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Abstract

Objective—We present a MATLAB-based tool to convert electrocardiography (ECG) information 

from paper charts into digital ECG signals. The tool can be used for long-term retrospective 

studies of cardiac patients to study the evolving features with prognostic value.

Methods and procedures—To perform the conversion, we: 1) detect the graphical grid on 

ECG charts using grayscale thresholding; 2) digitize the ECG signal based on its contour using a 

column-wise pixel scan; and 3) use template-based optical character recognition to extract patient 

demographic information from the paper ECG in order to interface the data with the patients’ 

medical record. To validate the digitization technique: 1) correlation between the digital signals 

and signals digitized from paper ECG are performed and 2) clinically significant ECG parameters 

are measured and compared from both the paper-based ECG signals and the digitized ECG.

Results—The validation demonstrates a correlation value of 0.85–0.9 between the digital ECG 

signal and the signal digitized from the paper ECG. There is a high correlation in the clinical 

parameters between the ECG information from the paper charts and digitized signal, with intra-

observer and inter-observer correlations of 0.8–0.9 (p < 0.05), and kappa statistics ranging from 

0.85 (inter-observer) to 1.00 (intra-observer).

Conclusion—The important features of the ECG signal, especially the QRST complex and the 

associated intervals, are preserved by obtaining the contour from the paper ECG. The differences 

between the measures of clinically important features extracted from the original signal and the 

reconstructed signal are insignificant, thus highlighting the accuracy of this technique.
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Clinical impact—Using this type of ECG digitization tool to carry out retrospective studies on 

large databases, which rely on paper ECG records, studies of emerging ECG features can be 

performed. In addition, this tool can be used to potentially integrate digitized ECG information 

with digital ECG analysis programs and with the patient’s electronic medical record.

INDEX TERMS

Digitization; electrocardiography; electronic medical records; optical character recognition

I. INTRODUCTION

Electrocardiography (ECG) has existed for more than a century [1], and digital ECG has 

existed for more than two decades [2]. Digital ECG offers the opportunity to rapidly 

calculate ECG attributes such as vector angles and waveform intervals previously laborious 

and imprecise with paper tracings. Its utility is actively expanding as new ECG features with 

prognostic value are discovered [3]. Unfortunately, as new ECG features are discovered, 

determining if these features have prognostic significance can involve many years if a 

prospective evaluation is pursued. On the other hand, with retrospective evaluation, one can 

quickly correlate ECG features with patient outcomes. Features such as QRS/T angle are 

promising prognostic tools for predicting coronary heart disease mortality, but are currently 

clinically underutilized [3]. However, most long-term retrospective cardiac patient 

databases, which span over a duration of two decades or more have paper ECG data. 

Additionally, not all digital ECG systems offer software to generate advanced measures. 

Therefore, a system that can re-digitize to a universal format has added utility. Accordingly, 

tools for digitizing paper ECG are being developed [4]–[7] to permit such retrospective 

studies as well as prospective studies that utilize measures not commonly available on 

standard commercial systems [8].

A second motivation for this work is that in addition to permitting rapid calculation of ECG 

features, digitizing paper ECG permits the integration of ECG data with the patient’s 

Electronic Medical Record (EMR). With the government-mandated push for Electronic 

Health Records to be implemented nationally by 2014, such tools will be needed for routine 

clinical use. Furthermore, such tools would allow for comparison of a patient’s current ECG 

with a baseline ECG, enhancing confidence in the diagnosis of acute changes [9].

In this paper, we present a Matlab (MathWorks Inc., Natick, MA)-based tool for digitization 

of paper-ECG data. This involves scanning of a paper ECG to an image, thresholding for 

graphic grid removal, and detecting the ECG signal contour followed by digitization. We 

validate our technique by demonstrating that there is no significant difference between the 

digitized signal and the paper ECG. A major, distinguishing feature of our method is that we 

have used optical character recognition (OCR) to automate the process of reading patient 

demographic information present on the ECG paper. Thus, with very minimal human 

intervention, our tool can rapidly digitize a large number of paper ECGs and interface this 

data with the corresponding patients’ EMR.

The rest of the paper is organized as follows. Section II describes the digitization process, 

the OCR technique and the two methods that are employed to validate the digitization 
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process. In Section III, results from the two different validation steps are presented, followed 

by a discussion in Section IV and conclusion in Section V.

II. METHODS

Standard ECG paper has a graphical grid upon which the voltage information from the 12 

ECG leads is printed as a function of time (Fig. 1). The extraction of ECG information from 

this two-dimensional (2-D) image and conversion to a one-dimensional (1-D) signal is 

referred to as digitization of ECG. To identify the ECG signal from the standard ECG paper, 

image processing techniques involving thresholding [10], pixel-to-vector conversion [11, 

12,13,14, 15] and transform techniques [16,17] have been used. We describe below the 

process of converting ECG paper data to obtain 1-D digital ECG signals. This process can 

either be carried out on data from a single lead or from all 12 leads.

In the following subsections, the digitization and optical character recognition processes are 

first described (Fig. 2) followed by the validation procedure for the digitization.

A. DIGITIZATION PROCESS

Figure 2 outlines the ECG digitization process. First, the ECG paper is scanned as a digital 

image and is converted to 8-bit grayscale. This is followed by an optional step of scaling 

down the image resolution to 300 dpi. This scaling down serves to reduce computational 

costs without compromising reconstructed signal quality. In addition, a process of skew 

correction, i.e., correcting the angular orientation of the ECG paper, may need to be 

performed. This is performed by calculating the slope of the gridlines by picking two points 

on the same gridline and rotating the scanned image using the angle obtained. The tool has a 

graphical user interface that requests a user to mark the two points.

The next step is a binary thresholding operation to remove the graphical grid and convert the 

grayscale image to a binary image. Since the pixel intensity value of the graphical grid is 

usually greater than that of the printed ECG signal, the threshold is determined using the 

histogram of the image (Fig. 3). By considering the pixel intensity of the graphical grid 

region alone (black = 0 and white = 255), the threshold for the grid removal process is 

determined automatically. In this example, the range 130–160 was contributed by the grid 

lines alone).

However, binary thresholding may introduce “salt and pepper” noise in the background, 

which often occurs as a result of the scanning process. In addition, there may be 

discontinuities or gaps in the ECG signal from removal of major grid lines due to reduced 

printer ink retention on the major grid lines. Performing median filtering and interpolation 

after the thresholding process eliminates these artifacts.

On this binary image, a column-wise pixel scan is performed to find the contour of the ECG 

waveform based on the zero locations (black). Since the printed ECG signal has some 

thickness associated with it, a pair of row indices corresponding to the upper and the lower 

contour is obtained for each column. Based on the x- and the y-axis scales, the sampling rate 

is derived from the resolution of the image, and we obtain time-voltage pairs for the mean of 
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the contour of the ECG waveform. In the case of low-resolution images, significant 

quantization errors may be introduced in the signal at this stage.

An optional step of smoothing the reconstructed signal to remove the high-frequency noise 

introduced due to pixeling is carried out next. This pixeling occurs when there is nonuniform 

rendering of the ink along the gridlines on the ECG paper. Following this, the DC voltage 

level of the digitized signal is adjusted based on the DC level of the test square pulse, which 

is an integral part of the paper ECG signal (Fig. 1). The time scale of each ECG signal is 

also adjusted based on the time duration of the test square pulse.

For purposes of evaluation, we consider ECG paper scanned with a resolution of 300 dpi. 

Following the process of grayscaling and thresholding to remove the gridlines on the ECG 

paper, we consider the image segments corresponding to the 12 leads individually. In order 

to remove salt and pepper noise, we use a 3 × 3 median filter on these image segments. With 

high-resolution scans (e.g., 600 dpi), an additional step of linear interpolation between the 

image pixels on the gridlines may need to be performed to remove discontinuities, if any, in 

the signal. Following this, the digitized signal is obtained from the outer contour of the 

waveform. In order to remove the high frequency noise content in this signal, which results 

from pixeling, a length-5 moving average filter is used, since using a longer filter might 

smooth out the peaks and troughs in the QRST complex of the waveform. It was observed 

that reconstructed signals from both 300 dpi and 600 dpi scans were identical. Therefore, to 

reduce computational costs we reconstruct the ECG signal from the 300 dpi scan.

B. OPTICAL CHARACTER RECOGNITION (OCR)

OCR is performed on the patient demographic information printed on the ECG paper. The 

OCR process involves correlation of every character to be recognized with a pre-defined 

template of characters to identify the best correlated pair. This is performed after segmenting 

each character in the image, based on the spacing between them, and scaling it to the size of 

the images in the template. The patient demographic information extracted by the OCR 

process is then introduced into the header of the digital record.

The OCR stage has a basic template library with sixty-two images, twenty-six each for the 

lowercase and uppercase letters and ten for the digits. The segment of the image with the 

patient information on which OCR is to be performed is localized manually. Our tool has a 

graphical user interface that requests a user to mark where the patient information occurs for 

a given format of ECG paper and this space is used for all subsequent ECG evaluations until 

changed by the user. This is done to reduce computational costs that would be incurred by 

performing OCR on the entire image. This is a reasonable compromise, since all the ECG 

paper data produced by a single machine will have demographic information in the same 

location on the paper.

C. VALIDATION PROCEDURE

The ECG digitization and OCR techniques were implemented on Matlab version 7.10 on 

scanned images with resolution of 300 dpi. We performed two types of validation to 

evaluate if the ECG signal digitization process generated digitized waveforms that were 

comparable to the waveforms printed on ECG paper.
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Validation Test 1A—The first form of validation involved obtaining the objective fit of 

the paper ECG image with the digitized ECG plotted over the paper ECG image with the 

same scale (Fig. 5). The objective fit is determined by observing how well the digitized 

signal fits within the contour of the paper ECG signal. This can also be viewed as a signal 

correlation match. For this test, we randomly selected 10 ECGs from a set of 53 ECG 

samples from the Emory Vietnam Era Twins (VET) Study [18].

Validation Test 1B—In order to further validate the digitized signal with the original 

ECG signal, we obtained the raw digital ECG data (1-D signal) for each of the leads for four 

test cases. For each of these cases, we printed out a paper ECG and then digitized it. Then 

the correlation between the raw ECG signal and the digitized ECG signal was calculated 

after resampling the two signals to the same rate. This resampling process is necessary 

because the sampling rate for the raw signal is greater than the sampling rate of the digitized 

ECG signal obtained from the paper ECG.

The sampling rate for the raw ECG signal is 500 Hz and the sampling rate for signal printed 

on the paper chart is 150 Hz. Following the digitization process, the raw digital ECG signal 

is downsampled to the sampling rate of the paper ECG signal obtained after digitization. 

Note that this sampling rate depends on the resolution of the scanned ECG image. This can 

be attributed to the fact that the signal on the paper ECG chart is a downsampled version of 

the raw ECG signal and the sampling rate further changes during the digitization process 

based on the resolution of the scanned image, and this is expected to reduce the correlation 

value.

Validation Test 2—As a second form of validation, we determined if five clinically 

important features of the ECG signal are preserved through the digitization process [19]. 

The five features that we considered are: PR interval (lead II), QRS interval (lead V1), QT 

interval (lead V3), RR interval (lead V6) and the QTC interval. In Fig. 6, three of the 

measurements are shown. Note that the RR interval is obtained by measuring the interval 

between two consecutive R peaks. The QTC interval is obtained using . 

Clinical diagnoses were also calculated, including first-degree atrioventricular block 

(PR>200 ms), intra-ventricular conduction delay (QRS>120 ms), QTc prolongation 

(QTc>450 ms), and bradycardia (RR>1 second). Based on these values, the kappa statistic 

was calculated to measure agreement above and beyond that which would occur due to 

chance, calculated by kappa = (% agreement − 0.5)/0.5. Kappa values above 0.8 are 

generally considered to represent excellent agreement.

Two cardiologists performed measurements on the 10 ECG samples (labeled) that were used 

for Validation Test 1A. To calculate intra-observer correlation, reader A measured the five 

parameters on all 10 ECGs in both digitized form and then in the scanned form after a 24-

hour washout period. For inter-observer statistics, reader B then measured the first 5 ECGs 

ECGn, 1 ≤ n ≤ 5, in scanned form, and the last 5 ECGs, ECGn, 6 ≤ n ≤ 10 in digitized form. 

These 10 measures were then compared to those from the opposite format measured by 

reader A. Although the intra-observer correlation may over-estimate correlation because of 

bias, the inter-observer correlation may be under-estimated due to variation in technique. 
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Therefore, both were performed with the concept that the true clinical correlation is in 

between the two estimates.

III. RESULTS

The results of intermediate steps in the process for a representative ECG signal are shown in 

Fig. 4.

Validation Test 1A

For the 10 cases the signal fit between paper and digitized ECG images ranged from 0.75–

0.8, with the match for an ideal case being 1. Figure 5 shows the digitized ECG signal and 

the paper ECG signal on the same scale.

Validation Test 1B

For the four cases that we examined, the correlation between the raw ECG signal and the 

digitized ECG signal ranged from 0.85–0.9. We still see a slightly reduced correlation 

between the two signals (ideal correlation = 1).

No changes in the critical clinically important features of the ECG signal due to this 

digitization were observed, and this is documented in the results of the Validation Test 2 that 

are presented next.

Validation Test 2

Intra-observer and inter-observer correlations of the 5 clinical parameters by the two 

cardiologists are presented in Table 1. The correlations are generally in the range of 0.8–1 

(except for QRS of the inter-observer variability), which again emphasizes that the digitized 

signal preserves critical clinical features from the paper ECG data. Kappa statistic calculated 

to be 0.85 for inter-observer agreement and 1.00 for inter-observer agreement.

The OCR process was successful in obtaining the patient demographic information, such as 

name and date of birth. To further improve the OCR process, the misidentification of 

alphabets bearing resemblance to numerals (or vice versa) can be reduced by using a 

template with only alphabetical (or only numeric) characters.

IV. DISCUSSION

The signal obtained from the digitization process, as observed in our validation tests, retains 

the information from the original ECG signal.

In Validation Test 1, we used raw correlation between images of the original and digitized 

ECG, which gives a lower correlation measure. This imperfect correlation is due to the 

graininess in the paper ECG signal in comparison with the smoother digitized ECG signal 

(Fig. 5). This graininess in the source signal is likely due to decreased printer ink retention 

on the grid lines compared to the rest of the ECG paper. Nevertheless, the results show that 

digitization does not compromise the integrity of the ECG signal and the reconstructed 

signal is close to the signal on the paper ECG. When we correlated the raw digital ECG 
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signals with the signal digitized from the paper ECG, the correlation was higher 0.85–0.90. 

However, it was still not perfect because of differences in the sampling rates of the two 

signals.

We could consider a modified correlation measure, which performs a column-wise fit of the 

digitized signal within the ECG signal, on the paper image with the same scale. This may 

provide a better image similarity measure. However, this correlation measure will be biased, 

since the digitized signal is obtained as an average of the column-wise contour of the 

original ECG signal.

The key feature of our digitization technique relative to known techniques is that the 

important features of the ECG signal, especially the QRST complex and the associated 

intervals, are preserved by obtaining the contour from the paper ECG. This is achieved by 

performing linear interpolation on the signal to be digitized ensuring that accurate 

reconstruction of the signal takes place, particularly along regions with sharp transitions. Of 

note, grid removal by thresholding does not remove any significant features from the ECG 

signal, in contradistinction to other techniques that use signal transforms, which may alter 

the signal to be digitized [16].

Another new feature of our system is the integration of the OCR block. We are currently 

augmenting this template library with duplicates of letters and common letter combinations 

that tend to bleed together when printed.

One limitation of this study is regarding the inter-observer and intra-observer correlation 

calculations. While intraobserver correlation is prone to bias, the 24-hour washout period 

should help minimize this. The inter-observer correlation is prone to variation in judgement 

regarding the exact start and end-point of the waveform, especially in cases of baseline 

artifact, as well as cases in which the transition from one interval to another is subtle. 

Therefore, the interobserver variability is more likely to underestimate the true correlation 

significantly. Regardless, the kappa statistic was acceptable even in this condition, which 

further validates the transformation from scanned to digitized format.

Another limitation of this study is that we did not directly compare our digitization method 

with existing methods, since there are no publicly-available non-commercial tools to carry 

out these comparisons. The ECGScan tool [13] has an online demonstration; however, this 

demonstration only operates on preselected ECGs, and does not allow evaluation on external 

ECGs. To the best of our knowledge none of the existing tools considered the clinical ECG 

features, which we extracted from both paper ECGs and digitized ECGs, to evaluate the 

digitization quality.

V. CONCLUSION

We have developed a Matlab-based tool for completely digitizing paper ECG records and 

simultaneously extracting patient demographic information from them. We showed that the 

differences between the measures of clinically important features extracted from the original 

signal and the reconstructed signal is insignificant, thus highlighting the accuracy of this 

technique.

Ravichandran et al. Page 7

IEEE J Transl Eng Health Med. Author manuscript; available in PMC 2015 November 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Using such an ECG digitization tool with large retrospective patient studies, which rely 

upon paper ECG records, will allow us to study emerging ECG features. As new clinically 

meaningful ECG features are discovered, digital translation of various known ECG systems 

into non-proprietary formats may become increasingly useful. This may then allow analysis 

of any ECG in custom signal analysis programs as well as commercially available digital 

ECG analysis programs, such as MUSE Cardiology Information System (GE Healthcare, 

Finland).
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FIGURE 1. 
Standard ECG paper with the information from 12 leads printed as a function of time. The 

regions with the test pulse for one of the leads and the patient demographic information are 

shown in boxes. The patient demographic information itself is redacted to protect patient 

privacy.
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FIGURE 2. 
Outline of the ECG Digitization Process. The optional steps of the process are represented 

by dashed boxes.
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FIGURE 3. 
A histogram of the grayscale ECG image where the separation between desired signal 

component (lower pixel intensity) and the graphical grid (higher pixel intensity) is observed 

in the range 130–160. Empirically, we determined that a threshold in this region will ensure 

efficient removal of the graphical grid from the ECG image.
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FIGURE 4. 
(a) Sample ECG paper image. (b) Result of the thresholding for grid removal on the image 

shown in (a). (c) Digitized ECG signal obtained from the columnwise pixel scan on the 

image shown in (b).
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FIGURE 5. 
Plot showing paper ECG signal (black) and digitized ECG signal (blue) for one lead. Note 

the similarity in the two signals, and the graininess in the paper ECG signal.

Ravichandran et al. Page 16

IEEE J Transl Eng Health Med. Author manuscript; available in PMC 2015 November 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 6. 
Three features of the ECG waveform used in the clinical validation: PR interval, QRS 

interval, QT interval.
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TABLE I

Intra-observer and inter-observer correlations for 5 ECG parameters.

Parameter Correlation
Coefficient,

intra-observer

p-value Correlation
Coefficient,

inter-observer

p-value

PR 0.985 <0.001 0.805 0.005

QRS 0.803 0.005 0.636 0.048

QT 0.902 <0.001 0.801 0.006

RR 0.993 <0.001 0.992 <0.001

QTc 0.901 <0.001 0.895 <0.001
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