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Abstract

Major depressive disorder (MDD) is a common psychiatric disorder effecting approximately 121 

million people worldwide and recent reports from the World Health Organization (WHO) suggest 

that it will be the leading contributor to the global burden of diseases. At present the most 

commonly used treatment strategies are still based on the monoamine hypothesis that has been the 

predominant theory in the last 60 years. Clinical observations that only a subset of depressed 

patients exhibits full remission when treated with classical monoamine-based antidepressants 

together with the fact that patients exhibit multiple symptoms suggest that the pathophysiology 

leading to mood disorders may differ between patients. Accumulating evidence indicates that 

depression is a neural circuit disorder and that onset of depression may be located at different 

regions of the brain involving different transmitter systems and molecular mechanisms. This 

review synthesizes findings from rodent studies from which emerges a role for different, yet 

interconnected, molecular systems and associated neural circuits to the etiology of depression.
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Introduction

Major depressive disorders (MDD) are projected to become the leading contributor to the 

global burden of disease according to the world health organization (WHO) and other 

studies [1–3]. There have been dramatic advances in the treatments for various diseases that 

target the immune and cardiovascular systems. In comparison treatments for depressive 

disorders, predominantly based on the monoamine hypothesis, still relies on approaches 

developed over 60 years ago [4, 5]. Depression is a diverse and complex mental illness with 
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different antecedent causes and manifestation of symptoms. The major drawback of classical 

antidepressant treatment is that less than 50% of patients respond positively to current 

antidepressant medications and of those that do respond, alleviation of depressive symptoms 

can take weeks or months [6, 7]. The limited understanding of the neural circuitry and 

molecular mechanisms involved in depression is one of the key reasons for the lack of more 

effective treatments. Recent groundbreaking studies showing rapid alleviation of depression 

with deep brain stimulation (DBS) strongly suggests that depression is a neural circuit 

disorder [8–11]. Advances in molecular studies have highlighted the role of specific 

molecular signaling and epigenetic changes and the associated modifications in neuronal 

development of depression [12–17]. It is likely that these differential molecular and 

functional responses in various brain regions may be responsible for the wide spectrum of 

symptoms observed in depressive patients.

Studies in depression have benefited from the availability of differing technical approaches 

enabling researchers to investigate molecular changes at the level of the single cell while 

others take a more expansive systems level approach to investigate functional changes at the 

level of the neural circuit. In this review article, we try to highlight the major points in order 

to give the reader a flavour of the current standings in different aspects of research in 

depression. Since various biological processes effect different systems such that for example 

molecular changes can then lead to changes in neural circuit activity it will be evident that 

description of certain process will overlap with other sections within the review. We begin 

this review by first describing evidence for molecular changes linked to depression followed 

by genetic modifications and associated neurogenesis leading to structural changes 

associated with depression-related synaptic plasticity. We then focus on the more expansive 

studies showing evidence for the role of the immune system in depression followed by 

findings from systems level approaches describing functional changes of the neural circuit in 

depression. Finally we further emphasize functional circuit level complexity of depression 

by describing the role of two distinct regions of the brain’s circadian and sleep/wake centers, 

in depression.

Molecular Signaling

Brain-derived neurotrophic factor (BDNF) has numerous functions in the developing and 

mature brain [18, 19]. Among these is signaling within the mesolimbic brain reward center, 

Ventral Tegmental Area - Nucleus Accumbens (VTA-NAc) dopaminergic circuit, in 

encoding for depression related behaviour. For example conditional deletion of BDNF 

expression in the VTA, but not NAc, prevents the development of social defeat stress-

induced behavioural abnormality [12, 20]. Furthermore, evidence suggests that the increase 

in BDNF signaling in the VTA-NAc circuit is stress-context dependent since the phasic 

activity of VTA-NAc dopamine neurons leads to increased BDNF levels in the NAc of 

social stress experienced, but not stress naïve, mice [21]. In the NAc the stress induced 

neuropeptide corticortrophin-releasing factor (CRF) is functional at both the pre- and post-

synaptic terminals [22], and increased CRF signaling in the NAc increases motivation for 

cued rewards [23]. It is hypothesized that stress-induced CRF gates BDNF signaling in the 

NAc [21]. In this model, CRF signaling in NAc activates its receptors located 

presynaptically on VTA DA neurons and works together with arriving phasic spikes from 
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these DA neurons to release BDNF unto medium spiny neurons (MSNs) in the NAc. In 

addition to the NAc, exposure to stress increases BDNF levels in the amygdala in a time 

dependent manner [24, 25]. BDNF mRNA levels were shown to be increased in the BLA 

and CEA, but not Medial amygdala, 2hr following stress exposure while 24hrs post-stress 

exposure BDNF levels were shown to be reduced [24, 26, 27]. In contrast decreased BDNF 

levels were found in the postmortem amygdala of female subjects with MDD [28]. The 

differential temporal expression of BDNF mRNA expression indicates that stress-induced 

changes in BDNF expression are transient in the amygdala. Consistent evidence supports the 

notion that the role of BDNF in mood disorders various between different brain regions. For 

example, elevated NAc BDNF increases the depressive phenotype, while findings from the 

hippocampus and PFC indicate increased BDNF levels reverses the depressive phenotype. 

In humans studies lower levels of BDNF were found in the hippocampus and PFC of subject 

who had committed suicide while levels were elevated in patients treated with 

antidepressants [29–32]. Recent studies further confirmed that chronic antidepressant 

treatment increases BDNF and TRKb receptor mRNA expression in the hippocampus [33]. 

In contrast post-mortem analysis of depressed patients found higher levels of BNDF in the 

NAc [12]. Though the mechanism of how antidepressant treatment increases BDNF-TRKb 

expression is unknown a possible mechanism may involve increased monoaminergic 

transmission [33, 34]. Findings that antidepressants induced increases in BDNF overlaps 

closely with increases in both CREB mRNA expression and cREB-phosphorylation state 

within the hippocampus have led to the suggestion that CREB may contribute to the 

antidepressant-induced increase in BDNF expression [33]. The mechanisms of action of 

BDNF in the context of depression in these various brain regions are still unclear. The 

differential interaction of pre- and post-synaptic BNDF-TRKB pathway with various intra 

and extracellular signaling systems such as second messenger pathways (including 

phospholipase Cγ, PI3K and MAPK/ERK pathways), inflammatory cytokines, excitatory 

glutamatergic neurotransmitters and stress hormones could in part result in the contrasting 

observations of BDNF levels in the different regions of the brains in relation to depression 

[35].

Previous studies have implicated changes in levels of the intracellular signaling molecule 

calcium/calmodulin-dependent protein kinase II (CaMKII) following stress and 

antidepressant responses [36–38]. βCaMKII is known to regulate activity of various 

intracellular pathways and channels that regulate neuronal activity [39]. The lateral habenula 

(LHb) is an evolutionary conserved nucleus that integrates inputs from various limbic 

forebrain and motor systems involved in regulating motivational behaviours [40]. 

Furthermore, aberration in LHb function has been implicated in depression [41–43]. Recent 

evidence has shown that stress-induced increased activity of LHB neurons is the result of 

up-regulation of βCaMKII activity leading to increased membrane insertion of the excitatory 

glutamate receptor GluR1 [44]. In contrast, treatment with antidepressants down regulated 

CaMKII expression in the LHb [44].

Clinical studies consistently demonstrate that a single sub-psychotomimetic dose of 

Ketamine, an ionotropic glutamatergic NMDAR (N-methyl-D-aspartate receptor) 

antagonist, produces rapidly acting antidepressant responses in patients suffering from 

depression [45–47]. Ketamine and other NMDAR antagonists together with metabotropic 
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GluR2/3 receptor antagonists also produce rapid antidepressant-like effects in mouse 

behaviour [48–50]. Measuring the degree of immobility, a measure of helplessness 

associated with the depressive phenotype, in the forced swim test (FST) paradigm, NMDAR 

antagonist ketamine, CPP and MK-801 were shown to alleviate depressive behaviour within 

30 mins of drug administration [48]. The antidepressant effects of ketamine lasted 24 hrs 

post administration, much longer than its 2 hrs half-life, indicating that ketamine induces 

longer-term changes. In line with its putative role in inducing longer-term plastic changes, 

administration of ketamine increased BDNF levels in the hippocampus [48]. How is it that 

blocking excitatory NMDAR activity elicits plasticity in the hippocampus? Prior work had 

demonstrated that NMDAR block maintains eukaryotic elongation factor (eEF2) in the 

dephosphorylated (active) state [13]. Mechanistically, ketamine blockade of NMDA 

receptors deactivates CaMKII (also known as eukaryotic elongation factor 2 kinase - eEF2k) 

activity and the subsequent decrease in phosphorylation of eEF2 leads to rapid hippocampal 

BDNF synthesis by removal of baseline phosphorylated-eEF2 suppression of BDNF 

synthesis [48, 51, 52]. The antidepressant actions of ketamine are blocked by pretreatment 

with glutamate-AMPA receptor antagonist [53]. Detailed analysis showed that acute 

suppression of NMDA receptor mediated spontaneous neurotransmitter release leads to 

rapid BDNF protein synthesis resulting in increased AMPA receptors surface expression and 

subsequent increases in potentiation of synaptic responses in the hippocampus [52]. 

Activation of NMDA receptors is believed to regulate mTOR activity via a variety of 

putative intracellular signaling mechanisms such as the phosphatidylinositol 3 kinase – AKT 

(PI3K-AKT) and calcineurin pathways [54–56]. The mammalian target of rapamycin 

(mTOR) signaling pathway is a serine/threonine kinase, that regulates the initiation of 

protein translation, is expressed in dendritic development that controls new protein synthesis 

[57, 58]. Changes in activity of various signaling processes such as BDNF, NMDA and their 

downstream target mTOR are possible mechanisms that underlie changes in synaptic 

plasticity leading to depression [59]. For example, changes in homeostatic plasticity in 

regions such as the PFC are putatively linked in part to aberrations in mTOR signaling, 

which has been hypothesized to lead to the expression of the depressive phenotype [59]. 

Convergent evidence over the past 20 years indicates that prolonged stress leads to overall 

neuronal atrophy and synaptic depression in the PFC and hippocampus [59–62] while 

regions such as the amygdala and NAc exhibit changes consistent with neuronal 

hypertrophy and synaptic potentiation [59, 63, 64]. Why stress induces opposing effects in 

different brain regions is still unclear and much more work is required to delineate these 

molecular differences. Some of the pathways involving stress-induced changes in BDNF 

and NMDA-mTOR signaling have been better studied in the PFC. For example synaptic 

deficits in the PFC following stress has been shown to be precipitated by a initial increase in 

glutamate release and reduced glutamate uptake leading to increased glutamate 

excitotoxicity precipitating in neuronal atrophy through dendritic retraction, reduced 

dendritic arborization, decreased spine density and reduced synaptic strength [59]. 

Emergence of such synaptic dysconnectivity can potentially lead to the reduction of 

neurotrophic factors such as BDNF and the overall decrease in NMDA signaling and the 

inhibition of mTOR signaling that subsequently leads to the expression of depressive-like 

behaviour [59, 65, 66]. This putative mechanism by which stress induces synaptic changes 

in the PFC highlights the significance of cortical mTOR signaling underlying ketamine-
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mediated antidepressant responses [67, 68]. Thus, at the micro-circuit synaptic level, a 

possible mechanism, by which Ketamine-induced NMDA blockade can reverse depressive 

behaviours may initially involve inhibition of pre-synaptic NMDA receptors at GABAergic 

interneurons leading to decreased inhibitory tone and subsequent net increase in 

glutamatergic surge; while inhibition of, excitotoxic, extrasynaptic NMDA receptors on the 

post-synaptic neurons increases cell survival. Furthermore, increased net glutamatergic 

surge leads to increased postsynaptic AMPA receptors activation of neuroplasticity-related 

signaling pathways involving BDNF and mTOR, resulting in overall synaptogenesis and 

synaptic potentiation [48, 59, 68, 69]. The complex interactions between various pathways is 

evidenced by findings that activation of L-type voltage sensitive calcium channels (VSCC) 

resulted in AMPA receptor stimulation leading to mTOR pathway activation [70]. In line 

with this, pretreatment with L-type VSCC antagonist blocked the antidepressant effects of 

ketamine[71]. Thus a possible mechanism by which ketamine induces antidepressant effects 

may involve activation of both L-type VSCC and AMPA receptors subsequently leading to 

downstream activation of the mTOR pathway.

The neuroendocrine system consisting of the hypothalamic-pituitary-adrenal axis (HPA 

axis) controls reactions to stress and is involved in homeostatic regulation of processes such 

as digestion, immune system, mood and emotions, energy storage and expenditure. The 

HPA-axis plays a pivotal role in regulating physiological responses induced by stress events 

where its activation prepares the body for the fight/flight response. Depression and anxiety 

disorders are often characterized by altered HPA-axis [72–74]. During periods of stress the 

HPA axis releases cortocotrophin-releasing hormone (CRH) from the hypothalamus, which 

stimulates adrenocorticotropin (ACTH) hormone secretion from the anterior pituitary, which 

then stimulates secretion of cortisol and other glucocorcoticoids from the adrenal cortex. 

Chronic, but not acute, chronic upredictable stress paradigm induced impairment in adrenal 

medullary function as measured by robust decreases in numerous proteins such as 

catelcholamines, and SNARE proteins [75]. Increased cortisol concentration in plasma, 

urine and cerebrospinal fluid, and exaggerated cortisol response to ACTH has been reported 

in MDD patients [76–79]. Furthermore, increased levels of CRH have been found in 

cerebrospinal fluid, locus corealus and PFC of depressed and suicide patients [79–83]. 

Animal studies strongly corroborate the role of the HPA axis in depression where early life 

stressors such as maternal separation induce increased CHR mRNA expression in 

hypothalamic, paraventricular nucleus, central nucleus of the amygdala, bed nucleus of the 

stria terminalis and locus coereleus [84]. Direct ACTH administration increased both the 

serum cortisol levels and the depressive phenotype as measured by the forced swim test and 

latency to feed in a novelty suppressed feeding test [85]. Furthermore, ACTH administration 

decreased hippocampal BDNF levels, evidence that correlates well with observations of 

decreased BDNF levels in the hippocampus of animals expressing the depressed phenotype. 

As will be discussed later mood disorders are associated with disruptions in homeostatic 

plasticity and associated with this recent data suggest that stress changes neural connections. 

Chronic stress reduces spine density in hippocampus, mPFC, medial amygdala, while in the 

basolateral amygdala spine density was increased [86, 87]. Glucocorticoids exert both direct 

and non-direct genomic effects that can regulate intracellular signaling and synaptic 

plasticity [87]. Acute cortisol challenges given to stress naïve or chronically stressed rats 

Chaudhury et al. Page 5

Cell Mol Life Sci. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



revealed highly differential gene profiles depending on the stress history of the animals, 

where 200 of the genes altered by cortisol was similar in both groups of rats, however 500 

genes were differentially altered following chronic stress [87, 88]. These findings would 

indicate that though the brain is able recover following exposure to acute stress, stress 

history leads to changes that alter future molecular reactivity to subsequent stress that may 

increase susceptibility to depression. Recent findings have shown that the levels of 

presynaptic auto-inhibitory mGluR2 receptors are decreased in stress susceptible mice and 

that the antidepressant acetyl-L-carnitine, via epigenetic mechanisms, induces expression of 

presynaptic mGluR2 receptors leading then to the normalization of glutamate transmission 

and the subsequent reversal of the depressive phenotype [89]. A recent follow up study 

showed differences in mGluR2 expression following CUS exposure where hippocampal 

mGluR2 expression was decreased only in stress susceptible mice while PFC mGluR2 

expression was decreased in both stress resilient and stress susceptible mice [90]. In 

addition, evidence for the differential effects of stress duration was observed where mice 

exposed to acute stress still exhibited decreased hippocampal mGluR2 expression but no 

effect was observed in the PFC [90]. Furthermore, mineralcorticoid receptor, but not 

glucocorticoid, levels in the hippocampus were lower in stress resilient mice while there was 

no difference in the PFC [90]. Using pharmacological manipulation findings the authors 

postulate that glucocorticoid activation regulates mGLuR2 expression via mineralcorticoid 

receptor activation [90]. The differential molecular response in mGlu2 expression in stress 

resilient and susceptible mice further highlights the complex responses to stressors in 

varying regions of the brain. Furthermore, a better understanding of the interaction within 

the neuroendocrine system in stress will help elucidate novel therapeutic targets for 

antidepressant treatment. The complexity of biochemical cross-talk at the molecular level 

further highlights potential variability in the activation of signaling pathways activated in 

various brain regions and circuits and may also underlie the large variation in symptoms of 

depressive patients.

Epigenetic Mechanisms

Genetics alone does not account for MDD due to the high discordance rate (50%) observed 

in monozygotic twins [91]. Environmental factors, particularly exposure to stressful life 

events increases the likelihood of the onset of depression [92, 93]. However, most people 

exposed to environmental stress do not exhibit MDD [94]. This variability in vulnerability to 

environmental stress has lead to the hypothesis that epigenetic mechanisms may determine 

risk for depression throughout life [95]. Epigenetics is a molecular phenomenon describing 

heritable changes in gene expression that does not involve changes in DNA sequence [96]. 

Briefly, DNA wrapped around histone protein makes up the nucleosome - the unit of 

chromatin. Genes within tightly spaced nucleosomes are actively transcribed while genes 

within tightly packed nucleosomes are silenced. Complex post-translational processes such 

acetylation or methylation on histone tails lead to changes in nucleosome spacing that result 

in modulation of gene expression [97]. Histone acetylation, catalyzed by histone 

acetyltransferase (HATS) and reversed by histone deacetylase (HDACs), generally drives an 

open state of the chromatin resulting in increased gene expression. Histone methylation, 

catalyzed by histone methyltransferase (HMTs) and reversed by histone demethylase 
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(HDMs), can activate or reverse gene expression. In addition, DNA methylation, catalyzed 

by DNA methyltransferase (DNMTs) generally, but not always, drives gene repression. 

Post-translational modification of these acetylation and methylation are carried out by 

numerous “reader’ and ‘eraser’ proteins resulting in change of chromatin structure and gene 

transcription [96, 97]. Growing evidence supports the hypothesis that epigenetics is a 

mechanism by which exposure to environmental stimuli such as stress lead to changes in 

gene expression in vulnerable, genetically predisposed, individuals resulting in MDD. One 

of the earliest studies to report epigenetic modifications in an animal model of depression 

demonstrated transient decrease followed by persistent increase of histone acetylation in the 

NAc following chronic social defeat (CSD) stress [98]. Furthermore, direct infusion of 

HDAC inhibitors reversed the depressive phenotype in previously depressive mice [98]. 

More recently, conditional inhibition of HDAC2 function in the NAc induced the stress-

resilient phenotype in mice exposed to chronic stress [99]. Conversely, decreasing HDAC5 

function lead to a stronger expression of depressive-like behavior following CSD stress 

[100]. In contrast, HDAC5 expression was significantly elevated in the hippocampus of rats 

following chronic mild stress [101]. Epigenetic changes exhibit differing temporal dynamics 

in different brain regions following exposure to CSD stress. For example, in the 

hippocampus of stress-susceptible mice histone acetylation is initially increased followed by 

a persistent decrease [102] while in the NAc increased histone acetylation was observed 

[100]. Levels of histone methyltransferase G9a, GLP and SUV39h1 was decreased in the 

NAc of mice susceptible to CSD stress, while in resilient mice the levels were increased 

[103]. Furthermore, overexpression of G9a in the NAc exerted antidepressant-like 

behaviours, whereas knockdown of G9a induced pro-depressant-like effects [103]. A more 

recent study using engineered transcription factors (zinc finger proteins - ZFP) to site 

selectively remodel chromatin found that ZFP-induced enrichment of H3K9me2 at fosb gene 

in the NAc reduced both fosb/delta fosb expression and also induced anxiety and depressive-

like behaviours following subthreshold social defeat stress [104]. Classical antidepressant 

medications, such as selective serotonin reuptake inhibitor (SSRI), imipramine was shown to 

increase NMDA receptor 2B (NR2B) subunit expression via mechanisms involving 

increased histone acetylation on the NR2B promoters and decreased activity of HDAC 

[105]. As mentioned previously expression of neurotropic factor BDNF is implicated in 

animal models of depression [12, 20]. Recent clinical studies have extended these findings 

in the context of epigenetics where patients with MDD exhibited increased levels of 

methylation on the BDNF promoter while treatments with antidepressant decreased BDNF 

promoter methylation [106]. Furthermore, it has been suggested that DNA methylation of 

BDNF in the peripheral blood can be used as a biomarker of epigenetic changes in the brain 

of patients susceptible to depression [107]. It is likely that these differential epigenetic 

responses in various brain regions may be responsible for the wide spectrum of symptoms 

observed in depressive patients.

Exposure to early life stress and subsequent epigenetic programming in the brain is 

hypothesized to be a potential cause of MDD later in life [108]. Postnatal adversity 

following maternal separation in rodents has been shown to lead to broad changes in histone 

modifying enzymes and to post-translational histone modifications. Rodents exposed to 

maternal separation display reduced levels of HDAC mRNA in the PFC [109] while some 
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studies revealed elevated levels of histone acetylation [110, 111]. In addition, early life 

stress following maternal separation induces epigenetic changes in DNA methylation within 

the hypothalamus, a brain region associated with motivated behaviours [112]. Exposure to 

stressors prior to birth can also induce epigenetic changes potentially leading to the 

development of depression later in life. For example, significant differences in DNA 

methylation were observed in neonate umbilical cord blood sample taken from mothers 

suffering from depression and anxiety disorders [113]. Earlier studies had shown that early 

life experiences could have either beneficial or negative consequences to stress susceptibility 

in later life. For example postnatal handling of young rodents decreased both stress 

reactivity and associated basal stress hormone levels in adulthood while maternal separation 

resulted in increased stress reactivity [114]. In addition to epigenetic changes associated 

with early life stress, there is growing literature suggesting that early life stress increases 

vulnerability in offspring’s of these animals to stress [114, 115]. Furthermore transmission 

of susceptibility of stress and mood disorders has been observed in human subjects, where 

for example maternal, but not paternal, exposure to PTSD resulted in increased risk of PTSD 

in children of holocaust survivors [116]. Early animals studies of stress transmission had 

demonstrated that variation in maternal care served as a basis for a nongenomic behavioural 

transmission of individual differences in stress susceptibility across several generations 

[114, 115]. For instance when biological offspring’s of mothers (dams) who exhibited low 

maternal caring behavior were placed under the care of dams that exhibited high maternal 

caring behavior these offsprings exhibited significantly less fearful responses to novelty than 

the offspring’s of dams who exhibited high maternal caring behavior that had been 

subsequently placed under the care of dams exhibiting low maternal caring behaviour [114, 

115]. Furthermore early life experience of maternal care was shown to induce differential 

expression of receptors associated with stress sensitivity, such as glucorcoticoid, 

benzodiazepine and cortocortrophine-releasing factor (CRF) receptor mRNA [115]. A recent 

study had demonstrated transmission of stress vulnerability via epigenetic mechanisms by 

changes in the germ cells that subsequently influence the behavior of the offsprings for 3 

generation in a gender dependent manner [117]. In addition to increased expression of the 

anxiety and depressive phenotype in mice that had undergone early life stress, epigenetic 

changes such as DNA methylation of several candidate genes associated with depression 

were found in the sperm germ line of these mice [117]. Strikingly, the study showed similar 

changes in DNA methylation in the brains of the female progeny that also exhibited both 

anxiety and depressive phenotypes [117]. These findings are extremely interesting as it 

demonstrates a potential mechanism by which stressful environmental factors can alter DNA 

methylation in the germline and that these alterations can be partly maintained across 

generations. The story, however, appears to be far more complex and subtle. In a study 

where mice had undergone CSD, offsprings, following natural breeding, of both stress-

susceptible and stress-resilient mice were equally more vulnerable to stress [118]. 

Furthermore, male offsprings of fathers who had undergone CSD also exhibited significant 

disturbances in neuroendocrine signaling, specifically corticosterone and vestibular 

endothelial growth factor (VGEF), pathways previously shown to be associated with 

depressive-like phenotypes [119–121]. Since offspring’s of males that had undergone CSD 

stress exposure were more vulnerable to stress in vitro fertilization (IVF) experiments were 

performed in order to investigate whether the behavioural phenotype was directly 
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transmissible through the sperm of the defeated mice. Sperm from defeated mice were used 

to impregnate normal female mice and the subsequent offspring’s were put through a battery 

of behavioural measures of depression and anxiety. Mice derived from IVF from defeated 

fathers did not exhibit robust anxiety or depressive-phenotypes on most measures except for 

the forced swim test paradigm [118]. Findings from this study, together with observations 

that female rodents are able to adjust their reproductive investments depending on their 

interaction with the male, the authors concluded that the bulk of the vulnerabilities to stress 

are passed onto subsequent generations through behavioural mechanisms, possibly on the 

basis of the female detecting that she had procreated with an impaired male [118]. Since 

only FST was significantly different in IVF derived mice [118] together with previous 

findings that epigenetic changes in DNA methylation was observed moderately in 

offspring’s of stress vulnerable mice [117] could suggest that each gene possibly contributes 

to a small part of the behavioural phenotype and that these subtle differences were not 

robustly transmitted during IVF in the CSD paradigm.

In general, the evidence thus far suggests that global histone acetylation is pro-adaptive in 

response to stress and depression while aspects of histone methylation are pro-depressant. 

Evidence linking early life stress with biological changes bridges the field of social and 

biological sciences and highlights the importance of developing a better social system for 

high-risk youths. Furthermore, advances in understanding epigenetic changes following 

stress exposure and possible mechanisms of transmission through the generations may lead 

to the potential development of specific tests to determine high-risk individuals and early 

treatment options.

Neurogenesis

The hypothesis that antidepressant medications might alleviate depression by increasing 

adult hippocampal neurogenesis [122] comes from observations that classical antidepressant 

therapy such as SSRIs take 3–4 weeks to have efficacy and that antidepressant treatment 

increases the numbers of adult-born neurons [123, 124], which take about 4 weeks to form 

synaptic connections [125]. Numerous chronic stressors such as repeated restraint stress, 

chronic unpredictable mild stress, social defeat stress, social isolation and corticosterone 

administration that induce depressive and anxiety-like behaviours all result in impaired adult 

hippocampal neurogenesis [126–130]. A recent study however did not find any evidence of 

hippocampal neurogenesis in mice following exposure to numerous stress-paradigms [131]. 

Since it is unclear in this study whether exposure to stressors induced depressive or anxiety-

like behaviours in the mice (as they did not check for this) it has been hypothesized that 

chronic stress impairs hippocampal neurogenesis only in those animals that exhibit 

depressive or anxiety-like behaviours [132]. Hypersecretion and sustained elevations of the 

stress hormone cortisol is neurotoxic [133]. Furthermore, elevation of cortisol suppresses 

BDNF, which in turn leads to neurodegeneration and contributes to symptoms of depression 

[134]. The neurotropic factor BDNF is involved in neurogenesis by regulating neuronal 

differentiation and growth [135, 136]. Human post-mortem studies have shown decreased 

BDNF levels in the hippocampus of depressed patients [30]. It is likely that the decreased 

hippocampal volume in depressed patients may be associated with decreased BDNF levels 

[137–139]. Antidepressants in animals have been shown to reverse cortisol- or stress-
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induced suppression of cell proliferation [140–142]. In addition the SSRI sertraline was 

recently shown to increase neurogenesis in hippocampal progenitor cell lines by increasing 

protein kinase A signaling, glucorcoticoid receptor phosphorylation and the subsequent 

activation of a specific subset of genes [143]. Regulation of glucocorticoid release following 

stress exposure serves numerous beneficial homeostatic functions while dysregulation of 

glucocorticoids is associated with cognitive and depressive disorders [86, 144]. Within the 

hippocampus, a region abundant in glucocorticoid receptors that is also functionally 

important in cognitive and emotional behavioural processes, stress and elevated 

glucocorticoid levels inhibits neurogenesis [145]. Further evidence for the link between 

neurogenesis and stress come from recent findings that conditional inhibition of 

hippocampal neurogenesis, in a transgenic mouse line, lead to significant elevation of 

glucocorticoid levels following exposure to acute stress [146]. Furthermore, behavioural 

analysis on transgenic mice lacking the ability for neurogenesis found that these mice 

exhibited both baseline depressive phenotypes and great susceptibility to stress when 

compared to wild-type controls [146]. Conversely, in experiments using an inducible 

transgenic mouse line in which adult neurogenesis could be increased demonstrated that 

these mice were resilient to chronic treatment with corticosterone, a mouse model of stress 

[147]. Neurogenesis may exhibit temporal characteristics in relation to depression. For 

example, immediately following exposure to CSD-stress, both stress-resilient and stress-

susceptible mice exhibited increased levels of stress hormone and concomitant transient 

decrease in hippocampal neurogenesis that was normalized within 24hrs [148]. Surprisingly, 

however, hippocampal neurogenesis was significantly elevated in stress-susceptible mice 4 

weeks post CSD [148]. Observations that ablation of hippocampal neurogenesis prior to 

CSD stress induced the stress-resilient phenotype strongly suggests that the compensatory 

enhancement of hippocampal neurogenesis is related to long-term individual differences in 

maladaptive stress responses [148]. The studies described above are interesting and point to 

a new avenue of research for treatments in mental disorder, however the evidence for the 

role of neurogenesis and depression is still unclear. For example, neurogenesis does not 

occur in a significant amount in the elderly, yet antidepressants have been shown to be 

effective in treating elderly depressed patients [149]. Thus, although numerous studies have 

shown that stress decreases neurogenesis it should be noted that various studies have also 

reported no correlation between stress and neurogenesis [131]. For example, at the cellular 

level administration of antidepressant SSRIs have shown to ‘demature’ older granule cells to 

more plastics functional states without actually promoting neurogenesis [150, 151]. 

Furthermore, there are reports of antidepressants at behaviourally active or clinically 

relevant doses that do not exert any effect on processes involving neurogenesis [131]. 

Though, it should be noted that these analysis were performed on non-stressed, and 

presumably, non-depressed, animals. Other behavioural studies have highlighted a mixed 

bag of results. For example, one report, suggested inescapable shock decreased neurogenesis 

only after the development of contextual fear association, thus strongly suggesting that the 

important factor in modulation neurogenesis is not stress or fear, but the emotionally 

charged learning [152]. However, another study using a similar paradigm did not find any 

changes in neurogenesis even after the occurrence of substantial learning [153]. Another 

important complication in the findings is that the majority of the experiments in 

neurogenesis, and depression as a whole, are performed on males. Experiments utilizing 
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both males and females have found vastly different results between the sexes [154, 155]. 

Overall the neurogenesis hypothesis of depression is supported by numerous studies 

however the existence of contradictory findings suggests that neurogenesis can be effected 

by stress and antidepressants under certain conditions but that these effects do not appear in 

all conditions of psychological stress, depression and antidepressant treatment [131]. It is 

clear that much more work is needed to clarify the role of neurogenesis and depression in 

different stress conditions and between the sexes.

Neural Circuits

Deep brain stimulation (DBS) is a well-accepted procedure for the treatment of movement 

disorders such as Parkinson’s disease [156]. Recent groundbreaking studies have shown that 

DBS, which involves delivery of focal electrical current to specific neural structures within 

the brain, rapidly alleviates symptoms of depression [9, 10]. The effectiveness of DBS in 

alleviating depression in patients when targeted at various brain regions suggests that 

depression is a neural circuit disorder [9, 157–161]. Figure 1 shows a representation of some 

of the regions of the brains and their connections that have been implicated in depression. 

DBS as a therapeutic option for treatment-resistant patients is based on the novel hypothesis 

that depression come about as a result of aberrations in communications between specific 

neural structures of the brain. Thus, focal neuromodulation with DBS is believed to ‘reset’ 

neural activity of aberrant circuits associated with depression. At present the mechanism by 

which the pathophysiology of neural circuits lead to depression is unclear. However, recent 

approaches combining animal models of depression together with electrophysiological, 

optogenetic and molecular analysis have begun to reveal a complex interplay between 

various neural circuits and cell types in encoding for depression [15, 162–168]. The 

mesolimbic dopaminergic pathway composed of dopaminergic (DA) neurons in the ventral 

tegmental area (VTA) and their projections to the nucleus accumbens (NAc) is crucial for 

the recognition of emotionally salient stimuli such as reward [169] and aversion [170]. In 

addition DA neurons of the VTA-NAc circuit play a key role in modulating depression-

related behaviours [6, 12, 18, 20, 21, 163, 168, 171, 172]. Earlier work has shown that the in 

vitro firing rate and in vivo phasic firing events of VTA DA neurons in the brain’s reward 

system is significantly increased in mice exhibiting the susceptible (depressed) phenotype 

following exposure to the chronic social defeat paradigm [12, 171, 173, 174]. Conversely in 

vivo recordings of rats susceptible to the learned helplessness paradigm exhibited decreased 

VTA DA neuron activity and that the antidepressant ketamine both rescued those rats 

previously susceptible to the learned helplessness paradigm and increased VTA DA activity 

[175]. Two recent optogenetic studies directly demonstrated the role of VTA DA neurons in 

depression [163, 168]. In one study optogenetic induction of phasic, but not tonic, firing of 

VTA DA neurons was shown to rapidly induce the susceptible phenotype in both control 

mice and resilient mice that had previously undergone a subthreshold social defeat paradigm 

and 10-day repeated social defeat stress, respectively [163]. Conversely, the second study 

showed the opposite effects where phasic activity of VTA DA neurons rescued stress-

induced depressive-like behaviour in mice that had undergone chronic mild stress [168]. The 

discrepancy between the two studies has been discussed [176, 177] and may highlight 

differential coding processes of VTA DA neurons for strong or weak stressful stimuli [166, 
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178], which is highly consistent with the fine context-detecting functions of VTA DA 

neurons [21]. It has recently been shown that rats put through a strong stressful paradigm 

(restrained stress) exhibited increased firing in the VTA while those through a weaker stress 

paradigm (mild inescapable stress) exhibited decreased activity [179]. A possible 

explanation for the differential coding for weak or strong stressors might lie in the existence 

of functionally distinct populations of VTA DA neurons. Those VTA DA neurons that 

exhibited decreased firing following weak stress exposure were located primarily in the 

medial and central portions of the VTA [179]. Furthermore, VTA DA neurons located in 

ventral VTA are excited by noxious footshock while dorsal VTA DA neural activity is 

inhibited [180]. Differential activity coding has also been demonstrated in mice exposed to 

the same stressor. VTA neurons projecting to the NAc (VTA-NAc) exhibit increased firing 

while those projecting to mPFC (VTA-mPFC) exhibit decreased firing in mice susceptible 

to social defeat stress [163]. Likewise, rapid induction of the depressed phenotype was 

observed by 1) optical induction of phasic activity in the VTA-NAc circuit and 2) optical 

inhibition of the VTA-mPFC circuit [163]. These projection specific DA neurons exhibit 

differing physiological properties. DA neurons projecting to NAc exhibit robust Ih currents 

(hyperpolarization-activated non-selective cation channel mediated currents) while DA 

neurons projecting to mPFC lack robust Ih currents [172, 181]. The degree of complexity of 

these circuits is evident by observations that subpopulations of VTA DA neurons receive 

synaptic inputs from different nuclei in the brain. For example, neurons from the 

laterodorsal tegmentum (LDTg) synapses primarily on VTA DA neurons projecting to the 

NAc while neurons from the lateral habenula (LHb) synapse either unto VTA DA neurons 

projecting to the mPFC or to GABAergic neurons in a portion of the VTA also known as the 

rostromedial tegmental nucleus – RMTg [182]. In addition, these circuits encode opposing 

behaviours where for example selective activation of LTD and LHb inputs to the VTA elicit 

reward and aversive behaviours respectively [182]. The LHb, a nuclei that integrates 

signaling from the basal frontal cortical areas and midbrain monoaminergic nuclei, has a 

functional role in motivated behaviours [183] and LHb neurons projecting specifically to the 

RMTg mediate behavioural avoidance [184]. Studies have shown increased activity of LHb 

neurons projecting to the VTA in mice exhibiting the depressed-phenotype following 

exposure to a learned helplessness model of depression [43] and to a chronic social defeat 

stress paradigm [185]. Furthermore, excitatory basal ganglia input to the LHb, that has been 

shown to encode aversive behaviour, is suppressed by serotonin [186]. This is interesting as 

it highlights a putative circuit that may be a target for classical monoaminergic uptake 

blocker antidepressants. The majority of neurons of the VTA are dopaminergic though a 

small percentage are glutamatergic and GABAergic [187]. The LHb is a key 

neuroanatomical regulator of midbrain reward circuits and increased activity of LHb 

projections to VTA is known to encode for depression [43, 185], it is likely therefore that 

aberration in the VTA-LHb-VTA loop may lead to depression-like behaviours. VTA DA 

neurons receive potent inhibitory inputs from the Ventral Pallidum (VP) and the basolateral 

amygdala, a region associated with stress and fear learning, sends excitatory glutamatergic 

inputs to the VP [188, 189]. As previously described in relation to stress, DA and 

depression, acute stressors activate the DA system (51) followed 24hrs later by potent 

attenuation of DA activity (16). A recent study had shown that the BLA-VP circuit mediates 

the decreased VTA DA neural activity in stress susceptible rats following exposure to CMS 
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[190]. Evidence for the role of the BLA-VP-VTA circuit in modulating depression-related 

behaviours comes findings showing a) The decreased VTA DA activity in CMS susceptible 

rats was restored by blockade of excitatory glutamatergic inputs to the VP, and b) 

pharmacological activation of BLA decreases VTA DA activity [190].

Disregulation in signaling of the monoamine neurotransmitter, serotonin, in depression has 

been known for the last 60 years with the accidently discovery that inhibitors of monoamine 

neurotransmitter breakdown alleviate depression. The dorsal raphe nucleus (DRN), the main 

source of the brains serotonin (5-HT), is implicated in the pathophysiology and therapeutics 

of mental disorders such as autism, anxiety and depression [191, 192]. The DRN has 

reciprocal projections with various regions of the brains involved in regulating emotions 

such as the LHb, hippocampus, hypothalamus, amygdala and cerebral cortex [191]. 

Furthermore, DRN, neurons are precisely regulated, both phasically and tonically, by 

glutamatergic and inhibitory GABAergic neural inputs from various regions implicated in 

mood disorders [193]. In line with the monoamine hypothesis of depression, 5-HT levels 

were decreased in mice exhibiting the depressed phenotype following chronic mild stress 

[194]. Furthermore, evidence suggests a close link between the LHb and DRN circuit in 

depression since lesion of the LHb alleviated symptoms of depression by increasing 5-HT 

levels [194]. The LHb and mPFC are critical regulators of DRN activity, where 

glutamatergic projections from these regions attenuate DRN activity via a feedforward 

inhibitory mechanism involving inhibitory interneurons [195–197]. Investigations into the 

micro-circuitry of DRN in encoding for depression showed increased excitability of 

GABAergic DRN neurons in mice susceptible, but not those resilient, to social defeat stress 

[198]. Furthermore, this study found associated decreases in 5-HT neuron activity in the 

DRN of susceptible, but not resilient mice, implicating that in the DRN, encoding for 

depression leads to increased GABA activity followed by the subsequent decrease in 5-HT 

neuron activity [198]. Follow-up studies showed a direct functional correlation between 

mPRC-DRN circuit activity and depression-related behaviours where optogenetic 

modulation of mPFC neurons projecting to DRN functionally increased DRN GABAergic 

interneuron activity and increased or decreased depressive-like behaviour in mice that 

undergone social defeat stress [197].

The locus coeruleus (LC), the major noradrenergic nuclei in the brain, is a vital component 

of the stress response. In rodents, stress increases LC activity [199] and treatments with 

antidepressants such as SSRIs, reduce LC activity, possibly via pre-synaptic autoreceptor 

activation [200]. Anatomically the LC has reciprocal connections with various regions of the 

brains also known to be associated with depression [201]. Significant increases in gene 

expression levels for NMDA and mGluR subunits were found in the LC of post-mortem 

depressed patients [16] supporting the notion that disrupted glutamatergic-noradrenergic 

interactions in the LC leads to depression. Electrophysiological measures of basal firing 

rates of LC neurons in the Wistar Kyoto (WKY) rat, a strain that exhibits depressive and 

anxiety-like behaviours, was shown to be significantly higher compared to the standard 

Wistar strain of rats [202]. In addition LC neurons from the WKY were found to be less 

responsive to the inhibitory effect of Alpha2-adrenoreceptor activation [203]. Furthermore, a 

role for LC dysfunction in depression comes from observations of robust glutamatergic 

projections from the PFC and LHb, two regions known to exhibit increased activity in 
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depression [43, 44, 204, 205]. Neural processing of fear learning has recently been shown to 

pass from the lateral hypothalamus to the amygdala via the LC [206]. This study 

demonstrated that orexin (hypocretin) fibers from the lateral hypothalamus directly 

depolarize LC neurons via rapid co-release of glutamate and orexin leading to activation of 

NMDA and orexin-1 receptors, respectively. Furthermore, orexin activation of LC neurons 

lead to increased noradrenergic signaling, via beta adrenergic receptor in the lateral nucleus 

of the amygdala leading to enhanced fear memory formation. Disregulation of this LH 

(orexinergic)-LC (noradrenergic)-amygdala circuit may be another possible mechanism by 

which depression occurs. Recently two populations of projection specific neurons were 

identified in the basolateral amygdala that encode for reward and aversion [207]. The 

authors demonstrate that basal lateral amygdala (BLA) neurons projecting to the NAc 

exhibit increased synaptic plasticity in mice following reward training while BLA neurons 

projecting to the central amygdala (CeM) exhibited increased synaptic plasticity in mice that 

had undergone fear conditioning [207]. This finding further extends the notions that distinct 

population of neurons exists within a nuclei encoding for opposing behavioural phenotypes, 

and that aberration in balance between neural circuits may lead to mental disorders such as 

depression. Exposure to stress has shown shifts in the balance of network inputs from 

cortical and thalamic to the BLA. For example activation of NE beta receptors following 

fear conditioned learning shift LA neurons respond more robustly to the faster acting 

thalamic input over slower cortical inputs [208]. The BLA receives inputs from the auditory 

thalamus and auditory association cortex where thalamic input encodes sensory information 

of the conditioned stimulus and the cortical pathway provides a more processed 

representation of the stimulus [209]. A recent neural circuit study extended the role of DA 

modulation in the BLA in putatively shifting network balances following exposure to stress. 

Specifically D2 receptor activation exhibited stronger net excitatory modulation of the 

auditory pathway and a stronger net inhibitory modulation of the cortical pathway [210]. 

The study of NE Beta and DA receptor modulation [208, 210] showing shifts in input 

towards subcortical pathways is believed to be an evolutionary advantageous fight-or-flight 

response in animals during acute stress while the slower cortical inputs, is involved in 

evaluating complex environmental stimulus [208, 209]. Thus in relation to the two 

dynamically different processing pathways it is hypothesized that chronic stress induces 

maladaptive changes in the brain [86] where for example repeated chronic stress could 

induce shifts in stronger inputs from cortical inputs where organisms become more 

ruminative instead of proactive, as is proposed to occur in depression [211].

Increasing evidence shows that the NAc, a region typically associated with reward-related 

behaviours, has a critical role in depression symptomology including reduced motivation 

and anhedonia [12, 14, 15, 20, 212, 213]. Medium spiny neurons (MSNs) of the NAc and 

dorsal striatum are enriched in D1 or D2 receptors and they send distinct projections to basal 

ganglia and reward structures. NAc D1-MSNs send projections to ventral pallidum, globus 

pallidum, VTA and substrantia nigra (SN), while NAc D2-MSNs send projections to ventral 

pallidum [214, 215]. These two neural populations work in concert to promote normal 

behaviour while imbalance in one sub-type can promote dysfunctional motivational states 

[216–219]. The network balance model demonstrates that activation of D1-MSNs leads to 

positive reward behaviour while activation of D2-MSNs leads to aversive behaviours [217, 
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220–222]. Exposure to chronic social defeat was shown to differentially induce expression 

of the transcription factor delta FosB in the NAc MSNs. Mice susceptible to CSD stress 

expressed elevation of delta FosB in D2-MSNs while those resilient to CSD stress expressed 

elevation of delta FosB in D1-MSNs [223]. Furthermore, anhedonia following restrained 

stress is mediated by decreased excitatory synaptic strength of NAc D1-, but not D2-MSNs 

[224]. These findings were further extended in a recent study where mice susceptible to 

CSD exhibited decreased excitatory synaptic inputs into D1, but not D2-MSNs and that 

chronic chemogenetic attenuation of D1-MSNs, but not D2-MSNs, activity induced 

depressive-like behaviours in mice previously resilient to CSD stress [164]. Furthermore 

repeated optogenetic activation of D2-MSNs induced depressive-like behaviour in mice 

exposed to a subthreshold social defeat paradigm [164]. These findings are exciting as it 

demonstrates: a) two distinct circuit mechanisms within the NAc encode for depressive-like 

behaviours; and b) changes in synaptic signaling in NAC MSNs circuit most likely requires 

long-term molecular changes in order for the expression of depression-like behaviours since 

chronic, but not acute, optogenetic and chemogenetic manipulations were required to induce 

susceptibility to stress. Analysis of immediate early gene expression as a measure of neural 

activity found that expression levels of Arc and Egr 1 were both decreased in the ventral 

hippocampus (vHIP) of mice resilient to CSD stress while Egr 1 expression was increased in 

mice resilient to CSD [225]. Furthermore, physiological measures showed differential 

circuit specific synaptic adaptations following CSD where, in resilient mice, vHIP affarents 

projecting to NAc exhibited decreased glutamate release while mPFC afferents projecting to 

NAc exhibited increased glutamate release [225]. The transcription factor delta FosB 

regulates transcription of numerous genes in the NAc [226, 227]. Two target genes of delta 

FosB, AMPA glutamate receptor subunit GluR2 and Sparc-like 1 (SC1) are upregulated in 

the NAc of mice resilient to CSD stress [212]. Furthermore, CHIPsec analysis showed 

significant binding of delta FosB on the GluR2 promoter and qPCR analysis revealed 

sustained GluR2 mRNA in NAc of resilient mice [212]. GluR2 subunit has profound effects 

on AMPA receptor function, where GluR2-lacking AMPA receptors are Ca2+-permeable 

and show greater receptor conductance and strong inward rectification, as compared to 

GluR2-containing receptors [228]. This switch to GluR2-lacking AMPA receptors increases 

neuronal excitability [229]. Electrophysiological measure showed decrease in both GluR2-

mediated currents and increased inward rectification in stress susceptible, but not stress 

resilient mice, further implicating increased excitability, in a subset of NAc neurons, 

encodes for depressive-like behavior [212]. Several brain regions that mediate aspects of 

motivated, goal-directed, behaviours such as the ventral subiculum of the hippocampus, 

amygdala and prefrontal cortex send overlapping projections to the NAc where these inputs 

are integrated under dopaminergic modulatory control [230]. Furthermore, systems level 

analysis has shown that DA receptor subtypes differentially regulate inputs to the NAc from 

the limbic system and PFC, where for example, tonic D2 receptor activation selectively 

attenuated inputs from the mPFC while phasic DA activity increases NAc neurons 

responsiveness to limbic inputs via activation of D1 receptors [231–234]. Aberration in the 

balance between these various inputs to the NAc are believed to lead to the pathophysiology 

of motivated behaviours such as addiction and depression. A recent study using a 

combination of in vivo electrophysiology recordings in rats that had previously undergone a 

learned helplessness, depression, paradigm showed decreased synaptic input from the vSub 
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into the NAc of rats susceptible to, but not those resilient, to the depressive phenotype [175]. 

Furthermore, administration of the novel antidepressant ketamine both rescued the depressed 

phenotype in rats previously susceptible to the learned helplessness paradigm and also 

increased the vSub synaptic input to the NAc in these rats [175]. At the microcircuit level 

decreased synaptic activity from vSub projections to the NAc shell but not NAc core 

specifically induced the depressed phenotype [175].

Dendritic spine plasticity is a critical element of experience-dependent reorganization of the 

brain circuits and that maladaptive changes in dendritic spine development are suggested to 

underlie neuropsychiatric disorders such as depression, anxiety and addiction [6, 235–238]. 

Various stress paradigms lead to significant alterations in neuronal morphology in different 

cell types [239–241]. Furthermore, BDNF and its downstream targets such as IKB Kinase 

(IKK) and the transcription factor Nuclear factor kB (NFkB) have been shown to be 

important regulators of neuronal structure [242, 243]. Mice susceptible to CSD stress exhibit 

dendritic remodeling (increased stubby spine formation) together with increased excitatory 

input into MSNs [14]. Furthermore, molecular analysis found increases in both IKK and the 

associated phosphorylated IkB proteins in the NAC of mice susceptible to social stress [14]. 

Evidence linking stress regulated changes in spine morphology and activation of IKK 

activity comes from approaches involving conditional knock down of IKK. Viral mediated 

conditional knock down of IKK by expression of IKK dominant negative (IKKdn) protein 

reversed the formation of stubby spines in mice susceptible to CSD stress [14]. Experience-

dependent plasticity and the associated increases in synaptic input are known to lead to 

changes in spine morphology [236]. The observations that VTA DA neurons projecting to 

NAc exhibit increased phasic firing in stress susceptible mice [163] and that, the 

corticortrophin stress hormone gates BDNF signaling in NAc MSNs [21], provides a 

mechanism by which increased BDNF induces changes in IKK enzyme activity leading to 

associated changes in dendritic spine morphology in the NAc of stress susceptible mice [14].

Homeostatic Adaptations

Recent advances have highlighted possible mechanisms that determine the brain’s ability to 

cope with stress. Multiple lines of evidence implicate dysregulation in the brain’s reward 

circuit in depression [12, 20, 163, 168, 244]. Increased activity of VTA DA neurons has 

been causally linked to depression-related behaviours [12, 163, 171]. Increased activity of 

VTA DA neuron, in stress susceptible mice, is intrinsically induced by up-regulation of Ih, 

an excitatory driving force of VTA DA Neurons [171, 245, 246] while pharmacological 

reduction of increased Ih in susceptible mice reverses depression [171]. Furthermore chronic 

antidepressant treatment with fluoxetine normalizes this hyperexcitability and decreases Ih 

in these neurons [171]. Together, these observations suggest that VTA DA neuron 

hyperactivity and increased excitatory Ih are both pathophysiological adaptations in mice 

susceptible to stress. A recent study confirmed that upregulation of Ih current in VTA DA 

neurons induced increased activity in these neurons in stress susceptible mice [172]. 

Surprisingly, while in resilient mice activity of these neurons was found to be normal, Ih 

current was even higher, which was observed in parallel with increased potassium (K+) 

current [172]. The role of Ih current on mediating the resilient phenotype was determined by 

overexpression of the Ih current related HCN channels in VTA DA neurons in susceptible 
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mice. Here overexpression of HCN2 channel, thus further increasing Ih current in previous 

susceptible mice, induced the resilient phenotype [172]. In primary neuronal cultures, 

excessive hyperactivity has been shown to induce homeostatic upregulation of inhibitory 

driving force K+-mediated current [247]. Repeated optogenetic activation of VTA DA 

neurons in susceptible mice, that presumably exhibit increased activity in these cells, was 

shown to induce the resilient phenotype together with associated decreased spontaneous 

activity and increased K+-currents in these cells [172]. Furthermore, these observations were 

observed specifically in VTA DA neurons projecting to NAc but not mPFC, which 

correlates with previous projecting specific roles in encoding for depression [163]. 

Homeostatic plasticity plays a fundamental role in stabilizing neuronal activity in response 

to excessive perturbations under both physiological [248, 249] and disease[250] conditions. 

Previous molecular analysis had shown that mice resilient to CSD stress exhibited 

normalized firing activity in VTA DA neurons associated with a corresponding increase in 

genes coding for subtype of K+ channels [12]. Observations that VTA DA neurons of 

resilient mice exhibit upregulation of the excitatory driving force Ih and inhibitory driving 

force K+-current suggests homeostatic plasticity plays a fundamental role in stabilizing 

neural activity in promoting natural resilience to stress. Further investigations into 

homeostatic adaptive mechanisms leading to natural resilience have potential implication in 

the development of more naturalistic treatment strategies for mental disorders such as 

depression.

Immune Response

Accumulating evidence suggests that inflammatory processes play a key role in the 

pathophysiology of depression [251, 252]. Post-mortem samples from patients with a history 

of depression express elevated levels of pro-inflamatory cytokines in the frontal cortex 

[253]. Rodents exposed to chronic mild stress exhibit neuroinflammatory markers [254] 

while administration of cytokine or lipoipolysaccharide (a cytokine inducer) induced 

depressive-like behaviour [255, 256]. Extracellular signal regulated kinase (ERK1/2) is one 

of several mitogen-activated protein kinases (MAPK) involved in numerous cellular 

processes including long-term neural plasticity, maintenance, survival and immune 

responses[257–259]. ERK1/2 is also implicated in adaptive responses to stress and 

antidepressant treatment [260–262]. Acute and chronic exposure to chronic unpredictable 

stress increases phosphorylation of ERK1/2 and of two downstream targets (ribosomal S6 

kinase and mitogen- and stress-activated protein kinase 1) within the VTA [263]. In 

addition, pro-inflammatory cytokines modulate various MAPK including ERK [264]. 

Though depression and anxiety have been linked to depression it has not be clear if 

inflammatory status predates disease onset or whether it is a consequence of mood disorders. 

Recent studies however suggest that inflammatory status predates mental disease. Elevated 

levels of peripheral cytokines, in particular, interleukin-6 (IL-6), were found to be a good 

predicator of susceptibility to stress in mice exposed to both physical and purely emotional 

stressors [265]. Furthermore, bone marrow hematopoietic cell transplants from a susceptible 

donor mice to a stress naïve mice induced stress-susceptibility in the naïve-mice when 

exposed to both physical and emotional stressors [265]. The observation that replacing the 

peripheral immune system of a stress-naïve animal with that of a stressed animal increases 
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susceptibility to stressors suggests that the immune status of an animal with markers such as 

IL-6 can be used a predicator of susceptibility to stress. Conversely, findings that transgenic 

mice lacking IL-6 (IL-6 −/−) are resilient to stress suggest another potential strategy for the 

treatment of mood disorders [265]. Though it is intuitive to link inflammatory processes 

following stress/physical injury with depression, the data is still unclear. For example, a 

recent study in rodents and humans found that administration of anti-inflammatory drugs 

following electrode implantation attenuated the antidepressive effects of deep brain 

stimulation [266]. Future animal studies investigating the effect of manipulating molecular 

pathways involved in the immune response on animal models of depression together with 

human studies on immune-compromised patients with depression should help clarify this 

interesting field of study.

Circadian/Sleep Rhythm and Depression

Though it has been known since the 1950’s that daily rhythms are disrupted in patients 

suffering from MDD [267, 268], the molecular mechanisms linking aberration in circadian/

sleep rhythms and mood disorders is still not well understood. In healthy humans, mood and 

reward are modulated by circadian phase [269, 270]. Mood disorders involves deficits in 

reward processing and motivation where perception in reward is blunted with a 

corresponding reduction in motivation to pursue hedonic goals. Circadian oscillation of gene 

expression, neural firing, neurotransmitter levels and receptor expression have been 

discovered in various brain regions implicated in mood-regulation and reward of both 

rodents and humans [271]. The Social Zeitgeber theory of mood disorders proposes that 

stressful life events changes sleep/wake schedule that alters molecular and cellular rhythms 

in vulnerable individuals, leading to mood disorders [272]. In light of the close interaction 

between the circadian and sleep/wake rhythms it is therefore not surprising that sleep 

deprivation therapy (SDT) rapidly alleviates depressive symptoms [273]. Studies over 

several decades have confirmed that SDT rapidly (within 24hrs) reduces depressive 

symptoms in 40–60% of patients [268, 274–276]. However the drawback with SDT is that 

the majority of patients report relapses of depressive symptoms after the first bout of sleep 

[277, 278]. Though not yet determined, it is thought that SDT resets the aberrant circadian 

clock in depressive patients resulting in alleviation of symptoms [277, 278]. Accumulating 

clinical evidence highlights potential changes in circadian clock gene expression in 

depressed patients. Molecular analysis of clock genes in suicide vs non-suicides in 

postmortem found significant down regulation of per1 in suicide victims [279]. Furthermore, 

microarray analysis of circadian clock gene expression in brain postmortem tissue taken 

from control and MDD human subjects found robust sinusoidal 24h rhythms in control but 

not in MDD patients [280]. Mice susceptible to social defeat stress exhibit, fragmentation in 

sleep patterns and anxiety [281]. Expression of circadian gene mper1 and mper2 was 

decreased in the NAc of mice that exhibited increased anxiety-like behavior [282]. 

Furthermore, viral knock-down of mper1/2 gene alone induced anxiety-like behavior in 

mice, suggesting a causal link between aberration of circadian clock gene expression and 

anxiety/depression. Stress exposed mice also exhibited flattened diurnal locomotor activity 

returning to normal rhythms 7 days post-termination of stress [283]. Social defeat in the 

middle of the light phase increased both NREM sleep intensity and duration and decreased 
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REM sleep [284]. Though limited in numbers, the few of studies of sleep deprivation (SD) 

on depression/anxiety have been promising. SD has been shown to reverse CSD stress-

induced anxiety [285] and induce phase shifts in circadian clock gene expression [286, 287]. 

Molecular analyses of clock gene expression in mice following SD leads to elevated Per1 

and Per2 levels in cortex, basal forebrain and hypothalamus which returned to normal levels 

following recovery sleep [288, 289]. Furthermore, SD has been shown to alter A) DNA 

binding of specific clock proteins BMAL, CLOCK and NPAS2 [290] and B) expression of 

various proteins known to be associated with depression such as GSK-3b, AMPA, 

Glutamate and mTOR [278]. Furthermore the rapidly acting antidepressant ketamine alters 

circadian gene expression [291], intracellular signaling molecule and neurotransmitter levels 

[278] and decreases aspects of REM sleep [292]. As mentioned previously, VTA DA 

neurons play a key role in modulating depression-related behaviors [12, 163, 171, 172] and 

it is likely that aberration in clock gene expression in the VTA may play a role in 

depression-related behaviours. Manipulation of Clock gene expression in the VTA 

modulates circadian rhythms, VTA neural activity and the depressive phenotype [293]. A 

more recent study extended the role of Clock gene and the regulation of anxiety related 

behaviours. Clock mutant mice were found to exhibit rapid mood cycling across the light-

dark cycle such that the Clock mutants exhibited robust manic-like behaviour compared to 

wild-type controls when tested in an open field-, forced swim- and sucrose-preference test 

during the day [294]. Furthermore Clock mutant mice exhibited robust increases in both 

daytime tyrosine hydroxylase expression and VTA DA neuron activity [294]. Moreover, 

further evidence that the molecular components of the circadian timing system have a 

critical role in mood regulation comes from numerous findings that mutations of clock genes 

Bmal1 and Per2 induce mania-like behaviours in mice while knockout of Cryptochrome 1 

and 2 genes induces altered anxiety-like behaviours [295–297]. The circadian nuclear 

receptor REV-ERBα, an important constituent of molecular circadian signaling that serves 

as transcriptional repressors of the Bmal RNA, has recently been shown to negatively 

regulate midbrain DA neuronal function via circadian modulation of tyrosine hydroxylase 

mRNA transcription [298]. REV-ERBα knockout mice exhibit altered circadian rhythmicity 

in mood related behaviours while conditional inhibition of REV-ERBα produces mania-like 

behaviour [298]. These recent findings further identify molecular connections between the 

circadian timing system and mood regulation that may potentially help specific targeting in 

the treatment of circadian-related mood disorders. Social interaction, a rewarding 

phenomenon in social animals such as mice, follows circadian rhythmicity [299] and since 

depression-like behavior leads to aberration in neural processing in the reward system, it is 

likely that aberration in the circadian system results in aberration in reward processing in the 

reward center leading to depression-related behaviours. Understanding the mechanism by 

which the circadian and sleep wake centers regulate depressive behaviours has great 

potential for the development of rapidly acting therapies for depression.

Conclusion

Depression is a complex mental illness where patients can express vastly different 

symptoms. It is evident from the literature reviewed above that the multiplicity of symptoms 

related to depression most likely is the result of aberrations in different aspects of normal 
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neural functions that can range from the molecular up to the neural circuit. The observation 

that classical antidepressant medications only work on a subset of patients indicates that 

depressive patients express aberration in different neural processes. Thus, in order to 

develop more effective and faster acting treatments for depression much work is still needed 

in understanding how exposure to stress lead to the sequence of changes in molecular, 

genetic/epigenetic processes and eventually neural circuit signaling. With the development 

of novel technologies to study molecular and genetic changes together with more 

sophisticated neural circuit analysis it will be possible to better understand complex changes 

in the brain that ultimately lead to depression.
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Abbreviations

5-HT Serotonin

AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

Arc activity-regulated cytoskeleton-associated protein gene

BDNF Brain-derived neurotrophic factor

BLA Basolateral amygdala

Ca2+ Calcium

CaMKII Calcium/calmodulin-dependent protein kinase II

CeM Central amygdala

CPP 3-(2-Carboxypiperazin-4-yl)propyl-1-phosphonic acid

CRF Corticortrophin-releasing factor

CSD Chronic social defeat

CUS Chronic unpredictable stress

D1 Dopamine 1 receptor

D2 Dopamine 2 receptor

DBS Deep brain stimulation

delta FosB Delta FBJ murine osteosarcoma viral oncogene homolog B

DNMT DNA methyltransferase

DRN Dorsal raphe nucleus

eEF2 Eukaryotic elongation factor

Egr1 Early growth response protein 1 gene

ERK1/2 Extracellular signal regulated kinase
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FosB FBJ murine osteosarcoma viral oncogene homolog B

G9a Histone H3 lysine 9 methyltransferase

GABA Gamma-aminobutyric acid

GLP Histone H3 lysine 9 methyltransferase

GluR1 Glutamate receptor subunit 1

GluR2 Glutamate receptor subunit 2

GluR3 Glutamate receptor subunit 3

GPo Globus pallidum

H3K9me2 Histone H3 dimethyl Lys9

HATS Histone acetyltransferase

HCN Hyperpolarization-activated cyclic nucleotide-gated channel

HDAC Histone deacetylase

HDM Histone demethylase

HMT Histone methyltransferase

Ih hyperpolarization-activated non-selective cation current

IKK IKB kinase

IKKdn IKK dominant negative

IVF In vitro fertilization

K+ Potassium

LC Locus coeruleus

LH Lateral Hypothalamus

LHb Lateral habenula

LTD Laterodorsal tegmentum

MDD Major depressive disorder

MAPK Mitogen-activated protein kinases

mGluR2 Metabotropic glutamate receptor 2

MK-801 5-Methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine

mper1/2 Period gene 1 and 2

mPFC medial Prefrontal cortex

MSN Medium spiny neurons

mTOR Mammalian target of rapamycin

NAc Nucleus accumbens
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NFkB Nuclear factor kB

NMDAR N-methyl-D-aspartate receptor

NR2B NMDAR 2B subunit

REM Rapid eye movement

RMTg Rostromedial tegmental nucleus

SC1 Sparc-like 1

SD Sleep deprivation

SDT Sleep deprivation therapy

SN Substrantia nigra

SSRI Serotonin selective reuptake inhibitor

SUV39H1 Histone-lysine N-methyltransferase

vHIP Ventral hippocampus

VP Ventral pallidum

VSCC Voltage sensitive calcium channels

VTA Ventral tegmental area

WKY Wistar Kyoto

ZFP Zing-finger protein
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Figure 1. 
Simplified schematic of the major neural circuit connections involved in encoding for 

depression-related behaviours. The network displays the complex interplay between 

numerous neurotransmitters in regulating cellular activity within various brain nuclei. 5-HT 

– serotonin; Ach – acetylcholine; DA – dopamine; GABA – gamma-aminobutiric acid; Glu 

– glutamate; NE – norepinephrine; VIP – vasoactive intestinal peptide.
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