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Abstract

Vaccine development has had a huge impact on human health. However, there is a significant 

need to develop efficacious vaccines for several existing as well as emerging respiratory infectious 

diseases. Several challenges need to be overcome to develop efficacious vaccines with 

translational potential. This review focuses on two aspects to overcome some barriers – 1) the 

development of nanoparticle-based vaccines, and 2) the choice of suitable animal models for 

respiratory infectious diseases that will allow for translation. Nanoparticle-based vaccines, 

including subunit vaccines involving synthetic and/or natural polymeric adjuvants and carriers, as 

well as those based on virus-like particles offer several key advantages to help overcome the 

barriers to effective vaccine development. These include the ability to deliver combinations of 

antigens, target the vaccine formulation to specific immune cells, enable cross-protection against 

divergent strains, act as adjuvants or immunomodulators, allow for sustained release of antigen, 

enable single dose delivery, and potentially obviate the cold chain. While mouse models have 

provided several important insights into the mechanisms of infectious diseases, they are often a 

limiting step in translation of new vaccines to the clinic. An overview of different animal models 

involved in vaccine research for respiratory infections, with advantages and disadvantages of each 

model, are discussed. Taken together, advances in nanotechnology, combined with the right 

animal models for evaluating vaccine efficacy, has the potential to revolutionize vaccine 

development for respiratory infections.
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1. Introduction

Respiratory infectious diseases remain a significant global threat to human health [1] and 

impose a heavy burden on our healthcare system [2]. These include diseases caused by well-

known pathogens such as Bacillus anthracis, Streptococcus pneumonia, Mycobacterium 

tuberculosis, Yersinia pestis, influenza virus, and respiratory syncytial virus (RSV); as well 

as emerging zoonotic ones including severe acute respiratory syndrome (SARS), Middle 

East respiratory syndrome (MERS), new strains of influenza, and Henipavirus. The 

influenza virus alone has caused more deaths in the 20th century than any other virus [3]. 

While vaccines have been enormously successful in combating infectious diseases [4] and 

are estimated to prevent over 3 million deaths worldwide annually [5], significant challenges 

remain on many fronts [6] as a result of which there are no effective vaccines currently 

available for several of the diseases [7, 8] listed above.

The current challenges facing vaccine development and translational research include 

identification of suitable antigen candidates, eliciting appropriate immune responses for 

protection, providing cross-protection against different strains of the pathogens, maintenance 

of the cold chain, repeated administration, route of administration and the need to identify 

appropriate animal models that will lead to similar responses in humans. To address 

potential solutions being pursued to address all these varied challenges would be outside the 

scope of any review, and several other review articles have focused on approaches to 

overcome many of these challenges [9, 10]. This review specifically focuses on two aspects: 

recent developments in nanoparticle-based delivery of respiratory vaccines; and choice of 

suitable animal models for respiratory infections to address the challenges associated with 

effective vaccine development.

Historically, vaccine development for influenza and many other viral infections has focused 

on the use of live or attenuated viruses [4], which require egg-based manufacturing systems 

that suffer from drawbacks of limited capacity and flexibility [3]. However, with recent 

developments in nanotechnology, materials science and advances in immunology, subunit 

vaccines have gained prominence [9]. Nanoparticles (NPs) based on synthetic polymers as 

well as virus-like particles (VLP) offer several advantages and ways to address many of the 
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challenges listed above. NPs provide the ability to deliver combinations of antigens in a 

single dose, target the vaccine formulation to specific cell types such as antigen presenting 

cells (APCs), allow encapsulation of either protein or DNA antigens or whole viruses, 

encapsulate domains that can elicit strong cross-neutralizing antibodies to protect against 

different strains [11], act as adjuvants or immunomodulators, allow for sustained antigen 

release, enable single dose delivery to enhance patient compliance, and potentially obviate 

the cold chain [12]. There are several lead nanoparticle vaccine candidates that have shown 

great promise in mouse and other pre-clinical models, but have failed in clinical trials [13]. 

Therefore the selection of appropriate animal models for vaccine development is a key 

requirement that can aid in the translation of promising vaccine technologies to the clinic for 

many of these diseases [14]. Both of these pathways for the development of more effective 

vaccines – nanoparticle-based vaccines and use of appropriate animal models for vaccine 

evaluation, are described in greater detail below. Taken together, advances in 

nanotechnology, combined with the right animal models for evaluating vaccine efficacy, has 

the potential to revolutionize vaccine development and translation for respiratory infections.

2. Nanoparticle-based vaccine delivery systems

Nanoscale materials have unique physicochemical properties in terms of their size, surface 

area, chemical composition and structure [15]. Unique properties of nano or microparticles 

(100–1000 nm size) have been widely utilized in drug and vaccine delivery [16–18]. 

Encapsulation of vaccine antigens (Ags) in biodegradable polymer-based NPs, or VLP-

based strategies have proved to be powerful vaccine delivery systems [19, 20], especially to 

mucosal sites. In addition, targeting particulate vaccines to mucosal M cells helps in rapid 

internalization, processing and presentation of Ags by APCs to naïve T cells [21, 22]. 

Soluble Ags might be poorly immunogenic, but when entrapped in NPs, elicit strong 

immune responses as the NPs can act as adjuvants [23, 24]. NP size and surface 

characteristics can control their opsonization and clearance kinetics [25]. For optimal uptake 

of particulate Ags by APCs, the preferred size of NPs should be around 500 nm [26]. NP-

based vaccines of approximately 500 nm size co-administered with toll-like receptor (TLR) 

ligands have been shown to induce long-lasting antigen-specific T cell response and 

production of high-affinity neutralizing antibodies [27]. Particles of up to 5 μm in size have 

been shown to protect encapsulated antigens and drugs from enzymatic or ionic degradation 

in vivo [17, 28]. Immunization using NP (200–600 nm)-based vaccines was found to 

enhance IFN-γ production and provided long-lasting antigen-specific humoral and cell-

mediated immune responses [27, 29–31].

On the basis of physiological parameters such as hepatic filtration, tissue extravasation, 

tissue diffusion, and kidney excretion, the optimal size of NPs used in vivo varies. In 

addition to surface characteristics, the size of NPs plays a critical role in the bio-distribution 

of NPs [32]. NPs of 5–250 nm size range are found to be beneficial for drug delivery 

systems because of their ability to overcome multiple biological barriers and releasing a 

therapeutic load in the optimal dosage range [32]. However, when NPs of 50–500 nm size 

were delivered in vivo, high levels of agglomeration of the larger sized NPs was found in the 

liver [33]. Blood clearance of the smaller sized NPs is twice faster than larger formulations 

[32]. Orally delivered NPs of 20–40 nm are taken up readily by intestinal epithelial cells, 

Renukaradhya et al. Page 3

J Control Release. Author manuscript; available in PMC 2016 December 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



while NPs larger than 100 nm are taken up mainly by specialized follicular epithelial cells 

called M cells [34], which in turn deliver them to underlying APCs to initiate immune 

response [35]. In contrast, studies in rats using larger size polystyrene and poly(lactic acid) 

NPs (100–500 nm) showed uptake of particles exclusively by M cells [36–38].

2.1. Nanoparticle-based vaccine delivery to mucosal sites

Delivery of the vaccines to mucosal sites is ideal for eliciting appropriate immune responses 

to combat respiratory infections [39] because it mimics the entrance pathway of many of the 

pathogens [40]. Approximately 80% of the body’s total immune cells are present at mucosal 

surfaces and mucosa-associated lymphoid tissues (MALT) [41]. The MALT is strategically 

located to orchestrate local immune functions against infections. Key immune cells in 

MALT involved in initiation of mucosal immunity are epithelial ‘M’ (Microfold, 

Membranous or Microvilli) cells and ‘professional’ APCs such as dendritic cells (DCs) and 

macrophages (Mϕs) [42]. M cells are dedicated to sampling, capture and transcytosis of 

microorganisms and particulate Ags to underlying APCs in the MALT, and are thus 

considered as the principal targets of the mucosal vaccine delivery system [21].

However, a variety of factors limit the mucosal delivery of vaccines, and these include 

mucociliary clearance, presence of deteriorating enzymes, pH extremes, low permeation, 

and metabolic degradation. To overcome these limitations, mucoadhesive polymeric NPs 

can be designed to pass through the mucus barrier and thus are promising mucosal delivery 

vehicles for vaccines [21]. Particulate Ags administered directly to mucosal sites have an 

inherent affinity for mucosal M cells and APCs, and are phagocytosed passively by APCs 

[43]. Particulate Ags delivered through an intranasal route have been found to be sampled 

readily by M cells of the nasal associated lymphoid tissues (NALT) and are delivered to 

underlying APCs in the respiratory tract [44]. M cells are strategically located in the 

epithelium of the small and large intestines, tonsils and adenoids, and airways, involved in 

sampling of particulate antigens [45]. But presence of M cells is still not clear in the mucosal 

sites of the reproductive tract and the deep airways. However, cells with typical features of 

M cells have been reported in the nasal passage epithelium of mice, suggesting the NALT-

independent mode of antigen sampling in the respiratory tract is also possible [46]. NPs 

protect entrapped protein Ags from protease-mediated degradation at mucosal surfaces, thus 

aiding in preserving intact Ags for long periods of time at mucosal surfaces, and facilitating 

extended availability for sampling by M cells and APCs [47].

Mucus membrane is a single layer of epithelial cells in the mucosa protecting the body from 

entry of extraneous substances. Mucus is a viscoelastic gel layer that protects the mucosa, 

and it is composed of crosslinked and entangled mucin fibers secreted by goblet cells and 

submucosal glands [26–28]. The bulk viscosity of healthy human mucus is typically 1,000–

10,000 times higher than the viscosity of water. Mucosal delivery of vaccines is a challenge 

due to adverse physiological conditions at the mucosa such as mucociliary clearance, pH 

extremes, deteriorating enzymes, low permeation, and metabolic enzymatic degradation 

[48]. Therefore, mucoadhesive biodegradable polymer based NPs provide numerous 

advantages in delivery of vaccines and drugs [49]. They have desired chemistry to attach to 

mucus, inhibit the action of proteolytic enzymes, and modulate epithelial permeability once 
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they reach the mucosa [50]. Thus, such polymer derived NPs are highly useful in mucosal 

delivery of vaccines, especially in the respiratory tract [51].

NPs of 40–120 nm size engineered to display strong adhesive interactions with mucus and 

cell membranes are taken up by intestinal epithelial cells and facilitate the transport of 

conjugated substances into the lamina propria [52]. Similarly, mucus-penetrating NPs are 

also used in drug and gene delivery, as they avoid rapid mucus clearance mechanisms and 

provide targeted or sustained drug delivery for localized therapies in mucosal tissues. 

Neutrally charged hydrophobic NPs of approximately 200 nm size undergo rapid transport 

in thick sputum than anionic particles, suggesting that the surface charge of NPs is an 

important parameter in governing the rate of transport of NPs in mucus [53]. Diffusion of 

PLGA NPs coated with anionic DNA via the cationic surfactant dimethyl dioctadecyl 

ammonium bromide was found to imporve NPs transport rate by 10-fold in pig gastric 

mucus compared to slightly smaller, hydrophobic polystyrene particles [53, 54]. All these 

data suggest that charge, size, and chemistry of the particles play a critical role in mucosal 

delivery systems, and both mucoadhesive and mucus-penetrating NPs facilitate the delivery 

of cargo to mucosal tissues. Thus, appropriate selection of the polymer to synthesize 

nanoparticle delivery systems is critical to deliver drug or vaccine to mucosal tissues.

2.2 Synthetic and natural polymers for NP-based vaccine delivery

The use of next generation biomaterials to develop polymeric nanovaccine delivery vehicles 

offers several advantages over more conventional vaccine adjuvants (Alum, MPLA, MF59) 

including thermal stability, reduced reactogenicity, shelf-life stability of the payload, and 

ability to induce mucosal immunity with both antibody- and cell-mediated responses [55] 

[56–61]. By tailoring polymer chemistry and degradation kinetics, antigen release kinetics 

can be controlled and it is anticipated that the optimal nanovaccine will more closely mimic 

the immune response induced by the natural infection [12]. In this context, rapidly degrading 

(i.e., hydrophilic) nanoparticles may release antigen quickly and reduce antigen availability, 

impacting the ability of such nanovaccine formulations to induce sustained antibody 

responses [57]. In addition, the danger signals presented to the immune system by such 

formulations are weak as evidenced by waning profiles of pro-inflammatory cytokines [62]. 

Thus, hydrophobic and pathogen-mimicking nanovaccine formulations that enhance antigen 

availability and lead to the production of long-lived plasma cells more effectively prime the 

immune response and lead to long-lived protection [57]. Polymeric adjuvants can be further 

tailored to incorporate immunomodulatory properties [12]. A wide variety of biodegradable 

and biocompatible natural and synthetic polymers have proven to be useful for vaccine 

delivery and are approved by the US Food and Drug Administration (FDA) and European 

Medicines Agency [18, 28]. They include natural polymers like albumin, alginate, chitosan, 

collagen, cyclodextrin and gelatin; and synthetic polymers like polyesters, polylactides, 

polyacrylates, polylactones, polysulfones, polyanhydrides and poly(lactic-co-glycolic acid) 

(PLGA) [17, 63]. These polymers also act as adjuvants, but additional potent adjuvants in 

the vaccine formulations are usually necessary to boost the vaccine efficacy [64, 65]. 

Biodegradable NPs made of chitosan, PLGA, polyanhydrides, and liposomes have been in 

use to deliver candidate vaccines to mucosal sites [66].
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PLGA is a widely used polymer in drug and vaccine delivery [48, 49, 67, 68], and it is non-

toxic even at very high doses [67]. Until now, greater than 60% of patents filed on the 

development of PLGA NP vaccines involve delivery through the intranasal route [48]. NPs 

entrapping a killed influenza virus vaccine along with an adjuvant was administered 

intranasally to mice, rabbits, and pigs and found to elicit a protective immune response. In 

pigs, the intranasal route conferred better immunity compared to the intramuscular route of 

vaccination [69]. A single dose of intranasally delivered PLGA NP-entrapped Schistosoma 

mansoni Ags in mice elicited protective neutralizing antibody response detected in both the 

lungs and blood [70]. PLGA NP-entrapped bovine parainfluenza type 3 virus inoculated 

intranasally once elicited enhanced antibody response in mice [71]. A hallmark of PLGA 

NP-mediated vaccine delivery is its ability to induce enhanced and balanced Th1 and Th2 

immune responses, essential for complete clearance of intracellular pathogens [72–74]. 

Therefore, to reinforce the efficiency of PLGA NPs mucosal vaccines, it is required to target 

the vaccine to mucosal M cells and DCs with the help of M cell targeting molecules, such as 

Ulex Europaeus Agglutinin-I (UEA), specific immunoglobulins, TLR ligands, etc. [44, 75, 

76]. Intranasal vaccination of mice with PLGA NPs entrapping HIV peptides and UEA 

elicited enhanced and prolonged antibody and T cell response at both mucosal and systemic 

sites compared to vaccination by other routes [77]. UEA entrapped in PLGA NPs targets 

particles to M cells resulting in a 2–4 fold increase in specific antibody titers [77]. Surface 

anchored UEA on PLGA NPs entrapped with hepatitis B virus enhanced the vaccine 

targeting to M cells in vitro. And in orally vaccinated mice, significantly augmented SIgA 

and Th1 cytokines production was observed compared to NPs without M cell targeting 

agents [78]. In mice, PLGA NPs entrapped with hepatitis B, rotavirus, influenza, or 

parainfluenza viruses generated protective immune response when delivered to mucosal 

sites [69, 71, 79, 80].

PLGA NPs also mediate activation, maturation, and antigen presentation by APCs [81]. 

Since NPs facilitate sustained release of vaccine Ags, they mediate induction of robust B 

and T cell responses [82]. NP-based vaccines are capable of eliciting cell-mediated and 

humoral response in the lungs of mice [56–61]. PLGA NPs can provide slow release of 

antigens and can elicit robust effector and memory immune responses [83]. A recent study 

has shown that the duration of available vaccine Ags to effector T-cells (also to a lesser 

extent memory T cells) can control the magnitude of CD4 and CD8 T-cell responses, which 

require sustained antigenic stimulation for their maximal expansion [84]. PLGA NPs have 

been shown to promote cross-presentation of vaccine Ags, as the phagosome-disruptive 

properties of PLGA NPs facilitate delivery of Ags to the cytosol for MHC class I loading 

and CD8+ T cell activation [85–90]; which in turn helps in the generation of memory T cell 

response and efficient clearance of invading pathogens [83]. The interaction of NPs with 

pathogen recognition receptors on APCs (especially B cells) can lead to affinity maturation 

and production of highly avid antibodies [91].

Polyanhydride-based nanoparticle vaccine delivery systems have been designed against 

several respiratory diseases, including influenza, pneumonia, anthrax, and pneumonic plague 

[92–105]. Polyanhydrides are biodegradable materials suitable for intranasal delivery in the 

form of micro or nanoparticles [106], and can enable sustained release kinetics of 
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encapsulated antigen, resulting in long-lived, high avidity antibody titers induced with 

otherwise suboptimal doses of antigen [97, 103, 107]. Polyanhydride nanoparticles have 

been shown to be a versatile vaccine adjuvant/delivery platform that can enhance the 

immune response to recombinant proteins [97, 103, 107]. Amphiphilic polyanhydride 

nanoparticles have been demonstrated to preserve the structure and antigenicity of 

recombinant proteins upon release [98, 108–112]. In addition to amplifying humoral 

immunity, polyanhydride nanoparticle-based vaccines (i.e., nanovaccines) activate APCs 

[105, 113, 114], have been shown to be immunomodulatory [97], and are capable of 

promoting cell-mediated immunity by expansion of antigen-specific memory CD8+ T cells 

[115].

In addition to PLGA, and polyanhydrides, other polymeric systems, liposomes, nano-

emulsions [8] and micellar delivery systems [116–118] have shown promise as NP-based 

vaccine delivery systems. Chitosan, a cationic mucoadhesive polymer, has shown efficacy in 

NP-vaccines for diphtheria and other infections [119, 120]. Chitosan NPs have shown an 

immune potentiating ability that is mediated by innate immune cells, in addition to enhanced 

production of IL-6 and IFN-γ [121]. Phagocytosed NPs induce activation and maturation of 

mouse APCs due to their inherent adjuvant properties [88]. In an earlier study, rapid uptake 

of chitosan NPs by APCs derived from mice followed by gradual release of Ags, and 

increased expression of co-stimulatory molecules and activation of DCs and antigen 

presentation by MHC class I and II molecules was observed [122, 123]. Phagocytosis of 

polystyrene latex microspheres by Mϕs activate the signal transduction events in innate 

immune cells [124]. Other polysaccharides such as dextran derivatives [125], alginate [126] 

and starch [127] micro and nanoparticles have shown good macrophage uptake, high 

antibody titers, mucosal and systemic immune responses, and protection against challenge.

2.3 Virus-like particles for vaccine delivery

VLP are formed from assemblies of viral proteins that can effectively crosslink B cell 

receptors, exhibiting immunostimulatory properties of viruses, without the potential for 

infection [128]. VLPs are structurally diverse and functionally versatile and can trigger both 

arms of the immune response and are taken up by APCs. The licensed human papilloma 

virus vaccine is based on VLP technology [129]. Different antigens can be displayed on the 

surface of VLPs. VLPs can be commercially produced in various host systems such as E. 

coli, yeast, insect cell cultures and CHO cells, enabling facile production of efficient 

vaccines for diseases such as influenza in several expression systems [3]. Several VLP-

based vaccine candidates are currently in clinical trials (Fig. 1) [129]. VLPs delivered 

intranasally have been shown to produce high lung mucosal antibody titers without 

additional adjuvants [130]. However, prediction of functional epitopes and the ability to 

present native 3D structures of the epitopes on the carriers are challenges that need to be 

overcome. Enhanced molecular modeling and computational design efforts to help 

overcome these challenges, and biomolecular engineering advances to present large antigens 

on VLPs are urgently needed to reduce vaccine development time and high vaccine costs 

associated with VLP vaccine production [129].
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3. Animal models for human respiratory disease studies and vaccine 

development

Identifying suitable large animal surrogates for understanding the efficacy of novel 

candidate vaccines as well as insights on human disease pathogenesis, is likely to have high 

impact for translational research to improve human health, as the predictive validity of 

preclinical animal models has been disappointing [13]. In some disease areas, greater than 

90% of promising new treatments failed in clinical trials [131] because the targeted 

pathogenic process can be expressed differently in the animal model as opposed to humans. 

In general, there are fundamental immunobiological differences between young inbred mice 

and human patients [132]. Inbred mice also lack genetic diversity and the exposure to 

environmental pathogens. Large animals models, such as non-human primates (NHPs) and 

large farm animals can potentially provide better predictive validity [13]. Basic biological 

research using murine models has brought enormous knowledge following the development 

of technologies for production of monoclonal antibodies, and transgenic and gene 

knockouts. However, many recent studies have questioned the utility of mouse models for 

understanding certain diseases, vaccines, and drug screening efforts [133–136]. For 

example, mice are resistant to the development of classic TB disease, minimizing their 

utility for evaluation of TB vaccines [137]. There are substantial differences in pathogenesis 

in RSV mouse models versus in human patients [138].

The route of administration (intranasal, subcutaneous, etc.) has an impact on the choice of 

the animal model and the efficacy of the vaccine. The mucosal immune inductive sites in the 

respiratory tract are concentrated in aggregates of MALT adjacent to mucosal surfaces of the 

nasal cavity, nasopharynx, larynx, trachea and bronchus; these are called NALT, lymphoid 

tissues of the Waldeyer’s ring in the nasopharynx (tonsils), larynx and trachea associated 

lymphoid tissues (LALT and TALT), and bronchus-associated lymphoid tissues (BALT) 

[41, 139]. Unlike in rodents, in farm animals (such as pigs, cattle, sheep, and horses), tonsils 

and LALT are well developed, and LALT is on the epiglottis in the vestibulum laryngis and 

the plica aryepiglottica [140] present in the form of lymphatic nodules [139].

3.1. Non-human primate models

NHPs are excellent preclinical models for vaccine development and translation because of 

their evolutionary proximity to humans, similarities in host defense components as well as in 

clinical and pathological presentation of disease, and their large size allow for frequent 

blood sampling [141]. There is an expanding genome sequence data for various NHPs, 

leading to the greater use of omics-approaches to profile NHP responses to viral infections 

and vaccinations [142].

Asian macaques are one of the most frequently used NHPs in infectious disease research. 

NHPs and the macaques species in particular, are naturally susceptible to TB infection and 

display all the typical features of human TB, including identical histological structure of TB 

granulomas [143]. NHPs such as chimpanzees have also been used, but suffer from ethical 

constraints [144]. Unfortunately, all of the existing animal models for TB other than NHPs 

suffer from specific drawbacks and fail to mimic the human disease perfectly [137]. 
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Macaque models have also aided research related to H5N1 and H1N1 pandemic influenza 

disease models [142] and are emerging as viable animal models for MERS-CoV [145].

African green monkeys (AGM) also provide a good model for influenza studies [146, 147] 

as the distribution of sialic acid receptors is similar to that in humans, and live attenuated 

pandemic influenza virus vaccines were found to replicate similarly in these monkeys as in 

humans [147]. AGMs also provide a more uniformly lethal model of henipavirus infections 

compared to the more variable response seen in squirrel monkeys [148] and are considered 

the gold standard for testing the efficacy of vaccines against henipaviruses. They have also 

shown utility as models for evaluating countermeasures against RSV infections [149].

RSV has been found to cause severe respiratory failure, especially in infants. There is no 

vaccine available for RSV, partly because of the difficulties associated with the lack of a 

suitable animal model to study the pathophysiology of the disease and evaluate vaccines 

[150]. Infant baboon models of RSV have shown clinical and pathological changes similar 

to those observed in human infant patients and offer a promising model for the disease 

[138]. In contrast, chimpanzee (and other monkey models) experience only mild infections 

and do not experience the lower respiratory tract infections seen in human infant RSV [138]. 

Since RSV vaccines need to elicit mucosal immunity at both upper and lower respiratory 

tracts to effectively prevent RSV infection, the baboon model provides advantages over the 

chimpanzee model for RSV [151]. Baboons have also been shown to be excellent animal 

models for pertussis, with 100% inoculated baboons developing clinical pertussis, compared 

to only 25% of rhesus macaques [152].

SARS-CoV studies have been limited in NHP models, with a few studies involving African 

green monkeys, marmosets, cynomolgus and rhesus macaques. Variability in the results 

points to a need for more studies with large sample sizes to draw meaningful conclusions 

[153]. Cynomolgus macaques are however preferred for Ebola studies since the 

immunologic and physiologic responses are thought to be similar to those in humans [154], 

and they are also good models for anthrax infections [155]. Conflicting results have been 

reported with respect to the efficacy of pneumonic plague vaccines based on the F1-V fusion 

protein when evaluated in cynomolgus macaques and African green monkeys [156, 157]. 

While protection was demonstrated in the macaques, there was considerably less success in 

the African green monkey, once again underlining some of the complexities associated with 

using NHPs as preclinical animal models for vaccine efficacy against respiratory infections.

However, the cost, availability, need for specialized personnel and facilities, and ethical 

concerns prevent large-scale use of NHP models for vaccine development studies [13] and 

limit their use. The U.S. federal government recently announced that captive chimpanzees 

will also be protected under the Endangered Species Act. Moreover, because species such as 

the rhesus macaques are genetically diverse and outbred, sufficient statistical power requires 

the use of larger animals and greater numbers of replicates [142].

3.2 Small animal models

Due to commonalities in the course of clinical infection with TB in guinea pigs and humans, 

they are commonly used for vaccine evaluation. However, there is a limited resource of 
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immunological reagents for quantitative evaluation of the immune responses in this model 

[137] compared to mice. Guinea pigs were also one of the earliest models to be used for 

henipavirus infections, but variability in results led to reduced interest in this model [158]. 

Cotton rats are commonly used models for RSV and other respiratory infections [159] such 

as metapneumovirus infections [160]. RSV replication occurs in lower airways and the virus 

is present in both the upper and lower respiratory tracts, leading to pneumonia [161]. Golden 

Syrian hamsters are good animal models for SARS-CoV because their respiratory tracts 

enable virus replication and can elicit good neutralizing antibody response [153]. These 

hamsters have also been used for henipaviruses to study transmission and pathogenesis 

[162]. Rabbits are relatively resistant to Mycobacterium tuberculosis, but are susceptible to 

M. bovis, producing pulmonary cavities like humans [137]. They are also a potential model 

for MERS-CoV infections [163] and for anthrax [164, 165]. In many of these cases, 

however, limited immunological reagents and techniques available compared to mouse 

models, which limit studies of immunological pathways.

Ferrets are one of the earliest and the most widely used model for influenza [166] because 

they are susceptible to a wide range of human isolates without prior adaptation [167]. They 

have similar influenza receptor distributions to that of humans in the respiratory system and 

exhibit upper respiratory infection patterns and clinical symptoms similar to that in humans 

[168]. Moreover, ferrets are the only mammalian model suitable for studies of both 

pathogenesis and transmission [169] of influenza viruses [167], as they can transmit human 

viruses to naïve animals by direct contact or respiratory droplets [170, 171]. In addition, 

histochemical studies in ferrets correlate well with differences in pathology between 

seasonal [172] and pandemic viruses [173] seen in humans leading to similarities in the 

different disease outcomes seen in both species [174]. An aged ferret model has also been 

developed to investigate influenza morbidity in the elderly population [175]. Ferrets have 

also been shown to be good models for pathogenesis of other respiratory viruses such as 

paramyxoviruses such as henipaviruses [166] as they develop the full spectrum of diseases 

seen in humans. However, unlike in hamsters, no correlation between challenge dose and 

clinical outcome was seen in ferrets with henipavirus infections [176]. In the case of 

coronaviruses, there was variability in the infection and presentation of disease symptoms 

for SARS-CoV in a ferret model [177, 178]. Ferrets and other small animal models were 

found not to be susceptible to MERS-COV and do not enable replication of the virus, 

restricting the efficacy evaluation of MERS vaccines in small animal models [153, 179]. The 

sequencing of the ferret genome opens new avenues, but the greatest disadvantage of ferret 

models remains the limitation of species-specific reagents.

Fruit bats are natural reservoirs for several viruses such as henipaviruses, Ebola, etc., and the 

viruses usually cause asymptomatic infections in the hosts. However, viruses, after crossing 

the species barrier turn virulent. They have been used in the generation of neutralizing 

antibodies and the mechanisms by which viral replication in bats is controlled are being 

investigated [158]. Cats are also susceptible to henipavirus infections and become clinically 

ill, and can be used to assess the potential of vaccines [158].
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3.3 Large farm animal models

Although rodents and primates are taxonomically closer than pigs, the divergence of all 

three occurred over only half a million years ago, such that taxonomic relationships are 

largely irrelevant [180]. Calibrated comparisons show that the rodent genome has changed 

faster since that divergence, resulting in greater identity between pig and human than human 

and mouse [181, 182]. The availability of the swine genome sequence (assembly 10.2) [183] 

and new transgenic and gene knockout capabilities [184–188] have together increased the 

use of pigs in biomedical research. The pig is a better suited biomedical model than rodents 

in many respects, due not only to its size but also to its anatomic, physiologic, and genomic 

similarities to humans [189, 190]. In addition, like humans, the pig is monogastric, 

omnivorous, and an outbred species, and it shares a comparable immune system. For all 

these reasons, the pig is considered as an important large animal model species for human 

health research including obesity, reproductive, cardiovascular and nutritional disorders, 

infectious diseases, and vaccine research [191–194].

In particular, the pig is considered as an ideal animal model for studies related to respiratory 

infections because, its lung has marked similarities to that of humans in terms of the 

tracheobronchial-tree structure, airway morphology, abundance of airway submucosal 

glands, and in production of cytokines and chemokines [195–197]. The electrophysiological 

properties of the airway epithelium and submucosal glands of the pig resembles that of 

humans [198–200]. Therefore, the pig has been used for studies on chronic bronchitis and 

cystic fibrosis [201, 202]. Unlike rodents, the pig is a natural host for wide range of 

influenza viruses, because its airway epithelial cells contain receptors preferred by both 

avian and mammalian influenza viruses [203–205]. In addition, cytokines profiles in 

influenza infected pigs and humans are highly comparable [206, 207]. Pigs also offer 

advantages for cutaneous delivery of vaccines compared to mice because of larger surface 

areas, possibility of repeated sampling and similarities between human and pig skins, 

compared to those of mice [208]. Therefore, pigs represent an excellent, but underutilized 

animal models for respiratory infections such as influenza [209].

The pig is an ideal model for NP-based vaccine studies. NP-based delivery vehicles for 

vaccines (i.e., nanovaccines) and drugs have been extensively evaluated in mouse models. 

However, there are several limitations in translating novel rodent findings to improve human 

health [210]. Therefore, the pig may serve as a useful large animal model for nanovaccine 

research. Rapid uptake of PLGA NPs entrapped UV-killed porcine reproductive respiratory 

syndrome virus (PRRSV) (NanoPRRS) by porcine Mϕs and DCs, translocation of viral Ags 

into their endosomal compartment, and increased expression of the activation marker 

CD80/86 was observed [211]. Studies have demonstrated immune potentiating activity of 

NPs in mice, pigs, and macaques; but immune correlates were not evaluated in detail in 

vaccinated and virus challenged animals [212]. In a pre-challenge study, NanoPRRS vaccine 

was administered intranasally to pigs and observed significantly increased frequency of 

CD8+T cells, Th/memory cells, with increase in the secretion of innate (IFN-α), 

proinflammatory (IL-6), and Th1 (IFN-γ) cytokines [211].

In pigs, a single dose of NanoPRRS vaccine administered intranasally and challenged with a 

virulent heterologous virus, showed reduced clinical PRRS symptoms with decreased gross 
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and microscopic lung lesions and reduction in viremia (but not viral load in the lungs). 

Immunologically, enhanced virus-specific IgA in the lungs, increased virus neutralization 

(VN) titers (3 log2) and high levels of IFN-γ production were detected [211, 213]. In a 

similarly vaccinated and homologous virus challenged pigs, viremia was cleared early with 

augmented antibody and cytokine responses [214]. To further improve the efficacy of 

NanoPRRS, the vaccine was co-administered with a potent adjuvant (M. tuberculosis whole 

cell lysate, M. tb WCL) that we identified earlier [205, 215], and observed complete 

clearance of detectable infectious challenged heterologous PRRSV (genetically 15% 

different) from the lungs [73, 74]. Immunologically, increased VN titers (4 log2) and IFN-γ+ 

lymphocytes were observed [74, 213]. In yet another study, coexpressed GP3 and GP5 of 

type 1 PRRSV coated on chitosan NPs was administered twice intramuscularly with Quil A 

adjuvant and challenged with a homologous virus, results suggested one log reduction in the 

viral RNA load in the blood and lungs. Immunologically, increased IFN-γ production was 

associated with amplified CD4+ and CD8+ T cell frequencies and lymphocyte proliferation 

with VN titers of 4 log2 [216]. This study confirmed the advantages of NP-mediated 

delivery of viral vaccine to pigs.

Intranasal delivery of biodegradable polymeric NPs encapsulating viral vaccines has shown 

huge promise in eliciting enhanced breadth of cross-protective immunity in rodent models 

and in pigs [73, 74, 211]. PRRSV induced VN activity is weak and delayed [217, 218], but 

in NanoPRRS vaccinated pigs VN titers were detectable quite early and steadily increased 

[83]. Inactivated vaccines generally induce Th2 responses [219], but NP-based vaccines 

drive either balanced Th1-Th2 or Th1-biased responses [77]. In NanoPRRS administered 

pigs vaccinated intranasally, balanced Th1-Th2 responses were observed, indicated by 

increased IgG1 and IgG2 production and enhanced IFN-γ and IL-4 production [73, 74]. 

Recently, PLGA NPs entrapping five conserved IAV peptides delivered intranasally as a 

mist to pigs enhanced the breadth of the T cell response, with reduction in detectable 

challegned infective lung virus load, but it did not boost the VN titers (Hiremat and 

Renukaradhya 2015, manuscript submitted). To improve the efficacy of inactivated swine 

influenza virus vaccine, in an ongoing study PLGA NPs were entrapped with an inactivated 

H1N2 (δ1-lineage) virus and delivered as a mist intranasally to pigs, and our results 

indicated the complete clearance of challenged infective heterologous zoonotic H1N1 (γ-

lineage) virus from the lungs of 80% of vaccinated animals (Dhakal and Renukaradhya 

2015, unpublished data). All these studies have suggested the induction of enhanced cross-

reactive immune responses by the NPdelivery system in pigs.

While pigs can be effective animal models for respiratory vaccines, other large farm animals 

such as cattle and lambs have also been explored for specific infectious diseases such as 

RSV. Cattle are natural hosts for bovine RSV [220], which does not infect humans, but F 

glycoproteins in bovine RSV and human RSV have 80% amino acid sequence identity along 

with some cross-reactive neutralizing epitopes [14]. The spectrum of diseases caused in 

calves overlaps with human RSV disease, making it a viable model [161]. Since RSV 

mainly affects infants and young children worldwide, similarities in developmental, 

structural, physiological and immunological features between newborn lamb lungs and 

human infants make it a good model for assessment of potential RSV vaccines [221]. In 
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rodents, the alveolar development occurs postnatally, while in lambs and humans, it occurs 

prenatally, allowing for a better model for preterm human infants. In addition, the ovine lung 

is susceptible to secondary bacterial infections that commonly occur with RSV infections. 

The ethical issues associated with use of NHPs can also be circumvented with the use of 

lamb models for RSV.

A summary of various animal models that have been used for different respiratory infections 

is provided in Table 1.

4. Conclusions and Future Prospects

There is an urgent need to develop alternative strategies to use of viral vaccines. 

Nanoparticle-based subunit vaccines and VLPs provide promising alternative approaches 

that are gaining significant momentum. The move away from viral vectors can potentially 

accelerate the production of vaccines, enable single dose delivery, immunomodulation, 

cross-protection against various strains of the pathogen and enable targeting to specific cell 

types. Various biodegradable polymers, both natural and synthetic, are being explored for 

encapsulation of the antigens for vaccine development. VLPs can provide the advantages of 

viruses without many of the associated challenges such as infections. However, the choice of 

suitable animal models for testing the efficacy of these new vaccines is very important 

aspect to enable successful translation of these experimental vaccines to the clinic. While 

mice models are easier to implement, and relatively inexpensive, they might not provide 

clinically relevant answers in many cases. The discussion presented herein reveals that there 

is no universal animal model for respiratory infections. Depending on the questions to be 

answered, the route of administration of the vaccine and the scale of the study, animal 

models should be carefully chosen to provide reliable testing of vaccine countermeasures, 

which can then enable successful translation to the clinic [222].
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Fig. 1. 
Microbial platform for VLP-based vaccines (Adapted from [129] with permission from John 

Wiley and Sons).
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Table 1

Various animal models used in different respiratory infectious disease research to evaluate countermeasures

Animal Model Respiratory Infectious Disease

Macaques Influenza [142], TB [143], MERS-CoV [145], SARS-CoV [153], Ebola [154], Anthrax [155], pneumonic plague 
[156]

African green monkeys Influenza [146,147], henipavirus [148], RSV [149], SARS-CoV [153], pneumonic plague [157]

Baboons RSV [138, 151], pertussis [152]

Guinea pigs TB [137], henipavirus [158]

Cotton rats RSV [159, 161], metapneumovirus [160]

Golden Syrian Hamsters SARS-CoV [153], henipaviruses [162]

Rabbits MERS-CoV [163], anthrax [164,165]

Cats Henipaviruses [158]

Ferrets Influenza pathogenesis and transmission [166–175], henipaviruses [166]

Pigs Influenza [203–209]

Cattle RSV [220,161]

Lambs RSV [221]
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