multiple comparisons across four scales. 

Differences in the multivariate statistical distributions defined across scales were also 

obtained using Hotelling’s T2-test. This test is based on comparing the distance between 

mean entropy vectors (i.e. the set of HS values taken across all scales for a single voxel) 

normalized by a pooled covariance matrix of all subjects in a group. The direction of effect 

was established using simultaneous confidence intervals as well univariate t-tests at each 

scale. The single voxel threshold was also chosen to be p=0.005. The cluster threshold was 

chosen P=0.05 rather than P=0.0125 as the correction for multiple comparisons across 

scales is naturally incorporated in Hotelling’s T2-test. A minimum cluster size of 44 voxels 

was determined, however, we use 60 voxels instead to remain consistent with the univariate 

values.

Group independent component analysis (ICA) was performed with 40 components using the 

GIFT package (Calhoun and Adali, 2013). Single subject maps were obtained by back-

reconstruction and converted to z-maps. The group RSN were then computed with a one 

sample t-test (p < 0.0001, familywise error corrected) performed across all subjects. Nine 

resting state networks were visually identified (see Fig. S3 in SI).

Results

Simulated Data

Constructing subsequences from neighboring points results in entropy values heavily 

weighted by the degree of serial correlation present. The result is inflated subsequence 

recurrence that can be seen in figure 2a (no delay) where the sample entropy comes to a 

modest rise with increasing scale before dropping dramatically. Ideally this weighting is 

removed by whitening the subsequences, i.e. removing any correlation between points. We 

significantly reduce the correlation between points by introducing a delay between 

subsequence points. We compare the SWT τ-delay approach to an approach using a DWT to 
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decompose the rs-fMRI signal. The DWT naturally whitens serial correlations by 

subsampling the number of time points, producing 2−jN coefficients for the j-th scale 

(Wornell, 1993). However, uniform subsampling has two major limitations that conspire to 

drastically vary the observed signal irregularity (Fig. 3a): a) recurring patterns must be 

translated such that their features are similarly sampled by the DWT at each recurrence, and 

b) subsampling progressively reduces the sample size (number of subsequence comparisons) 

with increasing scale, by a factor of ~(j+1)2. Stemming from the central limit theorem, 

reducing sample size increases the associated uncertainty in the estimation of the underlying 

population mean. These two drawbacks are particularly problematic when characterizing the 

regularity of signals stemming from nonlinear processes where patterns recur at non-uniform 

rates. On the other hand, the SWT τ-delay approach dramatically increases the number of 

subsequence comparisons (compared to the DWT method), reducing the entropy variation. 

Further, the mean entropy values across scales are comparable with the DWT method 

indicating the subsequences are effectively whitened. The results presented below are 

obtained using the τ-delay approach. The dependence on SNR is shown in figure 2b. As 

with any measure of a noisy signal, wavelet-based regularity exhibits a dependency on SNR. 

Increasing SNR will increase entropy as the estimated noise threshold becomes smaller 

relative to signal fluctuations. However, the effect of SNR is significantly reduced at the 

level of that typically found in rs-fMRI. There is only a 15% increase in entropy when 

increasing SNR from 3 to 12 (a 300% increase) at the highest wavelet scale. Increasing SNR 

does not guarantee an increase in entropy, i.e. a noisy sine wave will always have low 

entropy, even as the SNR is tuned up.

Figure 3 compares the entropy ranges of simulated pink noise signals with SNR = 3 to 

simulated white noise signals using the wavelet-based method presented here and MSE 

analysis, for signals of several lengths: N = 64, 128, 256, 512, and 1024. At all signal 

lengths, a significant increase of the pink noise over white noise entropy is observed over a 

majority of scales using the wavelet based approach. For lengths N ≲ 128, increases are 

limited to the highest scales. MSE analysis, on the other hand, only shows significant 

increases above λ ~ 2, and only in signals with N ≲ 128.

Multiband rs-fMRI Data

We obtained 4-D fMRI data with long time series (1024 sampled volumes) and a sampling 

rate of 2 Hz (TR = 0.5 s) from five healthy young volunteers. Figure 4a shows average 

entropy maps for four of the seven wavelet scales investigated, D4-D7 (entropy is calculated 

for scales D2-D7), which correspond to frequency bands within the region of 0.01–0.10 Hz, 

typically studied in fMRI. Noise level was determined from the D1 scale corresponding to 

the frequency band 0.5 – 1.0 Hz. Posterior brain regions exhibit an elevated entropy values 

at frequencies as high as 0.20 Hz (D3). Regional differences are shown in figure 4b. The 

largest values occur in the precuneus, posterior cingulate cortex, angular cortex, and medial 

prefrontal cortex as well as regions of the primary visual network including the cuneus. The 

lowest values within the gray matter occur in the caudate, thalamus, hippocampus, and 

insular cortex. White matter exhibits the lowest values overall, showing little increase with 

increasing scale.
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Cognitive Data

We calculate the regularity of the rs-fMRI signal for a cognitively normal group (n = 25, 

CDR = 0) and compare with a mild cognitively impaired group (n = 25, CDR = 0.5) using 

two measures: Wavelet-based regularity, and MSE analysis. In wavelet-based regularity 

analysis, entropy maps were obtained for each of the scales D2-D5 (four maps per subject) 

that correspond to frequency bands within the region of 0.007–0.11 Hz. Each voxel’s noise 

level is estimated from the D1 scale corresponding to the frequency band 0.11 – 0.22 Hz. In 

MSE analysis, entropy maps were obtained for coarse-grained scales s = 2, 3, and 4 (three 

maps per subject).

Figure 5 shows results of one sample t-tests performed voxelwise and scalewise across the 

wavelet-based regularity maps (Fig. 5a) and across the MSE maps (Fig. 5b) of both groups 

under the null hypothesis that entropy values in each scale are randomly scattered around the 

global (within scale) mean. Displayed regions exhibit significantly higher means (p < 0.001, 

cluster corrected for p<0.05 with a minimum cluster size of 60). Wavelet-based regularity 

results are entirely confined to gray matter regions across all scales. A single large cluster 

spanning regions of the precuneus and cuneus show elevated means within the D2 scale 

(0.11 – 0.055 Hz). Within the D3 scale (0.055 – 0.028 Hz), this cluster grows and new large 

clusters in the calcarine and posterior cingulate form. Further, distinct clusters appear 

bilaterally in the several posterior regions: angular, supramarginal, middle occipital, middle 

temporal, and lingual gyri as well as the thalamus. A single anterior cluster appears in the 

medial orbital frontal gyrus. We note that a majority of the observed clusters largely overlap 

with nodes of DMN (see SI).

The entire set of posterior clusters persists, and grows, in the D4 scale (0.028–0.014 Hz) 

with the exception of the clusters in the thalamus, which disappear completely, indicating 

frequency specific activity. The anterior cluster in the medial orbital frontal gyrus grows in 

addition to new bilateral clusters appearing in the middle orbital and inferior orbital gyri. 

Bilateral clusters also appear in the middle and inferior frontal gyri as well as the superior 

temporal gyrus. Posterior activity at the coarsest temporal scale, D5 (0.014–0.007 Hz), is 

greatly reduced with clusters persisting in the precuneus, cuneus, and calcarine. Bilateral 

activation also persists in the angular, middle occipital, and middle temporal gyri. Activity 

in the supramarginal gyrus, and posterior cingulate drop below the significance threshold. 

The opposite is observed for anterior regions where coverage is greatly increased across 

orbitofrontal cortex as well as the middle and inferior frontal gyri.

Multiscale Entropy Results

MSE results of the cognitive data show high entropy at the lower scales, s = 2 and 3, where 

the noise dominates the entropy and gray matter regions are not distinguishable from white 

matter. The highest coarse-grained scale (s = 4) shows posterior activity patterns similar to 

those seen across the D2-D5 wavelet scales. Namely, clusters in the precuneus, cuneus, 

calcarine and posterior cingulate form (Fig. 5b). Further, extended bilateral clusters span the 

angular, supramarginal, and middle occipital gyri. Separate clusters also bilaterally occupy 

the middle temporal gyrus as well as the thalamus. However, very little anterior activity is 
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seen with MSE analysis with a small cluster in the medial orbital frontal gyrus, and 

unilateral (left) clusters in the inferior frontal gyrus.

Figure 6 shows the maps of the group comparisons done using two sample t-tests between 

CDR 0 and CDR 0.5 groups. These maps are overlapped with two resting state network 

masks: the default mode network (posterior) and the executive control network (a composite 

of the left and right). Networks are identified using group ICA (see Methods), and the masks 

of RSNs indicate significant regions (p < 0.0001, familywise error corrected) from a one 

sample t-test performed across both groups. Table II lists the center and volume of each 

observed cluster for all measures. All group comparison results reported below are 

significant to p < 0.005, and cluster corrected for p < 0.05 with a minimum cluster size of 60 

(Forman, 1995). The univariate entropy distributions at each scale and voxel were compared 

with Student’s two sample t-test for both wavelet-based regularity (Fig. 6a,b) and MSE (Fig. 

6d). In the former case, regions of significant difference only appear in the low frequency 

scales D4 and D5 scales, with the CDR 0.5 group showing higher entropy. Regions are 

largely similar across the two scales except for differences in the cerebellum (crus II) and 

the inferior frontal gyri/insula. Contrariwise, MSE differences were only found at the lowest 

scale s = 2 (Fig. 6d), with the CDR 0 group showing the higher entropy. This reversal of 

direction is consistent with the wavelet-based regularity results. MSE is designed to suppress 

‘noisy’ fluctuations, including those intrinsic to the signal. The lack of measurable group 

effect for MSE(s=4) highlights yet another difficulty in employing MSE analysis for short 

noisy time series. Namely, the tradeoff between greater noise filtering and reduced statistical 

power as the scale increases.

In addition to the scalewise comparisons, the difference in the multivariate entropy 

distributions defined across all scales is evaluated voxelwise with Hotelling’s T2-test (see 

Methods section). The results for wavelet-based regularity (Fig. 6c) overlap with those seen 

in scales D4 and D5, but with several additional clusters appearing. The largest of which 

occurs in the anterior region of the middle cingulate cortex. Direct comparison of the 

multivariate differences with the D4 and D5 univariate results indicate the CDR 0.5 exhibits 

higher irregularity in the overlapping clusters. For new clusters, simultaneous confidence 

intervals are used which also show the CDR 0.5 group having increased irregularity. 

Comparison of the multivariate entropy distributions defined across the MSE coarse-grained 

scales revealed no significant differences between the groups.

Effects of SNR, Delay Time, and Motion

Comparisons of both the SNR and delay time distributions are also performed, both within 

each wavelet scale, and across scales to determine whether the above wavelet-based 

regularity results can be explained by differences in signal strength and/or serial correlation 

between the two groups. SNR maps are obtained for each subject at each wavelet scale using 

equations 11 and 19. The univariate SNR and delay time distributions within each scale and 

the multivariate distributions defined across scales are compared with both Student’s t-test 

and Hotelling’s T2 test. No significant difference in SNR or delay time is found between the 

groups up to p < 0.01, uncorrected (see SI for average gray matter differences). Further we 

test for changes in relative signal strength across the frequency band 0.11–0.007 Hz using 
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fractional amplitude of low-frequency fluctuation (fALFF) (Zou et al. 2008). We observe a 

single cluster in the caudate where the CDR 0 group exhibits an increased fALFF, opposite 

to the direction of wavelet-based regularity results (Fig. 6d). These results strongly indicate 

the observed wavelet-based regularity results, namely the increase in the irregularity of rs-

fMRI fluctuations across several areas of the brain, are not accounted for by changes in 

signal strength.

We used wavelet-based regularity analysis to investigate the dynamic effects of head motion 

and imaging parameters on the average gray matter entropy difference between the CDR 0 

and CDR 0.5 groups (Fig. 7). Effects of head motion are evaluated by including motion 

parameters (e.g. rms head displacement) as a covariate in the regression of the bold time 

series. Physiological noise effects were evaluated by regressing out the average white matter 

and CSF times series (see Methods). Similar to existing metrics of rs-fMRI, the wavelet-

based regularity analysis is susceptible to confounding factors of head motion. Head motion 

has been shown to affect the observed pattern of short and long-range connectivity in rs-

fMRI studies. Noise caused by motion is often described by six parameters: translational 

motion in three orthogonal directions, and three rotation parameters (i.e. pitch, roll, and 

yaw). Motion can be highly non-stationary with persistent drifts or localized shifts/spikes 

being added to the signal. Entropy calculations were performed at two stages: 1) After linear 

registration, and 2) after motion parameter (including derivatives), white matter time series 

and linear trend regression. A significant drop in entropy was observed across both groups 

after regression of nuisance variables. Motion is known to introduce colored noise in the rs-

fMRI signal (Power et al. 2012) and the entropy drop across scales reflects the removal of 

this noise. Our results demonstrate that nuisance variable dynamics do not contribute 

significantly to group differences in signal regularity.

Discussion

The proposed method aims to detect intrinsic signal regularity in short, noisy signals by 

maximizing the number of subsequence comparisons (sample size), while minimizing 

effects of serial correlations and random fluctuations from external noise. Preserving local 

temporal structures with high fidelity is essential in the decomposition of nonstationary 

signals. This is accomplished using a SWT, but at the cost of perpetuating any correlated 

structure. Correlated structure reduces the amount of new information contained in nearby 

time points. This weighting can be mitigated by reducing correlations between coordinates, 

as evidenced by the DWT method (Fig. 2a (DWT)).

However, poor statistics arising from the DWT subsampling gives rise to a large variation in 

entropy values that increases with increasing wavelet scale. The SWT τ-delay effectively 

reduces the serial correlation within subsequences, comparable to a DWT subsampling, 

while providing better statistics by significantly increasing the number subsequence 

comparisons.

Random fluctuations introduced by external uncorrelated noise tend to scatter signal patterns 

away from each other. Because of this scattering, the level of noise presents a sensitivity 

limitation to regularity measures such as approximate and sample entropy (Pincus, 1991; 
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Richman and Moorman, 2000). In this report we estimate the noise level, and measure the 

likelihood of the intrinsic temporal patterns to repeat within the threshold set by the noise. 

This has the desired benefit of yielding low entropy values for both noisy signals, and highly 

regular signals, and high entropy for intrinsically irregular signals.

We employ this method to investigate the regularity with which the brain reconstructs 

temporal activity patterns by measuring the stability of recurring subsequences in the rs-

fMRI signal. We find the most ‘active’ areas of the brain at rest exhibit a diverse array of 

strong temporal patterns. The movement through these patterns results in highly irregular, 

f−1-like, signal fluctuations across multiple time scales. The largest increases in sample 

entropy occur in the default mode network (precuneus, posterior cingulate cortex, angular 

cortex, and medial prefrontal cortex) and the primary visual network (cuneus, and occipital 

cortex). These regions correlate with findings showing increased signal intensity variation 

and perfusion (Luca et al. 2006), whereas other reports have shown the default mode 

network to exhibit increased connectivity during rest (Raichle et al. 2001; Beckmann et al. 

2005; Damoiseaux et al. 2006). This complex trajectory through a diverse array of patterns 

is mirrored at finer temporal scales by the scale-free behavior of EEG microstates (Ville et 

al. 2010). EEG microstates (Lehman et al. 1987) are whole brain neural activity patterns 

persisting for ~100 ms and reported to be electrophysiological correlates of spontaneous rs-

fMRI fluctuations within RSNs (Musso et al. 2010; Britz et al. 2010). Recent computational 

model of recurrent neural networks show that forming a diverse array of patterns increases 

the brains ability to distinguish small changes in synaptic input (Ostojic, 2014). Conversely, 

white matter exhibits low entropy across all scales indicating a dominance of external noise. 

This is unsurprising since the vast majority of neuronal bodies, and dendritic trees (i.e. the 

structures that generate local field potential which is the candidate signal associated with rs-

fMRI signal changes (logothetis 2001)) are located in the gray matter.

However, emerging evidence indicates neural activity is a combination of both complex and 

recurrent behaviors. A mix of feedforward and feedback connections typifying these 

behaviors is evidenced in the visual processing networks (Lamme and Roelfsema, 2000; 

Kravitz et al. 2013). The interplay of these behaviors is speculated to govern neural 

processes in other systems. Considerable computational work on recurrent neural networks 

has shown dynamic neural behavior to consist of both highly irregular (chaotic) and 

recurrent (locally stable) behaviors (Mauk and Buonomano, 2004; Rabinovich et al. 2008; 

Buonomano and Maass, 2009; Laje and Buonomano, 2013; Ostojic, 2014), but with little 

supporting experimental evidence. We report, in an age matched comparison of two 

cognitive groups (healthy vs. impaired), evidence that recurrent temporal patterns 

destabilize, i.e. fail to persist, in mild cognitively impaired individuals in regions strongly 

correlating with several RSNs: the posterior default mode network, and the left and right 

executive-control networks. These networks are known to play an integral role in healthy 

cognition. The default mode network is reported to be a central hub of the brain that 

interconnects with several other networks (Bullmore and Sporns, 2009) and is thought to 

play a role in episodic memory (Greicius et al. 2004; Buckner et al. 2009). These networks 

are amongst those shown to be targets of neurodegenerative disease (Seeley et al. 2009). The 

observed decrease of stable, recurrent behavior implicates the disruption of information 
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feedback as an agent of cognitive impairment. Similar decreases in the stability of EEG 

microstates, the duration they subsist, are observed with decreasing cognitive function (Strik 

et al. 1997). These results contribute to a growing body of evidence that points to the brain 

balancing the development of complex spatiotemporal patterns with an intrinsic tendency to 

revisit patterns of activity (Plenz and Thiagarajan, 2007; Ikegaya et al. 2004). We note that 

studies using MSE show a decrease in entropy (ROI based) with decreasing cognitive 

function (Yang et al. 2013). These results are in agreement with those reported here when it 

is considered that MSE is designed to filter out highly irregular fluctuations, regardless of 

their origin. This will suppress the noisier fluctuations observed in the CDR 0.5 group. A 

thorough evaluation of wavelet based regularity and MSE analysis needs to be performed in 

future studies.

Conclusion

We present a new regularity analysis that measures the stability of recurrent temporal 

activity patterns in the presence of significant noise levels. We adapt the multiresolution and 

noise estimation capabilities of wavelet analysis into a highly sensitive regularity analysis. 

Significant differences in recurrent temporal pattern stability are observed between healthy 

normal, and cognitively impaired groups in several resting-state networks involved in higher 

level cognitive processing. The findings in the paper suggest that wavelet based regularity 

analysis is a promising technique to characterize the dynamic temporal structure of rs-fMRI 

as well as other biological signals.
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Refer to Web version on PubMed Central for supplementary material.
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Appendix A

The following steps were used to generate time series with 1/fα power spectrum [Kasdin, 

1995]:

1. Recursively generate the impulse response values using a Runge-Kutta method 

[Kasdin, 1995b]:

2. Generate independent and identically distributed (iid) white noise, N(0,1).

3. Pad sequences from steps 1 and 2 with zeros to guarantee linear (and not circular) 

convolution, which assures causality (outputs are not dependent on future inputs).

4. Perform a discrete Fourier transform (DFT) of impulse response function in step 1 

to obtain the discrete transfer function, H(z).

5. Perform a DFT of the white noise sequence in step 2.

6. Multiply H(z) together with the complex spectra from step 5.

7. Take the inverse DFT of the result in step 6.
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Figure 1. 
A depiction of the wavelet-based regularity analysis. a) A representative rs-fMRI signal 

selected from voxel located within the precuneus (PCN) of a representative subject (MNI 

coordinates: −10, −52, 26), b) Stationary wavelet transform of rs-fMRI signal. Only two 

scales shown for illustrative purposes: D1 (red) and D6 (blue). The intensities of the D1 

scale fluctuations are used to estimate the noise level. Inset depicts an example of an m=2 

subsequence construction. The k-th subsequence (d(k), d(k+τ)) is formed from time points 

separated by a time delay τ (first minimum in the auto-mutual information function). This is 

performed for each scale Dj. c) Power spectrum of rs-fMRI signal. High (red) and low (blue) 

frequency bands show where D1 and D6 wavelet scales exhibit sensitivity, respectively. d) 

Sample Entropy map of the D6 scale. Arrow indicates PCN location of rs-fMRI signal. e) 

Phase space plot of subsequences (m = 2) taken from D6 scale time course. Inset: outlined 

region magnified, with solid blue points indicating recurrent patterns within r, of the k-th 

subsequence (open green circle).
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Figure 2. 
Wavelet-based regularity analysis of simulated f-1 data (N=1024) depicting the effects of 

serial correlations and changes in SNR. a) Comparison of subsequence construction using a 

delay time (τ) adjusted for serial correlated behavior, no delay time (τ = 1), and a discrete 

wavelet transform (DWT) method that forms maximally whitened subsequences (see text). 

b) Entropy values for signals with SNR = 1 (white noise), 2, 3, 6, and 12 are shown. 

Subsequences were formed with τ adjusted for serial correlated behavior.
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Figure 3. 
The effect of signal length (N) on the ability to distinguish f−1 noise (with SNR = 3) from 

white noise for the wavelet-based regularity analysis (left side) presented in this paper and 

MSE analysis (right side). a–b) N = 1024, c–d) N = 512, e–f) N = 256, g–h) N = 128, and i–

j) N = 64. The last three rows represent signal lengths typically studied in rs-fMRI. The 

scale λ = 0 corresponds to the original signal. Box plots show the 5-25-75-95 percentiles.
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Figure 4. 
The average regional entropy of five (N=5) healthy young volunteers across several time 

scales. a) Entropy maps for three selected slices (MNI z-coordinate: 12, 22, 32) at four 

wavelet scales: D4 (0.094 Hz) - D7 (0.012 Hz). Frequencies correspond to center of 

respective subband. b) Regional entropy differences. The mean entropies at wavelet scales 

D2(0.375 Hz) - D7 (0.012 Hz) for several brain regions. Solid red symbols indicate regions 

located in resting state networks. Solid dark blue symbols correspond to cortical regions 

exhibiting the lowest entropies across all scales (insula, caudate, thalamus, hippocampus). 

White matter (open black symbols) exhibits the lowest entropy values of a brain region.
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Figure 5. 
One sample t-tests results performed against the global mean, scalewise, across both CDR 0 

and CDR 0.5 groups of the wavelet-based regularity maps, and MSE maps. a) Four scales 

and their corresponding frequency ranges are shown for wavelet-based regularity: D2 (0.11–

0.055 Hz), D3 (0.055–0.028 Hz), D4 (0.028–0.014 Hz), and D5 (0.014–0.007 Hz). b) Three 

scales and approximate frequency sensitivity range are shown for MSE analysis: s = 2 (< 

0.11 Hz), s=3 (< 0.055 Hz), and s=4 (< 0.028 Hz).
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Figure 6. 
Voxelwise comparison between healthy (CDR 0) and impaired (CDR 0.5) cognitive 

function groups from Healthy Aging and Senile Dementia (HASD) cohort using wavelet-

based regularity analysis, MSE analysis, and fALFF. Results from two sample t-tests show 

decreased regularity in the CDR=0.5 group at scales a) D4, corresponding to the frequency 

range 0.028–0.014 Hz, and b) D5, corresponding to the frequency range 0.014–0.007 Hz. c) 

Two sample multivariate t-tests performed voxelwise across scales D2-D5 show an extended 

number of regions affected. d) MSE and fALFF two sample t-test (univariate) results are 

shown. MSE differences are observed only for s=2 and appear over a far narrower range of 

slices. Similarly, fALFF differences occur within a single cluster. All results are significant 

to p<0.005, and further cluster corrected for p<0.05, with a cluster size minimum of 60. Two 

resting state network masks, defined using group ICA across both groups, are shown for 

comparison: posterior default mode (blue), and a composite of the left and right executive 

control (green).
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Figure 7. 
Comparison of nuisance variable effects between CDR 0 and CDR 0.5 groups. Entropy 

calculations were performed at two stages: after linear registration, and after motion 

parameter (including derivatives), white matter and cerebrospinal fluid time series, and 

linear trend regression.
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Table I

Wavelet-based Regularity analysis algorithm.

Algorithm steps

For each voxel time series:

1 Band pass signal with a J-level stationary wavelet transform.

• Use wavelet function compact in both time and frequency (e.g. db4)

• Obtain J subband sequences of length N: Dj = {dj(1),…, dj(N)}

2 Calculate the noise level threshold.

• Estimate noise level (e.g. σε = median(|D1|)/0.6745)

• Calculate wavelet threshold, t (e.g. BayesShrink)

For each sequence Dj for j = 2, …, J:

3
Estimate the intrinsic signal standard deviation: 

• Use σDj from subsampled Dj sequence.

4 Calculate delay time to reduce serial correlation (e.g. first minimum in the auto-mutual information function)

5 Construct τ-delayed subsequences of length m(+1)-length:

dj
m(q) = {dj(q), … , dj(q + (m - 1)τ)}

• Set m = 1(2) for improved statistics.

6 Calculate Sample Entropy at a threshold distance rt = r0bσX + t:

• For each voxel time series, determine the smallest r0 that results in the largest HS (taken across all scales): r0v = min{r0 ≥ 
0 : HS = max{HS ∈ ℝ}}.

• Select the largest r0v across the set of all voxels: r0b = max{r0v}.

• Calculate maximum scalar distance between coefficient subsequences.
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