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Abstract

Infantile spasms (IS) and Lennox Gastaut syndrome (LGS) are epileptic encephalopathies 

characterized by early-onset, intractable seizures and poor developmental outcomes. De novo 
sequence mutations and copy number variants (CNVs) are causative in a subset of cases. We used 

exome sequence data in 349 trios with IS or LGS to identify putative de novo CNVs. We confirm 

18 de novo CNVs in 17 patients (4.8%), 10 of which are likely pathogenic, giving a firm genetic 

diagnosis for 2.9% of patients. Confirmation of exome-predicted CNVs by array-based methods is 

still required due to false positive rates of prediction algorithms. Our exome-based results are 

consistent with recent array-based studies in similar cohorts and highlight novel candidate genes 

for IS and LGS.

The epileptic encephalopathies are a devastating group of epilepsies in which epileptic 

activity and seizures contribute to cognitive impairment or regression 1. Most epileptic 

encephalopathies begin in infancy or early childhood and are associated with poor 

developmental outcome. Though the cause is unknown in the majority of cases, recent 

studies confirm that de novo mutations and copy number variants (CNVs) play an important 

role 2, 3. We recently reported exome sequencing data in 264 parent-proband trios with 

infantile spasms (n=149) or Lennox-Gastaut syndrome (LGS; n=115) without syndromic 

features or MRI abnormalities from the Epilepsy Phenome/Genome Project (EPGP) cohort, 

identifying likely pathogenic, de novo sequence changes in >10% of patients 2. Here we 

report results of copy number analysis derived from the exome data of this cohort and 85 

additional patients to further elucidate the genetic architecture of these paradigmatic 

epileptic encephalopathies. Our exome-based CNV calling yields similar results to array-

based studies for confirmed, de novo, likely pathogenic CNVs.
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PATIENTS & METHODS

Samples

Probands and family members were collected as part of the EPGP cohort (Supplementary 

Table 1) as described previously 2, 4 with approval by site-specific Institutional Review 

Boards; 1047 individuals comprising 349 parent-child trios were included in the present 

analysis. Of these, 264 were previously analyzed for de novo single nucleotide variants 2. 

Prior clinical CNV testing included chromosome microarray and/or karyotype analysis in 

131/349 patients (38% of cohort). Detailed inclusion criteria are published 4; briefly, 

participants were required to have EEG findings consistent with LGS (slow or disorganized 

background, and slow spike and wave <2.7 Hz or generalized paroxysmal fast activity) or IS 

(hypsarrhythmia or hypsarrhythmia variant or electrodecremental discharge) 4. Exclusion 

criteria included evidence of a known genetic syndrome or chromosome abnormality. 

Extensive phenotype analysis of patients enrolled in the study are published elsewhere 5 (and 

Madou et al., manuscript in preparation). All available clinical records were re-reviewed for 

those patients found to have a de novo CNV and evidence of syndromic features was often 

noted upon reexamination of the medical records.

CNV calling and validation

Copy number variations (CNVs) were detected by analyzing exome data using the 

CoNIFER pipeline, a depth-of-coverage based algorithm using the conifer-tools package, 

which implements DNACopy 67 (Supplementary Methods). The following filtering criteria 

were applied: CNVs of 3–5 probes average singular value decomposition (SVD)-

transformed signal >1; CNVs of 6 or greater probes, average signal > 0.5. CNVs more than 

50% in repetitive or duplicated genomic space were removed. CNV calls were manually 

curated, and curated calls were compared to control CNV datasets to filter out common 

CNVs present in >1% of the general population. Control CNV datasets included (i) CNV 

calls from the Atherosclerosis Risk in Communities (ARIC) Study (n=11,305) analyzed 

using Affymetrix AFFY_6.0 SNP microarray and (ii) CNV calls from the NLHBI GO 

Exome Sequencing Project (ESP, n=2,972) from CoNIFER analysis of exome sequence 

data. CoNIFER-predicted de novo CNVs and a subset of predicted large (>500 kb), inherited 

CNVs were validated using oligonucleotide (Agilent) and/or SNP (Illumina HumanCore 

12v1; n=295,393 probes) microarray. De novo CNVs were considered pathogenic if the 

CNV (or largely overlapping CNV) was previously associated with epilepsy or related 

neurodevelopmental disorders or contained a known epilepsy gene.

RESULTS

CNV discovery and validation

As CNV detection from exome data is still an emerging technique, we initially performed 

comprehensive validation studies in 43 probands to estimate our overall validation rate for 

CoNIFER calls in this dataset. We validated 53/80 (66%) predicted inherited CNVs, 

consistent with our previous studies 8 (Supplementary Table 2). Twenty-four were paternally 

inherited and 29 were maternally inherited, with a size range of 5.2 kb to 8.8 Mb (mean 377 

kb). For the same 43 probands, we validated 5/21 (24%) predicted de novo CNVs 
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(Supplementary Table 3). The lower validation rate is not unexpected, given that any false 

positive call in a proband will appear to be de novo, whereas inherited CNV predictions are 

supported by the same predicted CNV in two individuals (proband and one parent).

As the majority of causative CNVs in this cohort were expected to be de novo, we targeted 

the remainder of our validation studies to predicted de novo CNVs. We confirmed a total of 

18 de novo CNVs in 17 patients (Table 1). The de novo CNVs range in size from 94 kb to 16 

Mb and involve 1 to 163 genes. Notably, none of these 17 individuals had clearly pathogenic 

de novo SNVs by exome sequencing. In ten patients, the de novo CNV(s) is likely 

pathogenic based on size, previous association with epilepsy or gene content 9. One 

pathogenic CNV (15q11 dup) recurred in 3 cases. In seven patients, the de novo CNV is of 

uncertain clinical significance (Table 1).

Because whole genome array CGH was used to validate de novo CNVs, we also confirmed a 

large number of inherited CNVs across the cohort. We confirmed 69 inherited CNVs in 54 

individuals ranging from 5.2 kb to 8.8 Mb (mean 305 kb; Supplementary Table 4). Eight 

individuals (2.3%) each have an inherited CNV >500 kb; four (1.2%) of these are >1 Mb 

(Table 2). We also looked specifically for inherited CNVs within three recurrent deletion 

regions that have been previously associated with risk for epilepsy 10, 11: 15q11.2, 15q13.3 

and 16p13.11. Two patients have inherited deletions of 15q11.2 that may contribute to their 

phenotype; another two patients each have a small, inherited duplication within the 16p13.11 

region of uncertain significance. Aside from the large 15q11-q13 duplications described 

above, there were no additional CNVs within the 15q13.3 region. Though de novo CNVs are 

more likely to be pathogenic 12, it is possible that one or more of the inherited CNVs in our 

cohort is contributory. Three individuals with rare inherited CNVs had a pathogenic SNV 

and one has a de novo 15q11 duplication, making it less likely that the inherited CNV is 

causative (Table 2).

There are 540 unique genes within the 18 de novo CNV regions in our cohort (Supplemental 

Table 5), three of which are known EE genes: SCN1A, SCN2A and GABRB3. All five 

individuals with CNVs involving these genes have phenotypes consistent with those 

described for the CNVs they carry (Supplementary Table 7). Eight additional genes (GLIS3, 
KIAA1324L, NIPA1, PLCG2, RCL1, RFX3, SPG7, YWHAG) within de novo CNV regions 

were also found to have a de novo sequence variant by trio exome sequencing in the same 

cohort (Supplementary table 5, reference 2 & unpublished data); these cannot be regarded as 

confirmed EE genes, but finding both a de novo SNV and CNV involving each of them 

suggests that follow-up in a larger cohort is warranted. In addition, three and 30 genes within 

de novo CNVs were found to have de novo mutations by trio exome sequencing in ID 13, 14 

and autism 15–18, respectively; these genes may warrant follow-up given the overlapping 

genetic susceptibility of these disorders.

DISCUSSION

We detected CNVs from exome sequencing data in 349 trios from patients with IS or LGS. 

We confirmed 18 de novo CNVs in 17/349 probands (4.8%), providing a definitive diagnosis 

in 2.9% of patients and a possible explanation for another 2.0%. Notably, 38% of the current 
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cohort had already undergone karyotype and/or chromosome microarray testing prior to 

enrollment in the study and had not arrived at a diagnosis through clinical testing. Evaluation 

of patients without prior screening may result in a higher yield; indeed, we observed a de 
novo CNV in 5.6% of the 218 participants in our cohort without previous clinical testing. 

These results are similar to our prior studies in a broader spectrum of EE where 4.1% had a 

definitely pathogenic CNV 3 and to our recently reported findings in a large clinically 

ascertained cohort with a broad range of epilepsy diagnoses where 5% of cases had a 

causative CNV 19.

Three individuals each have a de novo duplication consistent with 15q11q13 duplication 

syndrome, characterized by hypotonia, seizures, developmental delay and behavior 

problems. A “late-onset LGS” phenotype has been described in some patients. Other de 
novo CNVs in our cohort that have been previously associated with epilepsy include 7q11 

deletion, 9p terminal deletion, 2q24 duplication and SCN1A deletion. One patient harbors a 

de novo intragenic deletion of the GPHN gene, which encodes a protein that is responsible 

for the clustering of glycine and GABA receptors at inhibitory synapses. Inherited or de 
novo deletions involving GPHN were recently described in six patients with autism, 

schizophrenia or seizures 20. The deletion in our patient is the largest of those described and 

also involves the FAM17D and MIPP5 genes.

Comparison of the genes within de novo CNV regions in our cohort to those in which at 

least one other patient in this cohort had a de novo sequence variant identifies several novel 

candidate genes that deserve follow-up in a larger cohort. Furthermore, several patients 

harbor de novo CNVs involving only 1–4 genes. While these CNVs are of uncertain 

significance, identification of de novo SNVs in the same genes encompassed by certain 

CNVs would support the fact that these CNVs are related to disease.

In the large EPGP cohort of IS and LGS patients, the addition of this CNV data to the de 
novo SNV findings shows that a definitive genetic diagnosis can be reached in >15% of 

cases for which there was previously no known cause. As whole exome sequencing is 

becoming widely used, one might ask if CNV data can be efficiently and reliably extracted 

in a clinical setting, thus bypassing the need for array-based CNV assays. Our experience, 

especially as shown by the false positive rate, suggests that array-based technologies are 

currently still required. A logical clinical approach to a patient with IS or LGS of unknown 

etiology should include a chromosome microarray for patients with epilepsy and additional 

findings such as abnormal MRI, developmental delays or dysmorphic features, followed by 

an epilepsy-focused targeted gene panel and then whole exome sequencing in cases that 

remain undiagnosed. As prediction algorithms improve, exome and, eventually, whole 

genome sequencing will provide a genetic diagnosis in an even greater proportion of patients 

in the clinical setting, improving medical management and genetic counseling in this patient 

population.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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