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Abstract

Machine learning or MVPA (Multi Voxel Pattern Analysis) studies have shown that the neural 

representation of quantities of objects can be decoded from fMRI patterns, in cases where the 

quantities were visually displayed. Here we apply these techniques to investigate whether neural 

representations of quantities depicted in one modality (say, visual) can be decoded from brain 

activation patterns evoked by quantities depicted in the other modality (say, auditory). The main 

finding demonstrated, for the first time, that quantities of dots were decodable by a classifier that 

was trained on the neural patterns evoked by quantities of auditory tones, and vice-versa. The 

representations that were common across modalities were mainly right-lateralized in frontal and 

parietal regions. A second finding was that the neural patterns in parietal cortex that represent 

quantities were common across participants. These findings demonstrate a common neuronal 

foundation for the representation of quantities across sensory modalities and participants and 

provide insight into the role of parietal cortex in the representation of quantity information.
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Introduction

An understanding of how numbers are mentally represented has fueled the work of 

psychologists for decades due to its educational significance (Varma & Schwartz, 2008) as 

well as its fundamental role in cognition. Many different approaches have attempted to 

illuminate the nature of number representation. After decades of behavioral studies on 

numerical cognition (Barth et al., 2003; Dehaene & Akhavein, 1995; Moyer & Landauer, 

1967; Naccache & Dehaene, 2001b), both human functional imaging studies (Cohen Kadosh 
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1Rank accuracy is calculated as the normalized rank of the correct class in the classifier's rank-ordered list of all classes.
2Significance levels were determined by random permutation testing. Our approach was to simulate the predictions of a classifier that 
has absolutely no information about the classes while keeping all of the classification parameters (the number of classes, data folds, 
and classifier predictions in each fold) exactly the same as in the actual classification procedures. After performing a large number 
(10000) of such simulations, the distribution of predicted rank accuracies was obtained, and the cutoff rank accuracy values 
corresponding to the p-values of .05 or .01 were estimated. These estimates were obtained and compared to the rank accuracies of real 
classifiers for each reported classification.
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& Walsh, 2009; Dehaene, 1996; Eger et al., 2003; Libertus et al., 2007; Nacache & Dehaene, 

2001a; Pinel et al., 2001) and animal studies (Neider et al., 2002) have increasingly 

delineated some of the brain mechanisms that represent numerical information, particularly 

converging on parietal and frontal brain regions. Now, with advancements in machine 

learning methods and its applications to fMRI data, research on this topic is uniquely 

positioned to decipher cortical representation of numbers.

Numbers can be expressed in different notational forms (e.g., the digit 3, the number word 

three in spoken or written form, or a non-symbolic set of three dots) and in different 

modalities (e.g. auditory or visual). Whether there is an abstract or common cognitive and 

neural representation of numbers across these notations and modalities is a topic of 

considerable debate (Cohen Kadosh, 2009; Dehaene et al., 1998). Recent behavioral studies 

have shown inconsistent findings regarding whether there is truly an abstract code for 

numbers in different modalities. A study using a psychophysical adaptation technique 

showed commonality of representations of numbers across different formats and modalities 

(Arrighi et al., 2014), whereas another study demonstrated that approximate numerical 

judgments of sequentially presented stimuli depend on sensory modality, calling into 

question the claim of modality independence (Tokita et al., 2013). Additionally, while a few 

previous neuroimaging studies indicating common neural representations across notation 

and modalities have implicated mainly bilateral parietal regions to be associated with these 

abstract representations (Dehane, 1996; Eger et al., 2003; Libertus et al., 2007; Naccache, & 

Dehaene, 2001b), others including an electrophysiological study have provided evidence 

against the abstract view of number representation (Ansari, 2007; Bulthe et al., 2014; Bulthe 

et al., 2015; Cohen Kadosh et al., 2007; Lyons et al., 2015; Notebaert et al., 2011; Piazza et 

al., 2007; Spitzer et al., 2014). So far, there is no conclusive evidence concerning a common 

neural representation of numbers across different input forms and modalities.

The increasing growth of machine learning fMRI techniques have enabled decoding 

stimulus features represented in primary or mid-level sensory cortices (Formisano et al., 

2008; Haynes and Rees, 2005; Kamitani and Tong, 2006), identifying the cognitive states 

associated with object categories, such as houses (Cox & Savoy, 2003; Hanson et al., 2004; 

Haxby et al., 2001; Haynes & Rees, 2006; O'Toole et al., 2007), tools and dwellings 

(Shinkareva et al., 2008), nouns with pictures (Mitchell et al., 2008), nouns (Just et al., 

2010), words and pictures (Shinkareva et al., 2011), emotions (Kassam et al., 2013), 

episodic memory retrieval (Chadwick et al., 2010; Rissman et al, 2010), mental states during 

algebra equation solving (Anderson et al., 2011) and decoding images of remembered 

scenes (Naselaris et al., 2015). More recently, these multivariate fMRI techniques have also 

been applied to the number domain to investigate neural coding of individual quantities and 

to determine whether there is indeed a common representation for quantities across different 

input forms (Damarla & Just, 2013; Eger et al., 2009).

Previous studies have demonstrated that individual numbers expressed as dots and digits 

(Eger et al., 2009) and quantities of objects (Damarla & Just, 2013) can be accurately 

decoded from neural patterns. Additionally, these studies have provided converging evidence 

for better individual number identification for non-symbolically presented quantities than 

symbolic digits in the visual domain. Furthermore, the findings demonstrated only partial or 
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asymmetric generalization of neural patterns across the different input modes of 

presentation, questioning whether there is a truly abstract number representation. Finally, 

Damarla & Just (2013) showed that neural patterns underlying numbers were common 

across people only for the non-symbolic mode.

While earlier studies on number representations have provided important insights into how 

visually-depicted numbers are fundamentally represented in the brain, there is scarcity of 

evidence concerning the neural representation underlying auditorily presented numbers 

(Eger et al., 2003; Piazza et al., 2006). More importantly, given the findings of previous 

studies in the visual domain suggesting a shared representation for numbers presented non-

symbolically, the current study was designed to test whether these neural representations for 

non-symbolically presented quantities were common across different input modalities as 

well. To our knowledge, the question of a neural representation of quantity that is common 

across modalities has not been previously investigated using machine learning (multi-voxel) 

methods. Furthermore, the study aimed to explore the commonality of neural representations 

of quantities across people in either modality.

Methods

Participants

Nine right-handed adults from the Carnegie Mellon community (one male), mean age 24.9 

years (SD = 2.15; range = 21-28 years) participated and gave written informed consent. This 

study was approved by the University of Pittsburgh and Carnegie Mellon University 

Institutional Review Boards. All participants were financially compensated for the practice 

session and the fMRI data collection.

Experimental Paradigm

Stimuli were presented in the visual or auditory modality. In both modalities, participants 

were asked to determine the number of dots or tones presented, i.e. 1, 3 or 5, but no overt 

response was required. The visual stimuli were white dots on a black background and the 

auditory stimuli were pure tones. There were 3 possible quantities (1, 3, and 5), and two 

exemplars of each quantity. The alternate visual exemplars depicted dots indifferent 

locations and the auditory exemplars consisted of different tone frequencies (200-600Hz). 

The resulting six stimuli per modality (3 quantities and 2 exemplars per quantity) were 

presented eight times in separate blocks of trials, each time in a different random order. The 

presentations in the two modalities were made as similar as possible in terms of temporal 

sequence of presentation and duration. That is, the presentation of both the dots and the 

tones was sequential and started at the beginning of a 4.5s window with an interstimulus 

interval of 300ms. All three visually-depicted quantities remained on the screen until the end 

of 4.5s window. Each stimulus presentation was followed by a 4 s rest period (to 

accommodate for the hemodynamic response), during which the participants were instructed 

to fixate on an X displayed in the center of the screen. There were five presentations of a 

fixation period, 31 s each, distributed across the session, to provide a baseline measure of 

activation. A schematic diagram of the paradigm is shown in Figure 1.
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The study used a single event related design with the treatment of the hemodynamic 

response being different from those of conventional event related designs. The fMRI data 

from each trial consisted of the mean of 4 images (1 per sec) starting at 5 sec after stimulus 

onset and ending 4 sec later, capturing the peak of the activation response in this paradigm. 

This experimental paradigm and the 4-sec interval were chosen based on previous 

neurosemantic fMRI studies (e.g. Damarla & Just, 2013; Just et al., 2010; Mitchell et al., 

2008; Shinkareva et al., 2012) that attempted to optimize classification accuracy. Since the 

stimuli were presented in a different random order in each block, there should be no 

systematic sequential dependencies that the classifier can learn from the negligible overlap 

between consecutive trials. Thus the results should be unbiased and, at worst, the 

classification accuracies should be, at least, as accurate as our results indicate below. It is 

possible that longer intervals between successive stimuli would have completely eliminated 

any overlap between the activation responses to successive stimuli (which were in different 

random orders in the different blocks of trials) and thereby increased the classification 

accuracies, so our results could be underestimates of how accurately these neural 

representation can be classified.

fMRI Procedure

Functional images were acquired on a Siemens Allegra 3.0T scanner (Siemens, Erlangen, 

Germany) at the Brain Imaging Research Center of Carnegie Mellon University and the 

University of Pittsburgh, using a gradient echo EPI pulse sequence with TR = 1000 ms, TE 

= 30 ms, and a 60° flip angle. Seventeen 5-mm thick oblique-axial slices were imaged with a 

gap of 1 mm between slices. The acquisition matrix was 64 × 64 with 3.125 × 3.125 × 5 mm 

voxels. The voxel dimensions used in the current study are asymmetric. However, to our 

knowledge there is no evidence that asymmetrical voxel dimensions cause any bias in 

classification. The success of the classification in this study and in other previous studies 

with asymmetrical voxel dimensions indicates the adequacy of the spatial resolution and 

voxel size and shape that was used (Abrams et al., 2011; Just et al., 2010; Mitchell et al., 

2008; Rissman et al., 2010; Shinkareva et al., 2012).

fMRI Data Processing for Machine Learning

Initial signal processing was performed with Statistical Parametric Mapping software 

(SPM2, Wellcome Department of Imaging Neuroscience, London, UK). The data were 

corrected for slice timing, motion, and linear trend, and were temporally smoothed with a 

high-pass filter using a 190 s cutoff. The data were normalized to the Montreal Neurological 

Institute (MNI) template brain image without changing voxel size. The acquired brain 

images were parcellated using regional definitions derived from the Anatomical Automatic 

Labeling (AAL) system (Tzourio-Mazoyer et al., 2002).

The percent signal change (PSC) relative to the fixation condition was computed at each 

voxel for each item presentation. To compute the mean PSC for individual items or trials, the 

mean of 4 images acquired once per sec within the 4s window from 5s to 8s after stimulus 

onset was used. This value served as the main input measure for the classifiers' training and 

testing. Because each trial or item presentation was 4.5 seconds long, the window for the 

preceding trial was part of the inter-item rest period (or empty inter stimulus interval) that 
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followed it. These methods are similar to other machine learning fMRI studies (Damarla & 

Just, 2013; Just et al., 2010; Kassam et al., 2013; Mitchell et al., 2008). The brain images 

(consisting of mean PSC data for each voxel) for each item presentation were further 

normalized to have mean zero and variance one, to provide data that are better suited for 

classification.

Machine Learning Methods

Classifiers were trained to identify neural representations associated with each visually or 

auditorily presented quantity, using the evoked pattern of functional activity (mean PSC). 

Classifiers were functions f of the form: f: mean_PSC → Yj, j={1, …, m}, where Yj was 

one of the three quantities (1, 3, or 5), where m was 3 and where mean_PSC was a vector of 

mean PSC in voxel activations, as described above. To evaluate classification performance, 

trials were divided into training and test sets. To reduce the dimensionality of the data, 

relevant features (voxels) were extracted from the training set prior to classification (see 

Feature Selection, below). A classifier was built from the training set using the selected 

features and was evaluated on the left-out test set, to ensure unbiased estimation of the 

classification error. Our previous explorations indicated that several feature selection 

methods and classifiers produced comparable results.

Classification

We used the Gaussian Naïve Bayes (GNB) pooled variance classifier for classification 

purposes (Mitchell, 1997). It is a generative classifier that models the joint distribution of a 

class Y (e.g., quantities or modalities) and attributes (voxels), and assumes the attributes X1, 

…, Xn are conditionally independent given Y. The classification rule is:

In this study, all classes were equally frequent. Rank accuracy (the mean normalized rank of 

the correct response in the probability-ordered list generated by the classifier, where chance 

level is 0.5) was used to evaluate 3-class classification. Classification results were evaluated 

using k-fold cross-validation described below. To evaluate the significance of obtained rank 

accuracies, random permutation tests (10,000 permutations) were performed for each type of 

classification.

Feature Selection

Features (voxels) were selected from the training set (training presentations), computed 

separately for each fold of the data selecting the 120 parietal or 120 frontal voxels whose 

vectors of response intensities to the set of stimulus items were the most stable over the set 

of presentations in the training set. (Previous studies indicated that 120 voxels (3.125 × 

3.125 × 6 mm) typically are sufficient to obtain accurate classification of semantic 

representations (Just et al., 2010)). Considering only the most stable voxels, i.e. the ones that 

respond similarly to the stimulus set each time the set is presented. Only the activation levels 
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of relatively stable voxels were assumed to provide information about quantities. A voxel's 

stability was computed as the average pairwise correlation between its 6-item (3 quantities 

times 2 exemplars of each quantity) activation profile across presentations in the training set. 

The feature selection process does not introduce any statistical bias in the data as voxels 

were chosen based exclusively on their activation in the training set.

To determine the locations of stable voxels that were common across participants, group 

stability maps were computed by first creating masks for the stable voxels that were 

common in at least six cross-validation folds with a cluster size of 5 contiguous voxels 

within each participant. Then these masks were averaged across participants showing only 

those voxels that were common in at least two participants with a minimum cluster size of 

12 contiguous voxels. Such maps were created for frontal and parietal regions within each 

presentation modality separately. These methods to compute stability maps are similar to 

previously used ones in machine learning fMRI studies (Damarla & Just, 2013).

Cross Validation

Cross-validation procedures were used to obtain mean rank accuracies of the classification 

within each participant. In each fold of the cross-validation, the classifier was trained on the 

labeled data from six of the eight presentations or blocks and then tested on the mean data of 

the remaining two left-out blocks. This N-2 cross-validation procedure resulted in 28 

possible cross-validation folds, and the mean rank accuracy of the classification was 

obtained by averaging the accuracies across the 28 folds. The training and test sets were 

always independent.

Within Participant Analysis

Cross-validation procedures were used to obtain mean rank accuracies of the classification 

within each participant. In each fold of the cross-validation, the classifier was trained on the 

labeled fMRI data from one set of presentations and then tested on the mean of an 

independent set. For within-participant, within-modality classification, the training set 

consisted of the fMRI data from 6 of the 8 presentations for each fold, and the classifier was 

tested on the mean of the remaining 2 presentations, resulting in 28 cross-validation folds. 

There were 6 items per presentation (labelled in terms of the three possible quantities and 2 

exemplars per quantity). For within-participant, cross-modality classification, the selection 

of the 120 diagnostic voxels was based on their stability across the 6 presentations of the 

training modality and 6 of the 8 presentations of the test modality (i.e. excluding the 2 

presentations being tested in the fold). The classifier was trained on all 8 presentations of the 

training modality data, and then tested on the mean of 2 presentations of the test modality 

data (the 2 presentations not involved in stability assessment). The resulting classification 

accuracies were averaged across all items and folds.

Between Participant Analysis

A classier was trained on data from all but one participant and then tested on the data from 

the left-out participant. The mean of 8 presentations of each item (either auditory or visual 

modality) was computed for each participant separately. Feature selection identified the 

voxels whose responses were the most stable in the set of eight participants in the training 
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set. The 120 most stable voxels were selected, where voxel stability across training 

participants was computed as an average pairwise correlation between the activation profiles 

of the 6 items' (3 quantities and 2 exemplars per quantity) across eight participants in the 

training set. The same 120 voxels obtained were used in the training set were also used in 

testing the left-out participant. This process was repeated 9 times so that it reiteratively left 

out each of the participants.

Results

Overview

The central findings of the study demonstrated that a classifier trained on activation patterns 

evoked by quantities in one modality was able to classify quantities in the other modality. 

Second, in either modality, it was possible to accurately classify quantities from a given 

participant's activation data even if the classifier was trained exclusively on the data from 

other people. Finally, classification errors tended to preserve numerical inter-item distance 

information.

Cross-modality quantity classification

As a first step, cross-modality quantity classification accuracies (in both directions) were 

computed using voxels from only one of 40 AAL-based anatomical regions (Tzourio-

Mazoyer et al., 2002) at a time. The mean accuracies (across 9 participants) were significant 

(at p < .05, Bonferroni-corrected) for 20 regions from bilateral parietal and frontal lobes, 

regardless of which modality was used as the training or test modality. The majority of the 

brain regions supporting quantity classification belongs to bilateral frontal and parietal lobes, 

although accurate quantity classification was also obtained for a few posterior temporal 

regions. For the parietal lobes, these regions included bilateral inferior and superior parietal 

lobules, intraparietal sulci, and postcentral regions. For the frontal lobes, the regions that 

supported accurate cross-modality quantity classification included bilateral precentral, 

superior frontal, and inferior frontal (opercularis) regions. Based on these initial analyses 

and on several previous neuroimaging studies implicating parietal and frontal regions in 

number representation (Cohen Kadosh et al., 2007; Cohen Kadosh & Walsh, 2009; Dehaene, 

2003; Eger et al., 2003; 2009 Libertus et al., 2007; Nacache & Dehaene, 2001a; Pinel et al., 

2001), the main analyses below focus on only parietal and frontal regions. When the 

classifier was trained on exemplars of quantities in one modality (using as features the stable 

voxels in the regions of the parietal lobe), it was possible to classify quantities in the other 

modality. When the classifier was trained on the neural patterns evoked by the auditory 

modality and tested on the visual modality, the mean within-participant classification rank 

accuracy was .79. When the classifier was trained on the visual modality and tested on the 

auditory modality, the mean within-participant rank accuracy was .76 (chance level of p<.01 

is .58). For all 9 participants in both classifications, the accuracies were above thep <.01 

level, as shown in Figure 2A. Thus there is reliable cross modal classification of small 

quantities based on parietal lobe representations.

Accurate cross-modal classification was also obtained when the classifier's features were 

voxels from the frontal lobe. When the classifier was trained on the auditory modality 
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activation and tested on the visual modality activation, the mean classification accuracy 

was .67, above the p < .01 level for 8 of 9 participants. When the classifier was trained on 

the visual modality and tested on the auditory modality, the mean classification accuracy 

was .72, above the p < .01 chance level for all participants, as shown in Figure 2B. Thus 

there is also reliable cross modal classification of small quantities based on frontal lobe 

representations.

Within-modality quantity classification—The classification accuracies were some 

what higher within a modality than across modalities. For example, using parietal lobe 

voxels as features, the mean accuracies were .84 and .86 for the auditory and visual 

modalities respectively, above the p < .01 chance level for all participants. When frontal lobe 

voxels were used as features, the mean accuracies were .80 and .74 for the auditory and 

visual modalities respectively, with all participants' accuracies falling above the p < .01 

chance level. Although the main focus of this article is on cross-modality classification, the 

very high within-modality classification accuracy is also notable.

Commonality of quantity representations across participants

Classifiers were trained on data from eight of nine participants to determine if it was 

possible to identify each quantity (within each modality separately) in the held-out 

participant's data. When the classifier's features (voxels) were from the parietal lobe, the 

mean accuracies across participants in visual and auditory modalities were .83 (SD=.17) 

and .82 (SD=.20), respectively. Thus there is a great deal of commonality of the neural 

representation of quantities across participants in the parietal lobe. Reliable cross-participant 

classification accuracies (.78 represents a chance level of p <.05) were reached for seven out 

of nine participants in the visual modality (black bars in Figure 3) and the auditory modality 

(gray bars in Figure 3), using as features voxels from parietal regions.

Unlike the parietal-based classification, when the features were voxels from the frontal lobe, 

the mean cross-participant quantity classification was below the p < .05 level of significance. 

Thus, there is a commonality of quantity representations across participants in the parietal 

lobe, but much less so in the frontal lobe.

Note that the substantial difference in the critical values of the rank accuracies for the 

within-participant (.58, p<.01) and between-participants (.78, p<.05) quantity classifications 

is a consequence of the differences in the number of entries contributing to the mean 

accuracy (168 entries for within- and 6 for between-participants analyses)(see footnote 2).

Quantity classification across lower-level stimulus properties

To assess the influence of lower-level stimulus properties on number representations, 

quantities of dots were presented in two different spatial configurations and quantities of 

tones were presented using two different sets of frequencies. The classifier trained on data 

from only one sample of dot configurations or tone frequencies was able to classify 

quantities in the other sample of dot configurations or tone frequencies based on activation 

in either parietal or frontal regions.
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Within the parietal lobe, when the classifier was trained on data from one set of dot 

configurations (using as features parietal lobe voxels), the quantity classification accuracies 

for the same spatial configuration and for the other spatial configuration were .86 (SD =.06) 

and .80 (SD=.05) respectively (the p <.01 level is .61). Similarly, when the classifier was 

trained on tones of one set of frequencies, the classification accuracies for the same and 

different frequencies were .81 (SD = .05) and .76 (SD =.04) respectively.

Within the frontal lobe, the mean classification accuracies when trained and tested on the 

same and different spatial configuration of dots were .71 (SD = .06) and .66 (SD = .08) 

respectively (the p < .01 level is .61). Similarly, in the auditory modality, when the 

classification was based on frontal lobe voxels, the accuracies for the same and other set of 

tone frequencies were .79 (SD =.05) and .71 (SD = .06) respectively.

These results indicate that based on either parietal or frontal activation information, there is 

accurate classification of quantities arranged in a different perceptual configuration, 

although the accuracy is somewhat higher if the configural properties are the same. More 

generally, the neural representations of quantity have a very large degree of commonality 

across different perceptual configurations of the quantities.

Numerical distance effects

There was evidence of a distance-preserving representation of numerical values, indicated 

by the classifier's confusion errors for within-modality classifications. When the correct 

quantity label was one of the extreme values, 1 or 5, and the classifier's top ranked predicted 

label was incorrect, the incorrect guess was much more often the proximal number than the 

distal number (e.g. if the actual quantity was 5 and highest ranked predicted quantity was 

incorrect, the incorrect prediction was much more likely to be 3 than 1). A paired t-test for 

dot quantities revealed a significantly greater number of numerically proximal incorrect 

predictions than numerically distal incorrect predictions, both when the classification was 

based on parietal voxels (t(8) = 6.07, p < .001) and on frontal voxels (t(8) = 6.4, p < .001). 

Similarly, for tone quantities, a paired t-test revealed a significantly greater number of 

numerically proximal incorrect predictions than numerically distal incorrect predictions, 

based on parietal voxels (t(8) = 7.78, p < .001) and also on frontal voxels (t(8) = 7.07, p < .

001). Thus the neural representations of quantities retain some of the monotonicity of the 

quantitative information in both parietal and frontal regions.

Very similar distance-preserving effects were also found in the cross-modality analyses, 

regardless of the direction of prediction. When the classifier was trained on the auditory 

quantities data and tested on visual quantities, similar t-tests for the parietal (t(8) = 5.35, p 

< .001) and frontal (t(8) = 5.34, p < .001) areas demonstrated that the proximal quantity was 

more frequently confused with the actual quantity than with the distal quantity. Similarly, 

when the classifier was trained on the visual quantities data and tested on auditory 

quantities, both the parietal (t(8) = 5.11, p < .001) and frontal (t(8) = 3.42, p < 0.01) voxels 

demonstrated similar significant distance-preserving effects.
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Stability maps: Locations of the stable voxels for each modality in parietal and frontal 
regions

The stability maps were computed as a posthoc analysis only to visualize the exact location 

of some of the stable voxels in frontal and parietal lobes that determined quantity 

classification. Averaged stability maps were computed separately for parietal and frontal 

lobes, separately within each presentation modality. First, masks were created for each 

participant (a total of nine masks) that included stable voxels common across at least six 

folds with a minimum threshold of five contiguous voxels. Second, these individual masks 

were averaged across all participants resulting in one stability map for either frontal or 

parietal lobe within a modality. These maps show the locations of the voxels that were 

common in at least two participants with a threshold of twelve contiguous voxels.

Although the locations of the most stable voxels were distributed bilaterally in the parietal 

regions in both the modalities, there was a greater number of stable voxels in the right 

hemisphere indicating some degree of hemispheric asymmetry in the representations of non-

symbolic quantities (Damarla & Just, 2013). Additionally, some of the stable voxels in the 

right parietal region overlapped across the two modalities, as shown in Table 1 and Figure 4, 

suggesting common neuronal representations for symbolically presented quantities. Finally, 

the locations of the stable clusters primarily in right parietal and also some in left (IPS and 

SPL) are consistent with the coordinates that previously have been implicated in numerical 

processing (Cohen Kadosh et al., 2007; Dehaene et al., 2003).

The stable voxels for the visually depicted quantities were found in right inferior and 

superior frontal regions, whereas for the auditorily-depicted quantities, they were bilaterally 

located in IFG and superior medial/precentral regions. As was the case for the parietal 

region, there was an overlap of stable voxels across the two modalities in frontal (right 

frontal) regions, as shown in Table 2 and Figure 5. And as was the case for the parietal 

region, there was right hemisphere dominance in the frontal lobe.

Thus, the common representations for non-symbolically presented quantities across the two 

modalities were mainly right lateralized in both parietal and frontal regions suggesting a 

dominant role of the right hemisphere in coding perceptually displayed non-symbolic 

quantities.

Discussion

This study showed, for the first time, that the neural representations of small quantities were 

common across different sensory modalities in both frontal and parietal regions. Moreover, 

the brain activation patterns evoked by individual quantities, in either modality, were general 

across people in parietal regions. Third, the neural patterns underlying individual quantities 

generalized across low-level perceptual properties (different spatial positioning of dots or 

different frequencies of tones). Finally, there was an indication of monotonicity in the neural 

representations of quantities, in both the modalities.
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Neural Representations of Quantities across Modalities

The central finding of common neural patterns underlying individual quantities across 

modalities and across people signify the presence of stable and modality-general neural 

representations of perceptually depicted quantities.

This study involving perceptual representations is necessarily limited to relatively small 

quantities, so the conclusions may be limited to only relatively small quantities, but it is 

unclear whether the line is to be drawn at the subitizing threshold or somewhat above that, 

given previous findings of successful classification of quantities based on fMRI brain 

activation patterns both within and outside the subitizing range (e.g. 2, 4, 6 and 8) (Damarla 

& Just, 2013; Eger et al., 2009).

Many recent functional imaging studies on numerical cognition have suggested that visually-

depicted non-symbolic quantities are represented more coarsely in the brain in comparison 

to symbolic quantities (Ansari, 2008; Piazza et al., 2007). A recent study by Damarla and 

Just (2013) showed that neural patterns underlying a given number were common across 

different objects (e.g. three-ness common across 3 tomatoes and 3 cars) only for non-

symbolically presented quantities. The current study goes beyond the visual domain and 

provides evidence in favor of common neural representations of numbers across different 

perceptual modalities.

The neural representation of specific quantities of dots and tones were found to be largely 

overlapping and, hence classification was possible across the two perceptual modalities. Not 

only were the patterns of activation similar but also some of the locations of diagnostic 

(stable) voxels were similar across modalities. These modality-independent representations 

of non-symbolic quantities signify the presence of stable number-specific neural 

representations (Ansari, 2008; Piazza et al., 2007).

The finding of cross-participant commonality of neural representations of quantities in either 

modality contribute to the growing realization of how similarly human brains implement 

neural representations for shared concepts (Damarla & Just, 2013, Just et al., 2010; 

Shinkareva et al., 2008). Current theories suggest that quantities depicted as a number of 

discrete objects are developmentally fundamental, compared to symbolically conveyed 

quantities (Ansari, 2008; Dehaene, 1997; Piazza et al., 2007; Verguts & Fias, 2004). Perhaps 

it is due to this fundamental nature that the neuronal substrate coding for “three-ness” or 

“one-ness” was found to be common across participants. However, it is interesting to note 

that the generality of these representations over participants applied only to parietal regions 

and not frontal regions. One possible explanation for the poor cross-participant classification 

of quantities in frontal regions is that there may be greater variability in localization of 

function in frontal regions across individuals (Christoff et al., 2004; Duncan et al., 2000).

In the analyses that were performed within participants (namely classification across 

modalities and across perceptual configurations), the frontal regions did prove to contain 

common information, so the frontal lobes demonstrate other types of commonality. The 

commonality of neural patterns within parietal and frontal regions associated with a quantity 

(within a modality) generalized to the same number regardless of different spatial 
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configuration or different auditory frequencies. These findings suggest that the 

representation of quantities within these regions is based on numerical magnitude rather than 

low-level perceptual features (different shapes or melodies for the same number). The 

findings of purely quantity-based representation are consistent with the findings of a 

previous study by Eger and colleagues (2009).

Interestingly, these modality-independent representations were found in both parietal and 

frontal regions. Although, most studies have indicated the importance of parietal regions in 

numerical processes (Dehaene, 1996; Eger et al., 2003; Libertus et al., 2007; Nacache & 

Dehaene, 2001a; Piazza et al., 2007; Pinel et al., 2001), there is growing evidence from 

human neuroimaging studies that have demonstrated the prefrontal cortex to be involved in 

numerical quantity representation as well (Venkatraman et al., 2005; Holloway et al., 2010). 

This study adds to the growing evidence of the presence of numerical representations, at 

least for non-symbolic quantities, in both frontal and parietal regions.

Furthermore, the findings of the current study also indicate that there is a bilateral 

representation for quantities but with more right hemispheric involvement as indicated by 

the greater number of stable voxels in right than left hemisphere areas. This hemispheric 

asymmetry was found in both frontal and parietal regions and in both modalities. This is 

consistent with findings in recent studies showing greater activation or greater numbers of 

participating voxels in the right parietal region for non-symbolic in comparison to symbolic 

quantities (Holloway et al., 2010; Damarla & Just, 2013). Additionally, a developmental 

study by Cantlon and colleagues (2006) reported that a common neural substrate for non-

symbolic quantities in preschool children and in adults was found in right IPS, suggesting 

that right parietal regions may contain more primitive representations for non-symbolic 

quantities shared by both children and adults. Finally, a study using symbolic/non-symbolic 

arithmetic implicated both right frontal and parietal regions to be dominant for non-symbolic 

addition over symbolic ones (Venkatraman et al., 2005). Altogether, there seems to be 

converging evidence in favor of stronger representations of non-symbolic quantities in the 

right hemisphere.

Finally, in either modality, the neural activation patterns within both parietal regions and 

frontal regions were more confusable for the classifier for similar or numerically closer 

quantities, and the same was true for the cross-modality classifications, regardless of the 

direction. Previous macaque studies have shown that neurons in lateral prefrontal cortex 

have more similar firing rates for more proximal visually-presented non-symbolic numbers 

(Neider et al., 2002). Additionally, neuroimaging studies using both univariate (Pinel et al., 

2001) and multivariate approaches (Eger et al., 2009; Damarla & Just, 2013) have 

demonstrated that parietal representations for numbers preserve some numerical distance 

information. Here we show that the neural patterns in both frontal and parietal regions for 

two proximal quantities are more similar than distal quantities regardless of the stimulus 

modality, and regardless of the training modality for the cross-modality classifications. This 

result provides evidence for a modality-independent neural representational similarity 

between numbers that are numerically close to each other and parallels the observations of 

numerical distance effects found in previous behavioral studies (Moyer &Landauer, 1967).
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Another approach for comparing neural representations in addition to the MVPA cross-

classification used in this article is fMRI adaptation (fMRIa) as a measure of similarity 

between two representations. Would fMRIa indicate the same degree of between-modality 

overlap in the neural representation of quantities as in the current study? Previous studies in 

domains other than number that used both approaches found that: (1) the fMRI MVPA 

approach was more sensitive than fMRIa in capturing neural differences between stimuli in a 

study of orientation (Sapountzis et al. 2009) and (2) the differences in spatial scale of neural 

representation underlying a cognitive process might also lead to different results (Drucker 

and Aguire, 2009). While fMRIa was found to be sensitive in capturing more focused coding 

of the entire shape space found in ventral LOC or lateral occipital complex (within a voxel), 

MVPA methods showed a strong correspondence of the distributed neural pattern and 

stimulus similarity in lateral LOC indicating a course spatial coding of shape features 

(Drucker and Aguire, 2009).

In the number domain, an fMRIa study found that adaptation for quantities generalized 

across notations in the same modality, indicating a notation-independent representation for 

visually presented approximate numbers (Piazza et al., 2007). Additionally, the current study 

using multivariate approach provides evidence of modality-independent representations for 

quantities. Given that both these two studies indicate some degree of abstraction in number 

representation, it is plausible that an fMRIa method applied to our question would find 

converging results. Direct comparison of the two methods within a single study to assess the 

cross-modality quantity representation similarities and differences might provide additional 

insights into the brain's coding schemes.

Conclusion

The novel findings of the current study were cross-modality representations of non-symbolic 

numbers in both frontal and parietal regions, indicating the presence of stable neural 

representations of numbers. Additionally, the findings demonstrate cross-participant 

commonalities of neural representations in parietal regions in either modality suggesting 

frontal regions to be more variable across people. Finally, the study provides further 

evidence for greater neural overlap between proximal than distalnon-symbolically presented 

quantities (Eger et al. 2009; Damarla &Just, 2013). The location of the voxels that were 

predictive of quantity indicate that there is hemispheric asymmetry with right frontal and 

right parietal having greater involvement in representation of quantities in either modality 

than their left hemisphere homologs. While the study provides several novel insights into the 

representation of small numbers, it will be important for future studies to investigate how 

these insights apply to the representation of a larger set of consecutive numbers and other 

types of quantitative concepts.
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Figure 1. 
A schematic diagram of the experimental paradigm. A. Visually presented quantities (dots). 

B. Auditorily presented quantities (tones).
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Figure 2. 
Cross-modality quantity classification. A. Parietal regions. B Frontal regions. Black and gray 

bars represent accuracy for testing visual and auditory modality respectively. The dashed 

line indicates the p < .01 chance level accuracy (0.58).
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Figure 3. 
Cross-participant within-modality quantity classification in parietal regions. Gray bars 

represent auditory modality, black bars represent visual modality. The dashed line denotes 

the p < .05 chance level.
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Figure 4. 
Within participants stability maps (averaged across participants) indicating stable voxels in 

at least two participants in parietal regions. A. Visually presented quantities (dots). B. 

Auditorily presented quantities (tones).

Damarla et al. Page 20

Hum Brain Mapp. Author manuscript; available in PMC 2017 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Within participants stability maps (averaged across participants) indicating stable voxels in 

at least two participants in frontal regions. A. Visually presented quantities (dots). B. 

Auditorily presented quantities (tones).
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