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Abstract

For several decades, researchers have used erythrocytes for drug delivery of a wide variety of 

therapeutics in order to improve their pharmacokinetics, biodistribution, controlled release and 

pharmacodynamics. Approaches include encapsulation of drugs within erythrocytes, as well as 

coupling of drugs onto the red cell surface. This review focuses on the latter approach, and 

examines the delivery of red blood cell (RBC)-surface-bound anti-inflammatory, anti-thrombotic 

and anti-microbial agents, as well as RBC carriage of nanoparticles. Herein, we discuss the 

progress that has been made in surface loading approaches, and address in depth the issues 

relevant to surface loading of RBC, including intrinsic features of erythrocyte membranes, 

immune considerations, potential surface targets and techniques for the production of affinity 

ligands.

Introduction: red blood cells as carriers for vascular drug delivery

Drug delivery is frequently hindered by inadequate pharmacokinetics (PK) of the therapeutic 

agent. Rapid elimination impedes drug delivery to the intended targets, limits efficacy and 

may dictate the need for high doses and multiple administrations. These issues are especially 

pertinent to the use of expensive and labile biotherapeutics. Several approaches have been 

devised to enhance drug bioavailability within the bloodstream, including chemical 

modification, artificial carriers (such as polymers) and natural carriers (such as blood 

proteins and cells).

As a successful example of the first approach, chemical conjugation with polyethylene 

glycol (PEG), which prolongs circulation and reduces uptake by the reticuloendothelial 
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system (RES), is widely used in research and clinically [1–7]. Loading drugs within PEG-

coated carriers, especially durable polymeric carriers that adapt to flow, can further extend 

circulation times [8–14]. Still, no existing synthetic carrier can begin to match the 

intravascular longevity of erythrocytes [15,16].

Erythrocytes (red blood cells [RBCs]) are natural carriers for drugs that require sustained 

intravascular delivery [17–19], as they have evolved to deliver what might be considered the 

most vital biologic cargo, oxygen. The RBC is an enucleated biconcave disc that, in humans, 

has a diameter of approximately 7 μm, thickness of approximately 2 μm and plasma 

membrane surface area of approximately 160 μm2. One microliter of human blood contains 

about 4–5 million RBCs and the total number of RBCs, the most abundant cellular 

constituent of the blood (>99%), in the human body approaches 1013 cells. Human RBCs 

normally have a life span of 100–120 days (of note, mouse RBCs are smaller and have a life 

span of a month) and travel approximately 250 km through the cardiovascular system. These 

remarkable properties prompted researchers to investigate the use of RBCs as drug delivery 

vehicles beginning several decades ago.

Starting in the 1970s, several laboratories attempted to improve drug delivery by loading 

drugs within autologous or donor RBCs prior to transfusion [20]. Initial studies provided 

rather mixed results, likely due to damage to RBCs inflicted during drug loading [21,22]. 

During the 1980s, prospects of using carrier RBCs were impeded by the outbreak of HIV 

and other blood-transmitted infections. Meanwhile, use of erythrocytes was overshadowed 

by novel carriers, particularly liposomal systems. However, a few laboratories persisted in 

efforts to improve RBC delivery systems, devised less traumatic methods for loading and 

tested RBC carriers [18,23–25] in animal models [26,27], and, in pilot trials, in human 

patients [28–31]. At the present time, several RBC drug delivery strategies are in industrial 

development and clinical testing.

Three main strategies for RBC drug delivery are generally employed (Figure 1). Two 

approaches involve infusion of RBCs preloaded with a drug ex vivo, using either 

encapsulation within RBCs, or conjugation to the RBC surface. These strategies involve ex 

vivo manipulations with RBCs and create a situation wherein a relatively minor fraction of 

circulating RBCs carries the drug (unless exchange hemotransfusion is employed to load a 

greater fraction of the patient’s RBCs). Hundreds of publications using this approach have 

been reported in the last four decades and have been the subject of comprehensive reviews, 

including important clinical studies showing the feasibility and medical promise of infusion 

of drug-loaded RBCs, such as RBCs loaded with encapsulated dexamethasone and 

therapeutic enzymes [32–42].

The third strategy involves targeting drugs directly to the RBC surface. Our article focuses 

on this novel approach. We will review: i) pertinent features of the RBC as a carrier for 

surface-bound drugs; ii) evolution, status and perspectives involving this strategy; and, iii) 

medical and translational aspects of the envisioned clinical use.
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RBC features as drug carriers

RBC membrane endurance & plasticity

In order to examine RBCs as intravascular drug carriers, one should consider their innate 

properties that contribute to their utility as delivery vehicles. Chief among the structural 

features that RBCs possess to execute their function as oxygen carriers is their complex and 

unique membrane [43]. The RBC membrane is in a perpetual balance between tensile 

strength and deformability, which is required for RBC to repeatedly pass through capillaries 

with cross-sections as narrow as one-third of the cell diameter [44]. RBC must 

simultaneously maintain membrane integrity to avoid intra-vascular hemolysis with release 

of free hemoglobin, which may cause renal [45] and endothelial injury [46]. When 

extensive, hemolysis can be fatal, as evidenced by the significant mortality associated with 

acute hemolytic transfusion reactions [47].

The RBC membrane is supported from within by its cytoskeleton, in particular, the 

hexagonal actin–spectrin lattice that underlies the plasmalemma. This lattice interconnects 

with anchoring and membrane proteins, including glycophorin A and band 3 protein, two of 

the most prevalent integral glycoproteins among the more than 300 proteins found in the 

RBC plasma membrane [48]. Dynamic rearrangements of the cytoskeleton and plasma 

membrane plasticity enable the cells to undergo millions of reversible cycles of 

deformability through capillary networks [49]. Hydrodynamic forces drive RBCs to the 

center of the vascular lumen and the endothelial glycocalyx helps to minimize interactions 

with the vascular walls [50].

The organization of the RBC membrane that allows for deformation while maintaining 

integrity is based on a series of ‘vertical’ and ‘horizontal’ linkages between membrane 

protein complexes within the fluid phospholipid membrane bilayer (Figure 2). This 

structural organization allows the submembrane skeleton to undergo reversible changes in 

conformation from tight to expanded networks [51] that confer resistance to shear stress, 

while concurrently permitting deformation and maintenance of cell volume and surface area. 

As in other eukaryotic membranes, the phospholipid bilayer of RBCs also includes distinctly 

organized populations of cholesterol, lipid rafts and phospholipids including phosphatidyl 

serine (PS), a phospholipid that, although normally restricted to the inner leaflet of plasma 

membranes, can be exposed to the extracellular surface as cells senesce or incur damage 

[52,53].

A spectrum of inherited genetic disorders involving structural components of the RBC 

membrane provides insight into the molecular basis of membrane deformability [54]. 

Altered membrane organization produces diverse clinical phenotypes that include hereditary 

spherocytosis (HS), hereditary elliptocytosis (HE) and hereditary ovalocytosis (HO) [55]. In 

HS, mutations in any of several genes produce a similar phenotype, ultimately leading to 

RBCs that assume a round shape rather than a biconcave disc. Deficiencies in ankyrin, 

spectrin, band 3, protein 4.2 and the Rh complex have all been demonstrated disrupt 

‘vertical’ linkages between the skeletal network and membrane complexes, producing the 

HS phenotype. This phenotype results, in part, from loss of membrane surface area, which 

reduces the ability of the RBC to traverse the spleen, leading to sequestration and decreases 
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lifespan [56]. In hereditary elliptocytosis, deficiencies in spectrin and protein 4.1 produce 

deficient ‘horizontal’ linkages, which lead the RBC to assume to an ovoid shape (see Figure 

3), which also compromises deformability and lifespan.

Another feature central to efficient and safe transport by RBC is their ability to remain 

nonadherent to endothelium. In part, resistance to adhesion is mediated by the RBC 

glycocalyx, which contains abundant negatively charged sialic acids [57]. As might be 

predicted by these findings, it has proven to be extraordinarily difficult to replicate RBC 

flexibility and resistance to adherence using artificial blood substitutes, which likely has 

contributed to their limited clinical success notwithstanding decades of investigation 

[58,59].

Elimination of RBC: complement & RES

Having noted the important features of the RBC membrane, one must also consider the 

pathways by which aged and damaged RBCs are cleared, as they provide insight into 

potential adverse effects on cell lifespan and function when RBCs are employed as drug 

carriers. Erythrocytes do not leave the bloodstream except transiently during passage 

through hepatic sinuses and the interstitium in the splenic follicles. Tissue macrophages in 

the spleen and liver are the principal sites where ‘compromised’ RBCs are eliminated. 

Senescence, pathological changes (e.g., in malaria or sickle-cell disease) and, potentially, 

drug loading, all reduce RBC biocompatibility, enhancing their clearance and increasing the 

risk for harmful hemolysis.

Some surface RBC glycoproteins that are expressed at low and variable levels protect RBCs 

from damage and elimination. These include complement inhibitors such as DAF and CD59 

[60] and signaling molecules such as CD47 [61] and SHPS-1 [62]. CD47, a membrane 

protein, inhibits phagocytosis of RBCs by macrophages through binding to SIRPα, which 

transduces an inhibitory ‘do not eat me’ signal (Figure 4C) [63]. Loss or inhibition of CD47 

may be a key step in the pathologic process known as hemophagocytic lymphohistiocytosis, 

a syndrome characterized by excessive immune activation that leads to engulfment of 

erythrocytes and other hematopoietic cells by macrophages in the bone marrow and 

elsewhere [64] (Figure 4D).

The complement system, consisting of more than 20 regulatory and executing proteins in 

blood plasma and cellular membranes, is part of innate immunity, mediating opsonization 

and destruction of pathogens, tumor and foreign cells, and activation of proinflammatory 

cascades at localized sites of invasion. However, both the involved and neighboring host 

cells can be damaged when activation of complement is disseminated.

RBCs are among the most frequently affected sites of bystander injury by complement, 

especially when there are deficiencies in membrane glycoproteins that inhibit this pathway: 

Decay Acceleration Factor (CD55 or DAF), CD59 and CR1 [65–70]. DAF and CR1 inhibit 

early stages of complement activation, thereby protecting cells from lysis and reducing 

generation of pro-inflammatory mediators (Figure 4B), whereas CD59 blocks formation of 

hemolytic pores in the plasma-lemma (Figure 4A). Complement-mediated hemolysis of 
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RBCs deficient in DAF and CD59 is the predominant pathophysiologic mechanism leading 

to intravascular hemolysis in paroxysmal nocturnal hemoglobinuria.

The complement system also functions physiologically to help eliminate senescent and 

damaged RBCs, such as those opsonized by immunoglobulins. Deposition of C1q and C3b 

on RBC facilitates binding and uptake of RBCs by phagocytes. Deposition of 

immunoglobulin molecules and IgG-containing immune complexes also accelerates uptake 

of RBC via Fc-receptors on phagocytes [71–74]. Phagocytosis of RBC is carried out mainly 

by Kuppfer cells, in other words, macrophages residing in the hepatic macrophage sinuses, 

and their counterparts in the spleen, two organs where RBCs pass from the systemic 

circulation to tissue compartments via vascular openings [75–77].

There have been intensive efforts made to understand how these and other processes 

contribute to loss of carment hemolysis [136]. The RBC harboring of artificial GPI-linked 

proteins is an attractive drug delivery paradigm [137], especially in the light of finding that 

these proteins transfer from RBCs to endothelium [138]. Recently, insertion of lipid-

modified biomolecules into the RBC membrane is being explored to target various types of 

phagocytes [100].

Agents that control blood fluidity and coagulation are attractive cargoes for RBC carriage. 

The first attempts to manage thrombosis included conjugating fibrinolytics [19] and heparin 

[139] to RBCs to prevent thrombosis and clotting agents to mitigate hemorrhagic disorders 

[17].

Plasminogen activators (PA, including tissue-type PA [tPA] and urokinase [uPA]), which 

generate plasmin which lysis thrombi, are used in emergent settings [140,141], but have the 

downside of rapid elimination [142], requiring high doses with the attendant risk of bleeding 

[143–146] and cerebral damage [147]. Biocompatible coupling of PAs to RBCs maintains 

fibrinolytic activity [17,19,139], prolongs their circulation and minimizes diffusion into the 

CNS and pre-existing hemostatic plugs. RBC/PA complexes injected in mice and rats 

circulate orders of magnitude longer than soluble PA counterparts, providing prophylactic 

delivery of PArier RBC biocompatibility [60,78–82]. Conformational changes and abnormal 

clustering of membrane glycoproteins caused by cross-linking agents, and RBC membrane 

damage by osmotic stress during drug loading [82] have been shown to lead to cytoskeleton 

dysfunction, loss of RBC plasticity and mechanical stability [80], sensitization of RBCs to 

lysis [83] and provocation of IgG deposition and activation of complement [84]. 

Transposition of PS from the inner leaflet of the plasma membrane to the RBC surface [85] 

predisposes to phagocytosis and endothelial adhesion [86]. Hemolysis, aggregation, 

adhesion and phagocytosis of carrier RBCs compromise drug delivery and may cause 

hypoxia and acute vascular and renal damage by free hemoglobin and the toxic effects of 

RBC remnants [21,87–89].

Using RBC carriers for drug delivery to RES

Loading drugs within RBCs inevitably is associated with the risk of damage to the cell 

membrane and, in some cases, their internal contents (e.g., depletion of systems to store and 

utilize energy [90] and transport and metabolism of nitric oxide [91]). Making lemonade 
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from lemons, modified RBC carriers destined for phagocytosis can be used to deliver drugs 

to macrophages [78,92]. Examples of these approaches include attempts to deliver enzymes 

therapy for lysosomal storage diseases, with variable success in animal studies [18,93], 

antimicrobial and antiviral agents [24,94–97], antigens to boost the immune response [98] 

and anti-inflammatory drugs [99]. Recently, studies testing drug delivery to host defense 

cells using modified RBCs have entered translational and clinical domains [15,100].

Coupling therapeutics to the RBC surface: prototype studies

Most drug delivery strategies, however, rely on avoiding RBC elimination. Coupling drugs 

to the RBC surface may allow for bypass of damage related to drug encapsulation, minimize 

RBC elimination and provide other potential advantages. Putting a drug on the RBC surface 

mitigates issues related to the need for release of drugs encapsulated within RBCs, which is 

difficult to control [101]. With this approach, the RBC membrane is no longer a barrier for 

the surface-bound enzymes and other agents. Experimental data confirmed that drugs, 

including enzymes, coupled to RBC surface are more accessible and active compared with 

encapsulated counterparts [102,103].

Chemical conjugation of drugs to RBC

Coupling antigens and antibodies to RBCs using chemical cross-linkers, including aldehyde, 

tannic acid and chromium chloride were employed in the 1950s to produce reagents suitable 

to study antibody-mediated agglutination. These methods were then used to conjugate drugs 

and other molecules to carrier RBCs [98,103–104]. However, these nonspecific cross-

linking agents provided no control over attachment site and profoundly altered RBC 

membranes.

These methods were surpassed by conjugation to RBC amino acids [105–107], sulfhydryl 

groups [108], sugars [109] and lipids [110,111]. However, biocompatibility of modified 

RBCs remained a daunting issue [112–116]. Early RBC carriers activated complement 

[110,117], leading to hemolysis [66] and rapid elimination of RBCs [117–121].

Development of more precisely controlled conjugation methods [104,110,122–124], 

preserving DAF and CD59 and avoiding activation of complement [60,124–125] permitted 

coupling of drugs to RBCs with less damage. The circulation of RBC/drug complexes 

approximated those of control RBCs for at least several days after injection in rats and mice 

[122,126].

Activity & effect of RBC-conjugated drugs

Drugs whose delivery may be improved by coupling to RBCs include antigens and 

cytokines to stimulate the immune response [127], antibodies for vascular targeting of RBC-

loaded cargoes [19,103,128], antibodies and other ligands to capture circulating pathological 

mediators such toxins and pathogens themselves [129–131], therapeutic enzymes and other 

biomolecules whose targets are localized within the bloodstream, and complement inhibitors 

to protect RBCs against pathological hemolysis, for example paroxysmal nocturnal 

hematuria [132].
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Of note, DAF and CD59 are anchored onto the luminal surface of RBC membranes via a 

glycophosphatidyl inositol (GPI) anchor primarily within cholesterol-rich microdomains 

[133]. Methods to insert DAF, CD59 and other GPI-linked proteins into the RBC 

plasmalemma using lipid anchors have been developed (Figure 5) [134,135]. Insertion of 

GPI-anchored CD59 in the RBC plasmalemma protects against comple-to the interior of 

nascent thrombi, even when a tenfold higher dose of soluble PA is ineffective [148–150]. 

RBC/PA entrapped within growing clots rapidly form patent channels that permit perfusion 

of oxygen-carrying host RBCs prior to clot complete disintegration [148,149]. Delivery of 

PAs to the interior of nascent thrombi, while sparing preformed clots, make them suitable 

for thromboprophylaxis in settings where the risk of thrombosis and bleeding are both high 

[150,151].

RBC carriage favorably alters several important PA features. It switches PAs from 

activating proinflammatory receptors in the CNS parenchyma to protective signaling via 

intravascular receptors [152–155]. In addition, the RBC glycocalyx attenuates inactivation 

of coupled PAs by plasma inhibitors [57] and minimizes adverse interactions with vascular 

cells [156]. RBC/PA lyses cerebral thrombi in mice and rats, providing reperfusion, brain 

protection and improving survival. RBC/PA also alleviates brain injury in rats with 

intracranial hemorrhage and blunt trauma, and protects brain in pigs with cerebral 

thrombosis [154–155,157–159]. In stark contrast, free PA causes CNS bleeding, 

neurotoxicity and lethality in these settings. Figure 5 illustrates this strategy.

Targeting therapeutic agents to circulating RBC

As discussed above, chemical conjugation to RBCs requires cell isolation, modification and 

reinfusion, limiting its practical utility in clinical medicine. Targeting drugs to circulating 

RBCs offers an opportunity to avoid complications associated with ex vivo manipulations 

and transfusion of RBCs. This strategy involves conjugation of drugs to antibodies (or their 

engineered fragments) or polypeptides capable of binding to RBCs.

Coupling of RBC targeting ligands to therapeutics provides agents that can be loaded 

directly onto RBCs circulating in the bloodstream. Currently available publications focus on 

the effect of drugs coupled to RBC using this approach and examination of their efficacy 

with respect to free agents. Although characterization of the loading capacity and maximal 

efficacy possible with such an approach is important, these properties remain relatively 

poorly defined in RBC-coupling approaches, and early studies have instead focused on 

demonstration of the functional (i.e., therapeutic or prophylactic) superiority of RBC-

coupled versus free agents. Indeed, several iterations of this approach have been devised and 

successfully tested in animal models and are described herein.

Targeting to RBCs via CR1-anchoring

Initial attempts to target therapeutics to circulating RBCs involved anchoring to complement 

receptor type 1 (CR1). Immune complexes containing activated component of complement 

C3b bind to CR1 on RBCs which are transferred to macrophages without damage [160]. In 

primates and humans, >90% of CR1 is expressed on RBCs at levels of approximately 500–

1500 copies per cell, providing an anchorage site for C3b-containing complexes [161–164].
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A quarter of a century ago, Ron Taylor exploited this natural mechanism using antibodies to 

CR1 conjugated with antibodies to a pathogen or toxin [131]. Injecting such conjugates 

enabled RBC-mediated clearance of pathogens in vitro [130–131,165] and in non-human 

primates [166] (rodents lack CR1 and in vivo studies of CR1-targeting involved monkeys 

prior to generation of a transgenic mouse expressing human CR1 [167]). Binding of anti-

CR1 conjugates does not cause RBC phagocytosis [168], however, phagocytes recognize 

pathogens bound to CR1 [129], cleave off CR1-bound immune complexes [169] and thereby 

take C3b-pathogen complexes from RBC surfaces without damage to the cells [170–172]. 

Figure 6 illustrates this mechanism. Pathogens have been eliminated from the bloodstream 

using this approach in primates and transgenic mice without damage to RBCs [131,173–

175]. This approach has been applied to both bacterial [174] and viral [176–178] pathogens, 

as well as natural toxins [179], and has been shown to attenuate infection [176,180].

Similarly, coupling anti-CR1/DNA conjugates to RBCs accelerated elimination of DNA 

antibodies in monkeys, providing a prototype treatment for lupus [173,181–182]. Coupling 

cytokines to RBCs via CR1 ligands has been proposed as an anti-inflammatory therapy 

[163,183]. tPA conjugated to a CR1 monoclonal antibody binds to circulating RBCs in mice 

without harming the cell and provides safe and effective prophylactic thrombolysis [184] 

comparable to infusion of RBC/tPA [151]. Figure 6B illustrates the strategy of CR1-targeted 

surface coupling of blood clearing agents and drugs to circulating RBCs.

Recombinant fusion proteins targeted to circulating RBCs

It will be challenging to translate antibody conjugates obtained through cross-linking 

chemistry to industrial scale production and clinical practice. In general, chemical 

conjugation yields larger, multimolecular and heterogeneous antibody-drug species, which 

are difficult to produce uniformly on a large scale, leading to regulatory and quality control 

challenges. These conjugates may also cause RBCs agglutination or impede the plasticity of 

RBC membranes. Antibody conjugates bearing Fc-fragments may activate complement and 

bind to a variety of Fc-receptor bearing cells, including phagocytes. Any of these adverse 

factors may impede the biocompatibility of carrier RBCs and cause toxicity. CR1-targeted 

antibody conjugates have not been reported to cause these problems, but CR1 expression 

levels in humans vary between 500–1500 copies/RBC, which may be suboptimal for 

effective dosing in some settings [184].

To circumvent these technical problems and achieve predictable loading of RBCs over a 

wide range of drug concentrations, drugs can be fused to the antigen-binding single chain 

variable fragment (scFv) of monoclonal antibodies (or similarly engineered derivatives) 

directed to RBC determinants such as glycophorin A (GPA) and associated transmembrane 

glycoproteins [185,186]. GPA expression exceeds 5 × 105 copies per RBC in all humans 

[187,188] (Table 1). Some GPA antibodies agglutinate RBC in part due to its high density 

its aforementioned role in supporting membrane integrity through interactions with the 

cytoskeleton [85,189], which might impede membrane plasticity and thereby accelerate cell 

clearance or promote vascular occlusion. Although nonagglutinating GPA antibodies have 

been described [190–192], the use of monovalent scFv fragments is a preferred means to 

load RBCs safely [193].
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Advantages of scFv fusions include: lack of Fc-mediated side effects; lack of cross-linking 

of anchoring sites on RBC; relatively small scFv-fusions can be injected intramuscularly; 

established techniques for humanization and reduction of immunogenicity of scFv; and the 

modular format supports design of diverse scFv fusions [195]. Using modular gene 

engineering methods, these recombinant proteins can be fused via short connecting peptides 

with variety of executing proteins. Expression of scFv in diverse vectors enables large-scale, 

GMP-quality production of homogeneous monovalent scFv fusion proteins [140,196].

For example, Atkinson and co-workers produced a recombinant construct fusing human 

CR1 with scFv directed to the Rh(D) blood group antigen, which binds to CR1-deficient 

RBCs and restores their ability to bind immune complexes [197]. This approach has the 

potential to boost CR1-mediated functions (i.e., immune clearance and complement 

inhibition) and to boost function in CR1-deficient patients (~10% of humans are CR1-

negative). This team also devised a scFv composed of a monoclonal antibody TER-119 to a 

mouse analogue of human GPA [198], and fused this scFv with DAF [132] or CR1 [199]. 

These monovalent fusion constructs bound to RBCs after intravascular injection in mice 

without cell damage, and, furthermore, enhanced RBC resistance to lysis by complement 

[132,199]. More recently, the Atkinson’s group performed neonatal gene transfer of 

TER-119 scFv/CR1 in mice using a retroviral gene transfer vector. They achieved prolonged 

synthesis of this fusion protein, sustained coupling to RBCs and restored protection against 

excessive complement lysis in genetically deficient mice [200].

In the field of antithrombotic interventions, a TER119-based scFv/tPA fusion provided 

biocompatible binding to circulating RBCs and antithrombotic effects in mouse models of 

thrombosis comparable to RBC/tPA and superior to tPA, with added advantage of a wide 

range of dosing [184,194,201]. To enhance therapeutic specificity, a mutant thrombin-

activated prourokinase fragment has been fused with this scFv. In animal models, the 

resultant scFv/uPA-T fusion: binds safely to RBCs after IV injection; circulates as a RBC-

bound prodrug; is activated by thrombin; and provides effective and safe 

thromboprophylaxis with efficacy higher than scFv/tPA [194]. Figure 7 illustrates this 

strategy.

In addition to thrombolytic cargoes, multifaceted therapeutics for RBC carriage can also be 

envisioned. For example, soluble thrombomodulin (sTM) is a recombinant analogue of the 

natural anticoagulant and anti-inflammatory endothelial glycoprotein, which has shown 

encouraging clinical results [202]. The half-life of sTM in the circulation approaches several 

days after subcutaneous injection in mice, which exceeds the half-life of most of 

antithrombotic agents’ drug when given IV. Targeting of TM to carrier RBCs may enhance 

its longevity considerably. Studies in animal models showed that RBC-targeted sTM fused 

with scFv-anti-GPA: i) binds safely to RBC in the blood; ii) generates activated protein C 

(APC) from PC in the presence of thrombin; iii) has a half-life ~100-fold longer than sTM 

after IV injection; and iv) prevents occlusive arterial and venous thrombi from forming at 

doses that are orders of magnitude lower than sTM [203]. TM and APC have multifaceted 

antithrombotic and anti-inflammatory activities and RBC-targeted scFv/TM may find 

therapeutic and prophylactic utility in disorders characterized by such intertwining 

pathologies.
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Potential problems related to RBC coupling strategies

Targeting drugs to circulating RBCs may be hampered by undesirable side effects, such as 

to reduction of RBC biocompatibility. For example, excessive binding of scFv-fusions, 

despite their monovalency and inability to cross-link binding sites, may impose tension or 

conformational changes in the target molecule or otherwise affect its interaction with 

membrane elements including the RBC cytoskeleton. Studies of the effect of scFv/fusions 

on circulation of RBC have thus far not revealed harmful effects that would manifest in 

accelerated RBC clearance within the observed time frame [194,201].

On the other hand, drug molecules coupled to RBC may interact with other cells, such as 

endothelial cells, and other blood components, such as platelets and leukocytes, causing 

undesirable perturbations of the vascular system. Further, the PK and tissue distribution of 

RBC-coupled drugs may change so dramatically in comparison with free drugs that 

unanticipated off-target effects may occur.

In theory, molecules coupled to RBC surface may also modulate immune reactions and alter 

immunogenicity of administered fusion proteins, which suggests utmost caution in using this 

approach for multiple administrations. Humanization of targeting ligands (See section ‘New 

horizons: molecular engineering of affinity ligands for RBC targeting’, below) is likely to be 

important in minimizing such effects. Of note, just a single dose injection would be expected 

in many applications outlined above – stroke and other types of ischemia, sepsis, ALI/

ARDS, acute thrombosis and bleeding. This lessens, although does not eliminate, these 

immunological concerns. Furthermore, recently, Jeff Hubbell’s group showed that coupling 

to antigens fused to TER119 on RBCs confers immunological tolerance [204]. This result 

has dual importance. First, it opens a way to modulate immunological tolerance to selected 

antigens. Second, it implies that other scFv/cargoes targeted to RBCs may induce tolerance, 

thereby attenuating a potential concern over immune reactions that would preclude multiple 

administrations.

Choosing target binding sites on carrier RBCs

Currently, only a few of diverse RBC surface determinants have been assessed for their 

suitability as sites for drug targeting. The choice of target might alter dosing based on 

variable expression levels, intravascular kinetics and/or transfer to sites of action. Clinical 

disorders of RBC membranes highlight the importance of maintaining RBC membrane 

integrity, deformability, tensile strength and resistance to immune destruction when 

designing strategies to implement them as drug carriers. Indeed, if the long circulation time 

of RBCs is key to efficacy as a drug carrier, then perturbations of membrane integrity that 

shorten circulation time in vivo, as observed in nearly all RBC loading strategies to date (see 

section ‘Introduction: red blood cells as carriers for vascular drug delivery’, above), may be 

undesirable in some clinical settings. Care must also be taken to choose membrane 

determinants for which occupancy by targeting agent or cargo would not disrupt membrane 

integrity, fluidity, or deformability. In this section we provide a brief theoretical analysis of 

potential RBC determinants that may represent ‘good’ targets for RBC drug delivery.
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The ideal RBC target would be an epitope present in nearly all populations and one that does 

not subsume an important physiologic function. Identification of potential RBC membrane 

targets is facilitated by over a century’s worth of clinical experience in transfusion medicine, 

which provides a wealth of knowledge about the function, variability and prevalence of 

diverse red blood cell antigens in various ethnic groups [205,206]. The biologic impetus for 

the development of blood group polymorphisms is thought to involve population founder 

effects and natural selection based on susceptibility to infectious organisms, such as malaria 

[207].

Polymorphic antigens, such as the Rh antigen, have been identified based on alloantibodies 

arising in transfused patients. Alloantibodies put individuals at risk for hemolysis and 

hemolytic disease of the fetus and newborn, and highly polymorphic antigens are relatively 

poor choices as targets for drug delivery. In rare instances, however, alloantibodies 

recognize well-conserved sites on antigens that are widely expressed across the population. 

While these ‘high-frequency’ targets present a challenge with respect to transfusion, they 

also represent the proteins most likely to be of utility as broadly applicable drug targets 

[206].

Here, we examine some of the high-prevalence RBC targets in order to highlight the features 

that may make the ligand desirable or undesirable for a given drug delivery approach. 

Furthermore, because the targeting of some RBC determinants could theoretically perturb 

RBC physiology and affect their safety profile as drug carriers, the role of these proteins in 

normal RBC physiology is described herein. Table 1 briefly summarizes the most pertinent 

information. We provide below a digest of structural-functional and immunological features 

of RBC proteins that might be relevant to their suitability for drug carriage.

Rh & RhAG family

RhD was first recognized as a critical immunogen in hemolytic disease of the fetus and 

newborn over 70 years ago [208]. Originally described by Landsteiner and Wiener [209], the 

initial identification of a Rh (‘Rhesus’) factor was a result of the finding that antiserum from 

guinea pigs and rabbits immunized with blood from the rhesus macaque would also 

agglutinate human RBCs. This was, in fact, a misnomer as the antibody described was 

actually detecting a protein now known as LW (or ICAM4), an antigen that happened to be 

present in greater numbers on RhD+ RBCs.

Nevertheless, the family continues to be known by the collective term Rh, and includes the 

RhD, the closely related RhCE (also known as RhCcEe) and, in some classifications, the 

RhAG proteins, although the latter is now been designated as a separate blood group 

[210,211]. Rh proteins are approximately 30–40 kDa in size, and are part of multiprotein 

complexes on the RBC membrane (see Figure 2). In these complexes, particularly within 

band 3/ankyrin complexes, Rh proteins contribute to the mechanical integrity of the RBC 

membrane. The Rh associated glycoprotein, RhAG, is thought to represent the ancestral 

precursor to the RhD and RhCE proteins, and is essential for their expression on the RBC 

surface [212,213]. There are approximately 100,000–200,000 copies of RhD and RhCcEe 

per RBC, with minimal expression on other tissues [214], a desirable feature for specificity 

of RBC carriage. Non-erythroid homologues have, however, been identified [215].
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Although the remarkable polymorphism of the RhD and RhCcEe proteins [216] limits their 

utility as target antigens for drug delivery, some Rh family member epitopes, such as Rh17 

(also known as Hr0) and Rh29 [217], are present on nearly all human RBCs with the notable 

exception of the rare Rh-null phenotype that occurs in approximately 1 in 6 million 

individuals [218]. High-frequency epitopes have also been identified in the RhAG protein, 

for example, the Duclos antigen [219]. Recently, Rh family proteins have been implicated in 

ammonium transport across the cell membrane [220–222]. The Rh-null phenotype, which 

can arise from both mutations at the Rh locus itself (amorph type) and mutations at regulator 

sites such as RhAG (regulator type), is associated with a chronic hemolytic anemia and 

spherostomatocytosis, demonstrating that the activity of Rh family proteins is indispensable 

to normal RBC physiology and that significant inhibition should be avoided when designing 

a particular targeting approach.

Kell family

The Kell protein is a single-pass membrane glycoprotein present in low to moderate 

numbers on the RBC membrane [223]. It is thought to function as an endothelin-3-

converting enzyme and has several high-frequency epitopes including the k antigen, also 

known as the Cellano antigen, present in >99% of individuals, as well as Kp(b) and Js(b). 

Deficiency of Kell proteins is known as the McLeod phenotype, manifested by 

acanthocytosis, elevated serum creatine kinase and neurologic disorders [224]. The Kell 

family may be a useful candidate for RBC targeting when low copy numbers are desired on 

the RBC surface. However, the expression of Kell protein on other tissues, including bone 

marrow, fetal liver, testes and parts of the brain, may limit its utility.

Band 3

Band 3, also known as anion exchanger 1 constitutes approximately 20% (by mass) of all 

RBC membrane proteins [225]. It is a transmembrane protein present both in isolation and 

anchored to the membrane cytoskeleton via ankyrin and protein 4.2 complexes. These 

complexes are central to maintaining ‘vertical’ linkages to the spectrin skeletal network 

[226] as well as mediating anion exchange. As previously noted, variants can result lead to 

spherocytosis and ovalocytosis [227].

The band 3 protein shows few polymorphisms, although some high-prevalence antigens (the 

Diego blood group [228]) have been described. This group includes Di(a), Di(b), Wr(a), 

Wr(b), among several others. The abundance of band 3 proteins on the RBC surface (>10 6 

copies/cell) make it them an attractive target for RBC coupling. The critical importance of 

this protein in maintaining RBC membrane integrity and homeostasis suggests the need for 

caution, as does the expression of band 3 proteins on portions of the kidney. These potential 

downsides may be mitigated by the very high copy number on RBCs, such that in theory it 

would only be necessary for a therapeutic construct to occupy a small fraction of total 

available sites to be efficacious.

Glycophorin family

The glycophorin proteins are type I membrane bound sialoglycoproteins that function as 

receptors for complement, chaperones for band 3 transport to the RBC membrane and 
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contribute negative charge to the RBC glycocalyx through sialyic acids. These proteins 

express the MNS blood group system [229]. The two main isoforms are glycophorin A 

(GPA), expressed at approximately 800,000 copies/RBC and glycophorin B, expressed at 

approximately 200,000 copies/RBC. GPA is part of the band 3/ankyrin complex, critical to 

membrane structure. GPA is among the most commonly utilized markers of erythrocytic 

lineage and a number of antibodies and antibody derivatives to this antigen have been 

described [198,230–231]. Glycophorin B contains the U epitope, designated as such due to 

its near ‘universal’ expression among individuals and across ethnic groups. Given their high 

expression levels and apparent lack of significant enzymatic activity, glycophorins are 

attractive candidates for RBC targeting. Success in anchoring recombinant therapeutic 

fusion proteins to GPA has been reported by our group [194,203,232]. The expression of 

glycophorin A on renal epithelium and renal endothelium will need to be considered in long-

term safety analyses.

Glut1

The Glut sugar transporters are a family of 14 isoforms of transmembrane proteins that serve 

to transport sugars into cells. The Glut1 isoform (also known as band 4.5) is the main 

functional transporter of glucose in human RBCs and lymphocytes. RBCs express the 

highest level of the Glut1 transporter among cell lineages (greater than 200,000 copies per 

cell). Glut1 is found in both band 3/ankyrin complexes and band 3/junctional complexes 

[233], and shows little polymorphic variation across populations. However, Glut1-deficient 

individuals manifest a severe clinical phenotype characterized by infantile onset seizures, 

delayed neurological development, movement disorders and acquired microcephaly [7]. This 

raises concern that Glut1 will not tolerate physicochemical alteration if used as a target. 

Glut1 is also found on many tissues in addition to RBCs.

Dombrock blood group system

The Dombrock blood group system (Do) includes two antithetical antigens (Do[a] and 

Do[b]) and several other high-frequency antigens including Gy(a), Hy, Jo(a), DOYA and 

DOMR. These antigens are found on the Dombrock glycoprotein, a member of the mono-

ADP-ribosyltransferase family that is attached to the RBC membrane via a GPI anchor, 

although it so far has no demonstrable enzyme activity in RBCs [234]. However, due to the 

rarity of the Dombrock-null phenotype, little is known about clinical manifestations due to 

deficiencies or disruption of function. The Do glycoprotein is thought to be expressed 

primarily on erythroid cells in adult bone marrow and in fetal liver.

Other high-prevalence antigens

Several other high-prevalence antigens have been identified on the RBC membrane based on 

clinical serologic testing, including Vel (SMIM1 protein [235,236]), Lan (an erythroid ATP 

binding cassette transporter ABCB6 [237]), At(a), Jr(a) and Emm antigens, among others. 

Characterization of the protein families to which these antigens belong is an area of ongoing 

research.
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Modification of RBC as ‘universal donor’ cells

Immunological reactions to foreign RBC are of primary concern in transfusion medicine, as 

they can lead to cell agglutination or hemolysis, multiorgan failure, disseminated 

intravascular coagulation, shock and death. Antibodies to A and B blood group antigens are 

naturally occurring (predominantly IgM) antibodies in those who lack these carbohydrate-

derived epitopes. Therefore, in order to avoid the severe intravascular hemolysis induced by 

these antibodies, the ABO system is routinely typed and matched when a transfusion is 

performed (with O units administered when ABO blood type cannot be determined). In 

addition, the RhD antigen is strongly immunogenic in RhD negative recipients (about 15% 

of the population), and antibodies to RhD are an important cause of hydrops fetalis and 

hemolytic disease of the newborn. Therefore, this antigen group is also routinely typed and 

matched in transfusion medicine. However, other non-ABO/RhD antigens (such as C, c, E 

and e, also within the Rh family but found on the RHCE gene product) are considered less 

immunogenic and are not routinely typed and matched.

Naive recipients generally tolerate (i.e., a symptomatic transfusion reaction does not occur) a 

single transfusion of blood mismatched for most blood group antigens other than ABO, as 

naturally occurring antibodies to these non-ABO antigens are rare. This contrasts with 

recipients who have been multiply transfused (e.g., people who suffer from sickle cell 

anemia, β-thalassemia or hematologic malignancies), or after pregnancy, who may develop 

alloantibodies to minor (non-ABO/RhD) antigens [238,239]. Allosensitization is especially 

common in the background of incongruence between the donor pool (predominantly 

Caucasian in the USA) and the recipient (e.g., African–American patients with sickle cell 

disease).

Extended matching protocols offers promise, but has not eliminated alloimmunization or its 

threat [216]. The chronic shortage of matched blood groups motivates attempts to modify 

RBCs in ways that would make them compatible across blood groups. Several approaches 

have been used to attempt to eliminate incompatibility. The first used was the addition of 

neuraminidases to hydrolyze the sialic acid residues from RBC glycoproteins. However, 

these RBCs were removed from circulation immediately after transfusion [240]. Specific 

exoglycosidases have been used to convert blood types B and A to type O. Studies by Lenny 

et al. [241–243] have shown that an exoglycosidase from green coffee bean is able convert 

blood type B to type O at pH 5.5 by removing the relevant terminal sugar. These RBCs 

appeared to survive normally in all recipients. Kruskall et al. utilized a recombinant form of 

this enzyme, which was successful in Phase II trials [244]. However, conversion of blood 

type A to type O has proved to be more challenging. Alpha-N-acetylgalactosamindase, a 

72kD exoglycosidase degrades human blood A epitope, but the efficiency of conversion was 

low [245–253]. More recently, bacterial glycosidases that remove both A and B antigens 

efficiently have been identified [254], renewing interest in this approach, and clinical trials 

of enzyme-converted RBCs are in progress [255].

PEG-modification of RBC

An alternative approach to enhance compatibility is to camouflage antigenic RBC epitopes 

or targeting sites by covalent attachment of a long chain neutral hydrophilic nontoxic 
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polymer such as PEG to its surface [256]. As described above, covalent attachment of PEG 

is commonly used to modify proteins, drugs, liposomes and artificial surfaces that come into 

contact with blood, prolonging their circulation times in addition to ‘repelling’ antibodies 

and phagocytes [1]. PEG, an extremely flexible and hydrophilic polymer composed of 

repeating units of ethylene oxide, creates a ‘sphere of hydration’ barrier in an aqueous 

environment that prevents binding of cells and antibodies to RBCs, essentially camouflaging 

surface charges. In addition to such ‘immune-camouflaging’ effects, conjugated PEG may 

improve rheological features of the donor RBCs, for example, by lowering their viscosity 

and propensity to aggregate at low shear rates [257].

In theory, both increasing the surface density of PEG molecules and their length should 

enhance the camouflaging effect, but excessive modification may inactivate cell-surface 

proteins. Alternative chemical approaches to conjugate PEG to RBC surfaces have been 

developed to avoid negative impact of cell modification. One of the first alternative 

polymers to be developed is methoxypoly(ethylene glycol) (mPEG). Unlike PEG, mPEG 

contains a terminal methyl group (-CH3) instead of a hydroxyl (-OH), which significantly 

reduces the potential for peroxide formation. Conjugation of mPEG (~5 kD) to lysine 

residues on RBC surfaces reduces immunologic recognition of surface antigens. mPEG-

derivatived mouse RBCs exhibited normal in vivo survival (~50 days) with no sensitization 

after repeated transfusions [258–260].

Variations of PEG, such as linear, branched and development of bifunctional chains have 

been used [261,262]. Rossi et al., 2010 explored the conjugation of 3 kD to 101 kD 

hyperbranched and multifunctional polyglycerols (HPG) onto RBCs by reacting with 

primary amines on the cell surface [263]. Liu et al. modified HPG with C18 alkyl chains and 

mPEG (HPG-C18-PEG) [264]. Adsorption of HPG-C18-PEG onto human RBCs was 

mediated by hydrophobic interactions between C18 chains and the lipid membrane. In 

saline, and the maximum amount of HPG-C18-PEG adsorbed onto RBCs was greater than 

in plasma, due to the interactions between the polymer and plasma proteins (e.g., albumin). 

Janvier et al. reported that the use of amphiphilic star-shaped PEG polymers (four chains of 

PEG) with a cholic acid core with masses between 10–16 kDa efficiently reduced RBCs 

aggregation [265]. Unlike Pluronic F68, a PEG-PPG-PEG triblock copolymer that can also 

decrease RBC aggregation, the use of cholic acid as the core group did not induce any 

adverse reactions. Studies by Moghimi et al. and Szebeni et al. suggested that these adverse 

reactions from Pluronic F68 are associated with the PEG-PPG component of the polymer 

[266,267].

Other polymers such as polyethyloxazoline propionic acid (PEOZ) have been recently 

studied for their ability to ‘immunocamouflage’ cells. PEOZ polymers exhibit similar 

chemical, physical and immunological characteristics as PEG (e.g., low immunogenic 

potential, low toxicity) [268]. However, mPEG significantly improved the 

immunocamouflage efficacy of RBCs compared with PEOZ. mPEG and PEOZ can also 

camouflage unmodified antigens (indirect camouflage) found in RBC membrane protein 

complexes.
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At this time, RBC modification by PEG and other polymers for immune camouflaging and 

rheological improvement of donor blood remains a promising avenue, but its clinical utility 

for transfusion medicine remains to be meticulously tested. This especially true in light of 

findings that PEG coating may inhibit the self-signaling function of CD47 on RBC surfaces 

and that humans may have natural antibodies to PEG [269].

RBC carriage of nanocarriers & engineered nanocarriers imitating RBCs

Fast clearance from the bloodstream is one of major factors limiting the utility of 

nanoparticles (NPs) for drug delivery. In theory, nondamaging coupling to RBCs may 

prolong the lifetimes of NPs in the circulation. Indeed, noncovalent adsorption onto RBC 

(‘piggybacking’) prolonged the circulation of NPs compared with free NP counterparts 

without detectable changes in RBC circulation; after several hours NPs detached from 

carrier RBCs, likely due to shear force and interactions with vascular cells, and eventually 

were taken up by the liver and the spleen [270]. More recently, it was reported that NPs 

noncovalently attached to RBC transfer from circulating carrier cells to vascular 

endothelium, which is manifested by the transient accumulation of NPs, but not RBCs, in 

the pulmonary vasculature [271].

Several laboratories are pursuing synthesis of polymeric drug carriers imitating RBC 

features, including elasticity [272–274]. Mitragotri and his team have created ‘artificial 

RBCs’, mimicking size, shape and elasticity of RBCs, which have oxygen carrying abilities 

(in vitro) and can squeeze through micron-size tubes. These artificial RBCs were also able to 

absorb heparin and release it continuously over a period of days in vitro. Discher and 

coworkers decorated the surfaces of polymeric nanocarriers with CD47 and peptides derived 

from this ‘self’-semaphoring glycoprotein, which is exposed on RBC surface and signals via 

specific receptors on host defense cells that the particle should not be taken up [275]. The 

ultimate test of artificial RBC and CD47-decorated polymeric carrier will come from 

experiments that show directly whether the behavior of these carriers is similar to RBCs in 

vivo.

New horizons: molecular engineering of affinity ligands for RBC targeting

As discussed in previous sections, one ‘ideal’ formulation for targeting drugs to RBC 

surface would comprise recombinant proteins consisting of drugs fused to antigen binding 

single-chain variable region antibody fragments (scFv). In most studies performed to date, 

the scFv was derived from a murine hybridoma. Oligonucleotide primers specific to the 

particular antibody’s heavy and light chain variable regions are amplified by PCR to 

construct the scFv fragment of the hydridoma’s original full-length IgG molecule [204].

For clinical use, the scFv should be human in origin to minimize immunogenicity. This is 

important even if multiple administrations are not anticipated because the prevalence of 

interfering heterophilic human antimouse antibodies (HAMAs) in the general population 

may typically be approximately 10% and as high as 80% in individuals exposed to 

therapeutic agents containing murine blood proteins [276,277]. The human scFv should be 

specific to a highly conserved nonpolymorphic target present on RBCs of all potential 

recipients.
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These requirements present a conundrum. First, by definition, it will be difficult to identify a 

donor from whom one might attempt to clone an antibody to an antigen he lacks that nearly 

everyone else in the population expresses. Second, immunizing that individual with RBCs of 

common phenotype for the purpose of generating a source of antibody cDNA would be 

ethically unacceptable, even with donor consent. Alloimmunization of this individual to a 

commonly expressed RBC antigen could have serious health consequences in the future 

because cross-match-compatible blood would be nearly impossible to find in the event that 

individual required a transfusion. Third, even were such an individual available, cloning 

human peripheral blood B cells in vitro to provide the starting materials for scFv 

construction using conventional hybridoma approaches is problematic due to the absence of 

a suitable human myeloma fusion partner.

Alternatively, one could attempt to fuse the donor’s cells with a mouse myeloma cell line to 

create a pool of heterohybridomas from which the desired anti-RBC alloantibody could be 

isolated. Unfortunately, human–mouse chimeras are unstable and often die or stop secreting 

antibodies before antigen-specific clones can be identified. Immortalizing human B cells by 

infection with Epstein–Barr virus is inefficient and selectively immortalizes lower affinity 

IgM antibodies [278]. Compounding the technical inefficiencies in transformation is the 

practical difficulty in obtaining sufficient numbers of human B cells from peripheral blood, 

as the spleen is the preferred source for production of monoclonal antibodies from mice.

To circumvent these obstacles, molecular methods have been developed to isolate human 

scFv fragments. Collectively referred to as ‘repertoire cloning’ or ‘antibody phage display’, 

such approaches immortalize the immunoglobulin genes, rather than the B cells from which 

the immunoglobulin genes were derived.

Phage display technology

Antibody phage display has been the subject of a number of recent reviews [279–281] and 

several excellent laboratory manuals are available that provide step-by-step protocols [282–

285]. Typically, M13 filamentous bacteriophage, virions approximately 7 nm in diameter 

and up to 1 μm in length, are employed. The genome of M13 phage contains a set of genes 

that encode several viral coat proteins, notably pIII for which there are 3–5 copies at one end 

of the phage. Seminal experiments by George Smith almost 30 years ago [286] showed that 

foreign DNA inserted into the M13 genome just upstream of the gene for pIII produced 

phage particles that displayed the protein encoded by the foreign DNA at the aminoterminus 

of pIII. Though the significance of this experiment was not fully appreciated at the time, 

Smith had succeeded in demonstrating the physical linking of an exogenous protein (via 

fusion with pIII) with the DNA required for its replication (via the phage DNA within).

Methods have now been developed for expressing larger molecules, such as antibody scFv 

fragments, on pIII (Figure 8A). Starting with populations of peripheral blood B cells and 

using PCR to amplify their immunoglobulin heavy chain and light chain cDNA, it is 

possible to create large libraries of particles, each of which express an antibody fragment on 

its exterior and retained the DNA required for its replication in its interior (Figure 8B) 

[287,288]. Thus, antibody phenotype and genotype are linked, and such libraries can be 
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panned on immobilized antigen to isolate and then amplify antigen-specific phage (Figure 

9C). From the phage DNA, the antibody’s scFv gene segment can be isolated directly.

For the purposes of drug delivery, phage libraries can be selected or ‘panned’ on intact 

RBCs [289–292] (Figure 10A) to obtain cell-surface binding phage-displayed scFv (Figure 

8B). A distinct advantage conferred by screening of antibody repertoires displayed as scFv 

on phage versus screening of full-length bivalent IgG’s secreted by hybridomas is that one 

directly select for antibodies that bind well in a monovalent form and that fold correctly in 

the absence of immunoglobulin constant regions, properties that would be required by an 

scFv-containing RBC drug targeting agent. This is an important because the ability to 

convert any given hybridoma-derived bivalent IgG to a monovalent scFv that retains the 

properties of its parent IgG cannot be taken for granted.

A general approach for the use of phage display to develop scFv for RBC targeting is 

presented in Figure 11. The most direct route for obtaining a phage display library from 

which a human red cell panreactive scFv could be isolated, would be to start with peripheral 

blood lymphocytes (A) from a human donor (B) alloimmunized to a common red cell 

membrane determinant and to construct an ‘immune’ phage library (C). Once in hand, the 

library could be panned (D) on purified, immobilized target protein (Figure 1C) to which the 

individual was immunized (either serendipitously or purposely) including those antigens 

described in the previous section. Alternatively, such a library could be selected using 

sequential rounds of panning on intact human RBCs (Figure 2A) each time alternating with 

antigen-negative RBCs of other species. This, by definition, would yield phage clones that 

react with common human RBC phenotypes. After completing several rounds of panning 

(typically 4), the resultant polyclonal phage preparations can be assayed for RBC reactivity 

using an anti-M13 antibody indirect agglutination reaction (indirect ‘Coombs test’) [291]. 

Titering of phage can then provide a set of monoclonal phages that can be individually 

assayed for binding by agglutination (E), and scFv DNA can be isolated from the phage 

clones that are positive (F) [290].

Though obtaining peripheral blood lymphocytes from such an immunized source is likely to 

be difficult for the reasons discussed above, phage display technology offers a number of 

other options. For example, phage display libraries can be constructed from patients with 

warm-type (IgG) autoimmune hemolytic anemia, which typically bind to determinants 

generally present on all human RBC [293]. Alternatively, naive human phage display 

libraries (G) can be panned on human RBC antigens directly (D). Naive phage libraries are 

libraries constructed from pools of peripheral blood B cells collected from nonimmunized 

healthy donors [294,295]. Naive libraries are designed to exploit the observation originally 

made with hybridomas that IgM antibodies that have not undergone somatic mutation can 

recognize a variety of antigens. The advantage of these libraries is that a single ‘universal’ 

library could be constructed and used to provide monoclonal antibodies with any desired 

specificity. Though the affinities of the antibodies obtained from such nonimmunized 

libraries may be suboptimal, a number of methods for ‘in vitro affinity maturation’ of the 

initial positive phage clones are available (H). Chemical mutagenesis, use of mutagenic 

strains of bacteria, incorporation of degenerate oligonucleotides, or error-prone PCR can be 
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used to generate random or targeted nucleotide mutations in antibody gene segments 

[296,297].

Alternatively, panreactive antibodies to human RBCs can be obtained from immune phage 

libraries (J) constructed from nonhuman primates, rabbits, chickens, etc. (I), and 

‘humanization’ protocols can be employed to reduce the immunogenicity of the scFv (H) 

[298,299]. In contradistinction to immune or naive libraries derived from B-cell 

immunoglobulin mRNA, in vitro generated human antibody gene segments (K) can be used 

to create so-called ‘synthetic’ phage display libraries (L). Such libraries are generally 

constructed by starting with one or more human scFv’s of any specificity, and the 

polymerase chain reaction (or other strategy) is used to randomize the heavy and light chain 

hypervariable regions to create a collection of as many possible different antibodies as can 

be reasonably grown in bacteria [300,301]. Though antibodies isolated from such synthetic 

repertoires may also suffer from suboptimal affinity and require in vitro affinity maturation 

as described above, a significant advantage over immune and naive libraries is that the 

antibody composition of synthetic libraries is not constrained by the mechanisms at play in 

vivo that normally prevent the generation of antibodies to human self-antigens. Therefore, 

the synthetic phage library approach inherently possesses the ability to provide ‘human 

antibodies’ to common human antigens.

Lastly, phage display can be combined with conventional hybridoma technology (M) to 

convert a murine monoclonal antibody into a human-like antibody that retains the original 

binding specificity of the mouse antibody. These methods termed ‘guided selection’ or 

‘epitope imprinting’ [302,303] start by cloning the hybridoma heavy and light chain variable 

regions into a scFv construct expressed on phage. This is followed by replacement of the 

murine light chain with a library of human (naive) light chains and selecting the new 

chimeric phage library on the desired antigen. In parallel, the light chain from the original 

murine antibody is paired with a repertoire of random human heavy chains, displayed on 

phage and similarly selected on the antigen. Finally, a set of ‘guided’ human heavy and light 

chains ‘selected’ from each human/mouse chimeric library are combined to form a third 

phage library (now completely human) that is panned on the target antigen. In vitro affinity 

maturation of the ‘best binder’ can then be used to generate a high affinity scFv that is a 

human representation of the original murine antibody.

Conclusion

RBCs are natural carriers with considerable potential for intravascular drug delivery. 

Surface loading (i.e., affinity targeting of drugs to the RBC surface) is an attractive 

alternative to encapsulation of drugs into carrier RBCs, as it avoids cell trauma and the need 

for ex vivo manipulations and reinfusion. Surface loading can also be used in tandem with 

transfusion of blood and blood products, already a widely used and generally safe 

therapeutic intervention. Chemical and recombinant approaches to drug conjugation with 

affinity polypeptides, such as scFvs and smaller peptides, enable RBC surface targeting to 

diverse epitopes. These epitopes include those present across diverse human subpopulations 

over a wide range of surface density, from thousands to millions of binding sites per RBC. 
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Phage display technologies have enabled derivation of a broad array of engineered targeting 

ligands to desired targets.

RBC carriage alters pharmacologic features of drug cargoes in many key ways including 

pharmacokinetics (PK), biodistribution (BD), restriction of freedom to interact with cellular 

and molecular counterparts (even those localized in the vascular space, such as endothelial 

receptors), and masking of bound drugs by the RBC glycocalyx (thereby preventing 

inactivation by plasma inhibitors). In many cases, the changes in PK and BD prolong drug 

circulation and retention in the vascular compartment for sufficient time to cause a 

fundamental change in efficacy and, ultimately, clinical utility. However, several other 

factors, such as redistribution of drugs from plasma to the cellular fraction of blood, have 

myriad additional effects. For example, focal concentration of drugs on the surface of 

micron-size particles (i.e., the RBC plasma membrane) provides a new microenvironment 

for a drug and may serve as a natural assembly template or a catalyst for the activities of 

many biotherapeutic agents. In disorders such as sickle-cell disease, transfusion reactions, 

paroxysmal nocturnal hematuria, malaria and other maladies involving RBCs, the RBCs 

represent both the carrier and target for therapeutic interventions.

Future perspectives

Drug carriage by RBCs offers the potential to improve therapeutics and prophylactic 

interventions including modulation of host defense and immune responses, detoxification or 

elimination of toxins and pathogens in blood, enzyme replacement therapies, amelioration of 

inflammation and preventing and management of thrombosis. Although some of these 

potential uses have been characterized in vitro and in animal models, the next decade should 

see the clinical translation of these agents. We postulate that RBC-targeted 

pharmacotherapy, particularly strategies aimed at surface loading of therapeutics, will 

improve medical management of important pathological conditions, especially those 

manifested primarily within the vascular space. Advances in ex vivo cellular genetic 

engineering may also ultimately enable production of more sophisticated, multifunctional 

erythrocytes capable of drug delivery and multistep mechanisms of action [304]. Drug 

delivery by coupling to erythrocytes offers a new and exciting class of cellular and 

biomolecular therapy. While it is tempting to speculate that this approach will see successful 

clinical translation, at this stage it remains premature to anticipate timelines for milestones 

such as industrial production and clinical testing. These important steps will inevitably 

require joint translational efforts of academia and pharmaceutical partners.

Key terms

Erythrocyte The mature red blood cell (BC). The human erythrocyte is an 

enucleated 6–8 um biconcave discoid cell central to systemic delivery 

and exchange of the blood gases oxygen and carbon dioxide

Transfusion 
reaction

The clinical manifestation of incompatibility between a donor blood 

product and the recipient. Reactions include, but are not limited to, 
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antibody mediated processes such as hemolytic transfusion reactions, 

and allergic reactions

Complement A component of the innate immune system involved in clearance of 

pathogens from the host. The complement systems consists of a 

number of proteins that ultimately produce a cascade of proteolytic 

cleavages and assembly of multi-protein effector complexes such as 

the membrane attack complex

Thrombosis A series of regulated enzymatic steps ultimately resulting in 

production of fibrin and generation of a thrombus, or blood clot

Red blood cell 
antigens

A surface RBC protein epitope that has been demonstrated to 

generate an antibody response when administered to a host lacking 

the given protein epitope

Antibody 
fragments

Engineered immunoglobulins, such as single chain variable fragments 

(scFv), that maintain their antigen specific binding while altering 

other parameters (for example, size, valency, or elimination of the 

constant region, Fc)

Phage display A technique that utilizes bacteriophages to display a diverse library of 

proteins on their surface such that the proteins can be directly linked 

to the genetic information that encodes them

Bacteriophage A virus that infects bacteria and that is commonly used in phage 

display techniques (particularly phage M13) to present proteins on 

the viral particle surface by fusion to viral coat proteins (such as pIII)
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Executive summary

Introduction

• Effect of therapeutics is limited by inadequate pharmacokinetics and 

biodistribution.

• Conjugation of masking polymers prolongs circulation of macromolecular drugs 

and drug carriers.

• Red blood cells (RBCs) may be used as long-circulating drug carriers (100–120 

days in humans).

• Early approaches focused mostly on loading of drugs within the RBCs.

• An alternative approach is loading of drugs onto the RBC surface.

RBC features as drug carriers

• RBCs membrane structure provides both high tensile strength and deformability 

due to a network of linkages between membrane protein complexes and the 

underlying actin-spectrin lattice.

• RBC membrane defects cause pathological RBC phenotypes.

• The reticuloendothelial system (RES) is responsible for clearance of senescent 

or damaged RBCs.

• The innate defense system of complement can also target RBCs with altered 

surface proteins.

• RBCs surface proteins control complement and prevent RBC destruction by the 

host.

• The natural uptake of damaged RBCs to the RES system has been exploited to 

delivery diverse therapeutics to the RES organs such as the liver.

Coupling therapeutics to the RBC surface: prototype studies

• Coupling drugs to the RBC surface may bypass issues related to drug 

encapsulation such as decreased membrane integrity.

• Early strategies included non-specific chemical cross-linking to RBCs and 

insertion into RBC membrane.

• Plasminogen activators were among the first therapeutics anchored to the RBC 

surface in a biocompatible fashion providing improved fibrinolytic interventions 

in animal models.

Targeting therapeutic agents to circulating RBC

• Initial attempts to targeting circulating RBC involved anchoring to complement 

receptor 1 (CR1).

• Anti-CR1 conjugates have been used to capture bacterial and viral pathogens, as 

well as pathogenic antibodies.
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• Anti-CR1/pathogen complexes can be eliminated by the immune system without 

damage to the carrier RBC.

• Advances in recombinant protein engineering have enabled design of 

monovalent antibody fusions lacking Fc domains that avoid Fc mediated side 

effects and unintended cross-linking of RBC targets.

• Engineered single chain variable fragment (scFv) fusions have been used to 

restore CR1 on CR1 deficient RBCs, deliver complement protective proteins, 

deliver anti-thrombotic plasminogen activators and deliver multi-faceted agents 

such as thrombomodulin.

• Coupling to RBC may modulate immunogenicity and confer immunologic 

tolerance to certain antigenic cargoes.

Choosing target binding sites on carrier RBCs

• The field of transfusion medicine has provided a wealth of information on RBC 

antigens, their prevalence and function.

• Ideal RBC surface targets should be conserved across the population.

• Potential coupling sites include Rh proteins, band 3, Kell, glycophorins, 

GLUT1, and other high-frequency epitopes.

• Modification of RBC as ‘universal donor’ cells.

• Immunologic reactions to allogenic red blood cells is a challenge in transfusion 

medicine.

• Transfused RBC units are typically matched for ABO antigens because these 

antibodies are naturally occurring, as well as RhD due to its immunogenicity 

and association with hydrops fetalis and hemolytic disease of the newborn.

• In chronically transfused patients, alloantibody responses often limit available 

compatible donor RBC units.

• Extended matching protocols are difficult to implement in part due to the limited 

donor RBC supply.

• Several strategies have been devised to minimize alloantibody responses and 

improve biocompatibility including enzymatic modification of allogenic 

epitopes on the RBC surface and grafting of hydrophilic polymers for immune 

‘camouflaging’ and rheological modulations.

New horizons: molecular engineering of affinity ligands for RBC targeting

• Clinically translatable RBC-targeted ligands should be human in origin, or 

humanized, to minimize immunological issues.

• Bacteriophages (typically M13) can be used to ‘display’ foreign proteins on 

their surface by fusion to viral coat proteins (typically pIII).

• Phage display has enabled physical linking of an exogenous protein with the 

DNA required for its replication.
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• It is possible to create ‘libraries’ of phage particles from populations of 

peripheral blood B cells by using PCR to amplify their immunoglobulin heavy 

chain and light chain cDNA.

• Phage libraries can be selected or ‘panned’ on intact RBC to obtain cell-surface 

binding, antigen-specific, phage-displayed antibodies, including engineered 

derivatives (such as scFv) and peptides.

• There are practical and ethical barriers to preparation of phage libraries from 

donors alloimmunized to high-frequency antigens.

• Phage display can be used to prepare (and affinity mature) libraries from naive 

donors, as well as from immunized non-human primates.

• Phage display can be used to convert mouse monoclonal antibodies to human-

like antibodies.

Conclusion

• Drug delivery by coupling to erythrocytes is an attractive alternative to internal 

drug loading.

• Coupling drugs to affinity ligands by genetic fusion is likely to benefit from 

advantages of phage display and other evolving technologies.

• RBC carriage alters pharmacokinetics, biodistribution and other features of 

drugs that are likely to fundamentally alter their mechanism of action.

Future perspectives

• Progress in coupling several classes of drugs to erythrocytes is likely to see 

clinical translation in the next decade.

• Genetic methods to engineer cellular therapies promises to further broaden the 

scope of erythrocyte mediated drug delivery.
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Figure 1. Strategies for drug delivery by red blood cells
Two approaches involve isolation of RBC (either from patient’s autologous blood or from a 

donor blood), followed by drug loading using encapsulation or surface conjugation and 

injection of RBC-drug complex in the bloodstream (A & B). In the third approach (C), drug 

loading can be performed either in vivo by injecting the RBC-targeted drugs in bloodstream 

(thereby providing a homogenous loading on circulating RBC), or in vitro as a one-step 

modification of strategy B.

RBC: Red blood cell; QC: Quality control.
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Figure 2. Organization of protein complexes associated with the red blood cell membrane
Multiprotein complexes within the RBC membrane produce a network of vertical linkages 

with the phospholipid bilayer and the underlying spectrin network, and horizontal linkages 

between ankyrin and junction complexes.
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Figure 3. Morphologic features of normal red blood cells and congenital red blood cell defects
Images demonstrate the peripheral blood smear from a (A) normal patient, and a (B) patient 

with hereditary elliptocytosis. Arrowheads highlight cells with characteristic morphologic 

defects.
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Figure 4. Protective mechanisms in the red blood cell membrane
(A) CD59 inhibits C9 multimerization and formation of the membrane attack complex by 

binding to nascent C5b-C8 complexes; (B) DAF inhibits early complement pathways by 

displacing C2a and Bb from C4b and C3b, respectively; (C) CD47 inhibits phagocytosis by 

macrophages through interaction with SIRPA and downstream upregulation of tyrosine 

phosphatase activity; (D) bone marrow aspirate from a patient with a hemophagocytic 

syndrome demonstrating engulfment of multiple erythrocytes (arrowheads) by a 

macrophage.

RBC: Red blood cell.
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Figure 5. Approaches to ‘painting’ of red blood cells with protective complement regulatory 
proteins
(A) Normal RBCs expresses complement-regulatory proteins including decay accelerating 

factor (DAF) and CD59 which are tethered to the RBC lipid bilayer of the cell membrane by 

a Glycosylphosphatidylinositol (GPI) anchor.

The presence of both DAF and CD59 protects the cells from homologous complement-

mediated lysis. (B) Paroxysmal nocturnal hemoglobinuria RBCs are more vulnerable to 

complement mediated lysis due to a reduction or complete absence of GPI-anchored DAF 

and CD59. Continuous complement activation leads to the formation of membrane attacking 

complex which forms pores in the RBC membrane, allowing extracellular fluid to the enter, 

resulting in the swelling and ultimately rupture of the RBC. (C) RBC ‘painting’ is a method 

of incorporating proteins such as DAF and CD59 via GPI anchors into the membrane, 

decreasing the RBC sensitivity towards complement-mediated lysis.
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Figure 6. A concept of prophylactic fibrinolysis by tissue-type PA targeting to red blood cells
(A) Plasminogen activators (dots) are relatively ineffective clinically, in part due to rapid 

inactivation uptake by liver, requirement for high blood levels which predispose to bleeding 

through indiscriminate lysis of hemostatic mural clots, vascular side effects (e.g., activation 

of receptors on endothelial cells, EC) and injurious effects of tPA diffusing into the CNS. 

(B) Coupling to RBC (such as by engineered protein targeting ligands) dramatically 

prolongs the intravascular longevity of RBC/tPA variant. RBC/tPA will restrain tPA binding 

to cellular receptors, and restrict its access into mural hemostatic clots and the CNS. 

Propulsion of RBC towards the mainstream will further offset interactions of the prodrug 

with hemostatic clots and vessel walls. RBC/tPA will not restrict access to the interior of 

nascent pathological thrombi, which leads to lysis of nascent pathological intravascular clots 

while hemostatic clots remain impervious.

EC: Endothelial cell; RBC: Red blood cell.
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Figure 7. Strategies for targeting red blood cells via CR1
(A) RBCs can be used to clear immune complexes by way of the interaction between 

complement protein C3b and CR1. (B) Bispecific antibodies to CR1 and pathogens can be 

used to capture pathogens via the RBC surface. (C) Antibody/drug fusions targeted to CR1 

can be used to attach therapeutic moieties directly to the RBC surface.

RES: Reticuloendothelial system.
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Figure 8. Creation and selection of antibody phage display libraries
(A) Cartoon depicting a prototypical IgG immunoglobulin and corresponding antibody-

displaying filamentous phage particle. IgG comprises a heavy chain variable region (VH) 

and 3 constant region domains (CH1, CH2 and CH3). The IgG light chain comprises a 

variable region (VL) and one constant region domain (CL). An Fv fragment is defined as the 

combination of heavy and light chain variable regions only (VH + VL). For simplicity in 

recombinant expression of Fv fragments, the VH and VL domains can be expressed as a 

single polypeptide separated by a short flexible glycine/serine-rich linker referred to as a 

single-chain Fv (scFv). Arrows on the IgG variable region represent the positions of forward 

and reverse polymerase chain reaction primers that are used to amplify the heavy and light 

chain gene segments. A second PCR step links the VH and VL into one genetic construct 

that can ligated into a phagemid expression vector that appends the gene for the phage pIII 

coat protein to the carboxy terminus of the scFv as depicted on the phage particle. (B) 
Cartoon depicting the construction of an antibody phage display library from a pool of B 

lymphocytes. Phage particles each express an scFv on their surface that is encoded by the 

DNA contained within the particle. Arrows indicate a potential correspondence between a 

particular B cell and a phage particle displaying that B cell’s immunoglobulin. (C) 
Schematic representation of phage panning procedure in which an aliquot of phage library is 

incubated with immobilized antigen and adsorbed phage are eluted and amplified in 

bacterial culture (see text for details).
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Figure 9. Red blood cell targeting by fusion proteins
Schematic of RBC drug delivery using engineered antibody/drug fusions and representative 

illustrations of the expected effect on: (A) blood level, (B) distribution within the blood and 

(C) therapeutic efficacy over time.

EC: Endothelial cell; PBS: Phosphate buffered saline; RBC: Red blood cell; RES: 

Reticuloendothelial system.
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Figure 10. Selecting anti-red blood cell antibodies from phage display libraries
(A) Red cell-specific phage can be isolated by panning on intact cells. To obtain phage 

antibodies to common red cell determinants, sequential rounds of panning each with a 

different donor source of red cells can be performed. (B) Colorized transmission electron 

micrograph of anti-red cell Rh-expressing phage particles (white filaments) bound to the 

surface of a human Rh-positive red cell. Binding occurs at the tips of the phage particles 

where the scFv/pIII fusion protein is located. Original magnification × 44,000. Bar, 0.2 μm. 

Adapted with permission from [292].
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Figure 11. 
Overview of antibody phage display technology for the isolation of scFv immunoglobulin 

fragments.
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