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SUMMARY

Meta-analysis of clinical trials is a methodology to summarize information from a collection of 

trials about an intervention, in order to make informed inferences about that intervention. Random 

effects allow the target population outcomes to vary among trials. Since meta-analysis is often an 

important element in helping shape public health policy, society depends on biostatisticians to help 

ensure that the methodology is sound. Yet when meta-analysis involves randomized binomial trials 

with low event rates, the overwhelming majority of publications use methods currently not 

intended for such data. This statistical practice issue must be addressed. Proper methods exist, but 

they are rarely applied. This tutorial is devoted to estimating a well-defined overall relative risk, 

via a patient-weighted random effects method. We show what goes wrong with methods based on 

“inverse-variance” weights, which are almost universally used. To illustrate similarities and 

differences, we contrast our methods, inverse-variance methods, and the published results (usually 

inverse-variance) for eighteen meta-analyses from thirteen Journal of the American Medical 

Association articles. We also consider the 2007 case of rosiglitazone (Avandia), where important 

public health issues were at stake, involving patient cardiovascular risk. The most widely used 

method would have reached a different conclusion.
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1. INTRODUCTION

Meta-analysis is often used to assist policymakers assemble information on important health 

policy issues. We recognize that due to selection bias, reporting bias, and the likelihood of 

errors in the data from contributing studies, it is imperfect as a scientific method. But when 

meta-analysis is conducted, its methods must be statistically rigorous. The primary purposes 

of this tutorial are to (1) make potential analysts and journal reviewers aware that the 

overwhelming majority of reports of random-effects meta-analysis of low-event-rate clinical 
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trials are using inverse-variance methods that are not appropriate for this situation; (2) 

present parameterizations of relative risk, the most popular metric for meta-analysis of 

binomial data, and argue for a survey-sampling approach; (3) present in detail the method of 

Shuster, Guo, and Skylar (SGS) [1] as one possible remedy; and (4) present a comparative 

analysis of 18 meta-analyses from 13 Journal of the American Medical Association articles 

as published, using the method of DerSimonian and Laird (DL) [2], and using SGS [1]. The 

scope of this article is on good practices in the estimation of the overall relative-risk for low-

event rate random-effects meta-analysis of randomized binomial trials. Issues related to how 

to properly conduct other aspects of a meta-analysis are beyond the scope of this tutorial.

In random-effects meta-analysis, the method most commonly used for summarizing relative 

risk for independent two-sample binomial trials, DL [2], has serious theoretical deficiencies 

when the event rates are low. As of 08/04/2015, according to the Web-of-Science, this is the 

most-cited paper on meta-analysis (nearly 13,000). Yet some of the most important clinical 

trials related applications of meta-analysis are precisely in this arena, as when event rates are 

low, it takes large numbers of patients and large numbers of trials to accurately assess the 

safety and efficacy of interventions. In their final paragraph, DerSimonian and Laird [2] 

mildly cautioned users about problems in estimating variances when sample sizes are small. 

Section 16.9.5 of the Cochrane Handbook [3] expressly states “Methods that should be 

avoided with rare events are the inverse-variance methods (including the DerSimonian and 

Laird random-effects method).” Further, the Cochrane Handbook also states that as of 2011, 

“The DerSimonian and Laird method is the only random effects method commonly available 

in meta-analytic software.” [These statements also appear in Section 16.9.5 of the 2008 

version.] This leaves applied researchers with a serious gap between computational 

capability and sound biostatistical theory. In their Section 5, Shuster, Guo, and Skylar [1] 

present mechanistic reasons that there is potential for major differences in accuracy within 

studies between the large-sample estimates and the actual parameters they are trying to 

estimate. The issues centre on rare events, even when no arms have zero events. Hence, the 

theoretical problems are not resolved by continuity corrections (perhaps more appropriately 

termed bias-adjustments) in zero-event arms of trials.

The major issue with inverse-variance methods in low-event-rate situations is that the 

variance estimate for an individual study-level log of the relative risk is associated with the 

direction of the sampling error, inducing bias. The estimate of within-study asymptotic 

variance when, for both groups, the observed number of events is not zero is

(1)

where the Nijs and P̂ij s are the sample sizes and event proportions for study j, treatment i.

When the sampling error for an event proportion is in the positive (negative) direction, the 

impact is to increase (decrease) the weights respectively. For large samples without rare 

events, this is a minor consideration. But it is a major problem for low-event-rate situations, 

even when no zero-event arms occur.
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The common practice of assessing heterogeneity using Cochran’s Q statistic, and using the 

result to decide between fixed and random effects, is generally not acceptable. Borenstein et 

al. [4], page 84 entitles a section: “Model should not be based on the test for heterogeneity”. 

In other words, the choice should be made according to the nature of the trials being 

combined, and not on empirical evidence supporting or rejecting homogeneity. Given the 

exceedingly low sensitivity of the Cochran Q statistic when event rates are low, the only 

plausible conclusions are (a) homogeneity is implausible and (b) homogeneity is 

inconclusive. In either case, we do not have much confidence in homogeneity. Since random 

effects are valid whether or not fixed-effects are valid, it is prudent to use random effects, 

unless the trials being combined are truly conducted under universal conditions, something 

that will occur only rarely.

To fill the methodological gap, Section 4 of SGS [1] presents a patient-weighted alternative 

random-effects method that they vetted in nearly 40,000 rare-event meta-analysis scenarios 

where the number of studies being combined is small, 5–20. The large-sample theory applies 

to large numbers of studies being combined, so when the number of studies is small, the 

authors had concern about the accuracy of their normal distribution and t-distribution 

approximations. The normal distribution approximations fared poorly, but their t-distribution 

approximations were much more accurate. For these, the real coverage of the 95% 

confidence intervals averaged nearly 95%, with only modest departures from 95% in the 

individual scenarios. To help users conduct the analyses using these methods, they offer a 

SAS (Statistical Analysis System) macro at http://actstat.org/associated-links.html.

We chose to concentrate our review of published meta-analyses on the Journal of the 

American Medical Association (JAMA) because it publishes a large number of highly cited 

meta-analyses of low-event-rate clinical trials. Our purpose is not to second guess individual 

articles, but rather to see how the published papers’ results line up with the methods of SGS. 

The review aims to answer two questions. (1) Do the published results differ from SGS? (2) 

Do DL and SGS produce substantially different results for these studies? Specifically, do the 

analyses reach the same conclusions? Do the methods differ systematically on effect size 

estimates and lengths of confidence intervals? An excellent motivating example for the 

clinical importance of this investigation is the Nissen and Wolski [5] meta-analysis of 

myocardial infarction in randomized trials of rosiglitazone (Avandia) in Type II diabetes. 

This will be presented in the Discussion.

It seems that despite the warnings from [3], analytic practice has not changed. Using the 

Web-of-Science, we looked at the three most-cited 2014 low-event-rate papers with 

keywords “clinical trial” and “meta-analysis” as of August 14, 2014: Kishimoto et al. [6], 

Williams et al. [7], and Monami et al. [8]. All used DL [2].

2. PARAMETERIZATION OF RELATIVE RISK

In this section, we look at two approaches to creating a target population parameter: (a) 

Effects at Random and (b) Studies at Random. We also review inverse-variance approaches 

and briefly summarize the major application issues raised in Section 5 of SGS [1]. Finally, 

we present the large-sample distribution theory for the summary estimate for the patient-
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weighted approach of SGS [1]. In Effects at Random, we presume conceptually that each 

study design in the universe is a fixed entity and the effect size is drawn randomly from a 

single urn of effect sizes, independent of the study design. For example, in Effects at 

Random, there is no correlation between study size and the study’s true effect. In Studies at 

Random, we presume conceptually that the studies form a random sample from a universe of 

studies, allowing the study-specific effect sizes to be associated with the design. But if we 

make the additional assumption that the effect size is independent of the design, Studies at 

Random and Effects at Random will coincide. Hence, Effects at Random is a special case of 

Studies at Random.

2.1. Effects at Random

In random-effects meta-analysis, the usual model is

(2)

where j is the index for the j-th study, j=1,2,3,...,M, with studies considered as independent, 

and the (possibly vector-valued) estimate θĵ has conditional mean Θj, given the study, 

making the random error term εj satisfy E(εj)=0. That is, θ̂j the study estimate of the study-

specific parameter, is unbiased for its population counterpart Θj, given the selected study. 

Physically, we think of the study-specific set {Θj} that comprise the meta-analysis as a 

random sample from a population whose mean is Θ=E(Θj).

The statistical task is to estimate Θ, or functions of components of Θ, if vector-valued. SGS 

called this sampling model “Effects at random”. It has a very attractive feature in that all 

weighted combinations of the θ̂j, where the weights are fixed (non-random) and sum to one, 

are unbiased for Θ, and thus it makes sense to optimize the weights.

There is an inherent assumption that because the {Θj} are presumed to come from a single 

population, there can be no association between the study design parameters, including 

sample size, and the particular Θj for the study.

Consider a weighted estimate of Θ, with non-random weights Wj:

(3)

where the sum of the weights =ΣWj =1.

With effects at random, model (2) ensures that

(4)

with σj
2 the unconditional variance of the study estimator θ̂j in (2).

For estimating the log of the relative risk (or the log of the odds ratio) DL uses weights 

inversely proportional to the variance of θ̂j, namely
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(5)

This choice would minimize Var(θŴ ) if these variances were known constants (at least to a 

very high degree of certainty), but in practice, they are unknown. Since these variances 

involve both between-study and within-study variance components, they must be estimated. 

Accuracy and bias are major problems for combining low-event-rate studies as the weights 

become random variables, subject to bias and sampling error. The DL approach in general 

ignores the systematic and sampling errors in deriving the weights, leading to validity issues. 

For further information on this issue, see Böhning et al. [9] and Hamza et al. [10].

When event rates are low, this approach has three obvious issues, as well as a critical but 

subtle issue that should make us look for alternative approaches to analyze these collections 

of studies. These issues are illustrated through an example in Section 5 of SGS [1].

Issue 1: Whether or not there are zero-event cells, the individual logs of relative risk 

estimates, θ̂j, have substantial bias in estimating Θj.

Issue 2: Whether or not there are zero-event cells, the variance estimates for within-

study variance are inaccurate. {See equation (1)}

The two issues above also compromise estimation of between-study variance as well as true 

heterogeneity.

Issue 3: When event-rates are low, for inverse estimated variance-related weights, the 

contribution of a single arm of a single study to the weight is approximately 

proportional to the event probability for that arm [See equation (1)], leading to a strong 

association between the weights Wj and the estimates θ̂j.

The randomness of the weights due to the within-study properties is not considered in the 

inverse variance weighting formulation of the effects at random meta-analysis. However, 

another connected issue should make a user reluctant to apply these methods.

Issue 4: A challenge to the effects at random concept. In actuality, the weights should be 

seen as random unless they are fixed as Wj =1/M. Without loss of generality, we can 

randomly permute the indices j=1,2,…,M in (3), as after this permutation the estimate in 

(3) is unchanged.

For ease of notation, we continue to label the studies 1,2,…,M rather than (1),(2),…(M) after 

the permutation. This permutation tool is an enabling concept that allows us to employ 

powerful techniques borrowed from clustering methods in survey sampling. After this 

random permutation, each study has a 1/M chance of occupying each index 1,2,…,M. Now 

there is no controversy as to whether the weights are random variables. Further, this 

permutation makes the vectors (Wj, θ̂j) exchangeable over j and therefore identically 

distributed. From this exchangeability, (2), (3), and the fact that the weights Wj sum to one, 

it follows (for all j) that

(6)
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Note that (6) is valid as long as the studies can be viewed as a random sample from a 

universe of studies, a more general situation than effects at random, which as noted above is 

a special case. We shall work under this more general set-up in the following.

Using (6), the Bias in θŴ can expressed as

It follows that to avoid bias, the weights must be uncorrelated with the point estimates.

This problem goes well beyond issue 3 above, as violations of the unverifiable “no 

correlation” assumption would render effects at random a biased method. This “no 

correlation” assumption is also a problem for other meta-analysis settings, including 

Bayesian approaches.

Since no other weighting system can guarantee unbiasedness in all circumstances, Shuster, 

Jones, and Salmon [11] suggested the use of unweighted methods. Their focus was on 

literally estimating Θ rather than seeking out an alternative target parameter. The unweighted 

method is legitimate and may be the only bias-free method involving (3) to estimate Θ, but it 

is intuitively unappealing to most end-users. Section 4 of SGS [1] used a survey sampling 

approach, and thereby chose a different target parameter.

We can envision important situations where effects at random may not be a reasonable 

presumption. For example, early studies of a drug may be smaller and have shorter follow-

up than later studies. Further, as side-effect profiles become clearer, eligibility criteria and 

concomitant medication can differ from earlier (smaller) to later (larger) trials.

2.2. Studies at Random: (A cluster sampling approach)

Conceptually, we think of studies as being a random sample of potential studies, taken from 

a large urn of studies. Our inference will be aimed at the totality of studies in the urn. The 

inference we will make will be to the totality of conceptual patients in studies in the urn, 

treating the actual sampled studies as completed. The robustness of this concept lies in the 

fact that after a random permutation of the study indices 1,2,…,M, the vectors of parameters 

(including design information and outcomes) are identically distributed across studies. As 

we shall see, total-sample-size weighting is a very simple approach, with readily evaluable 

statistical properties. One can also view the study selection as casting a net into the large urn 

of potential studies and drawing a sample of M studies from the urn without labelling them.

A key difference between other methods and SGS [1] is that their recommended methods 

estimate individual proportions and do not rely on individual-study relative-risk estimation, 

which as noted above, is biased and has difficulty estimating variances when event rates are 

low. Even for small samples, proportions can be estimated without bias. We estimate a 

global event proportion for each treatment, and estimate the relative risk by the ratio of these 

proportions. We use weights proportional to the total sample size for the study. Using arm-

specific weighting could create bias if for example, there was an unbalanced randomization 
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(say, 3:1) in a study where the overall event rate was high on both treatments. Studies with 

one or both arms having zero events are included without continuity corrections.

One easily understood physical definition of relative risk follows naturally from the studies 

at random concept. Step 1: Draw an unassigned patient at random from the universe of trials, 

with each hypothetical patient having the same chance of being drawn. What is the ratio of 

the probability of an event given that patient is assigned to Arm 2, to the probability of an 

event given that patient is assigned to Arm 1? In this hypothetical experiment, the 

probability that a patient is drawn from a given trial is proportional to the total sample size 

for that trial, irrespective of the arm-specific sample-size ratio. Specifically, if we denote the 

true event rate for Arm=i and Study=j as Pij, and the total sample size for study j as Nj, then 

the true overall probability of an event for the randomly selected patient, given assignment to 

Arm i=1 or Arm i=2 is

(7)

where summation is over the universe of studies.

The true relative risk for this experiment is therefore

(8)

Equation (8) gives us another intuitive interpretation of this relative risk. The numerator 

(denominator) is the hypothetical expected number of events in the universe of trials if all 

patients received Arm 2 (Arm 1). RR=2 would imply that we would expect twice as many 

events on Arm 2 had all patients in the universe been uniformly treated on Arm 2, rather 

than if all patients in the universe received Arm 1.

Next, for our actual experiment, we are drawing a random sample of studies from the target 

universe of studies.

For treatment i=1, 2 and study j=1, 2,…,M let

(9)

be the predicted number of events on study j if all patients received treatment i, where Nj is 

the total sample size for study j, and Pîj represents the sample proportion of events for 

treatment i, study j. Since the proportions are conditionally unbiased, based on the studies at 

random concept:

(10)

with the unconditional expectation taken over the universe of studies, from which the actual 

studies are a conceptual random sample.. The sample proportions given the study ID are 

unbiased for the true underlying proportion for that study.
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We define the sample means of the exchangeable Aij as follows for the actual studies in the 

analysis:

Since Āi is the sample mean of the exchangeable Aij=1,2,…,M, it follows from (10) that

(11)

If we divide the numerator and denominator in (8) by NS, the number of studies in the 

universe, making both the transformed numerator and denominator population means for the 

projected number of events when all subjects in the study would get treatment 2 (numerator) 

or treatment 1 (denominator), it follows that

(12)

and hence RR can be estimated simply by

(13)

The Āi are unbiased for the numerator (i=2) and denominator (i=1) for the true relative risk, 

defined in (12) above. Moreover, from the method of moments, see Shuster [12], they are 

nonparametrically minimum variance for the numerator and denominator amongst all 

unbiased competitors.

2.3. Summary Notes on Effects at Random vs. Studies at Random

A. If effects at random holds, then studies at random also holds, but not the converse.

B. When event rates are low, the estimation of the logarithm of a summary relative risk 

from the individual studies’ logarithms of relative risks for effects at random 

involves biased estimates and poor large-sample approximation of weights and 

variances.

C. For effects at random, the target transformation is a log of the relative risk, not a 

directly estimated relative risk. The mean of a function can differ from the function 

of the mean, especially when event rates are low. The studies at random approach 

directly estimates a well-defined relative risk.

D. Using studies at random, both the random-effects concept and the target relative 

risk are easier for lay individuals to grasp than they are for effects at random. No 

model equation is needed in studies at random.
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2.4. Obtaining P-values, point and interval estimates using Studies at Random

In this subsection, we provide the asymptotic sampling properties of , defined in 

(13), obtained by the delta method in SGS [1], Section 4 for M, a “large number” of studies 

in the analysis.

 is asymptotically t-distributed (M-2 df) with asymptotic mean log(RR) and 

variance

(14)

where S() represents the sample standard deviation and C( , ) represents the sample 

covariance, denominators M-1. The standard error of  is SE=SQRT(SE2).

By asymptotic t, we mean that  is approximately central t-

distributed with M-2 degrees of freedom for large M. This is asymptotically equivalent to 

asymptotic normality, but empirically it gives much more accurate approximations than 

those based on normality. For small M (5–20), SGS [1], Section 6, have vetted the methods 

in nearly 40,000 scenarios, with 100,000 simulations for each, with good accuracy. This 

forms the basis for obtaining p-values and, after taking antilogs, confidence intervals for RR. 

Specifically, the endpoints of the 100(1-α) Confidence Interval for RR are

(15)

with TINV(n,γ) defined as the upper 100γ percentile of the central t distribution with n 

degrees of freedom.

(16)

with PROBT(t, n) defined as the probability that an observation from a central t-distribution 

with n degrees of freedom falls below t.

3. REVIEW OF 13 HIGHLY CITED JAMA ARTICLES

In this section, we assess the potential impact of the use of inverse-variance methods for 

low-event-rate meta-analysis of clinical trials published in the Journal of the American 

Medical Association (JAMA). This journal was selected because at the time of our selection 

process, it had the second highest impact factor, behind only the New England Journal of 

Medicine (NEJM), and unlike the NEJM, it published a large number of meta-analyses. We 

found that all of the eligible articles basically ignored the warnings in [3] and [4] about (i) 

the use of inverse-variance random-effects methods or (ii) testing for heterogeneity and 

using a fixed-effects method when the test for heterogeneity was not significant. Our 

primary purpose is to see how the published results, DL [2], and SGS [1] agree or disagree.
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3.1 Eligibility criteria for inclusion of JAMA articles

Criteria for inclusion: (1) highly cited article published from 2007 to 2013, as searched in 

the Web-of-Science as of December, 2013; [We prioritized selection by times cited in two 

strata: (a) 2007–2011 and (b) 2012–2013] (2) reported on a review of a collection of 

randomized independent binomial trials; (3) had at least one low-event-rate study with 

expected events at most 5; (4) used relative risk (RR) as its metric; and (5) had fully 

retrievable numerator and denominator data on events. [One potential article had to be 

excluded for this reason.]

We identified 13 eligible articles [13–25] and conducted analyses on all low-event-rate 

binomial endpoints in the article, except that no subset analyses were conducted. The total 

number of meta-analyses we reviewed from JAMA was 18. Table I lists the meta-analyses 

which qualified for inclusion in our reanalyses, along with the definition of the endpoints 

studied.

3.2 Results of JAMA Review

For each study, the analysis is provided as published and more importantly, by the DL [2] 

method and by the SGS [1] method. Comprehensive Meta-Analysis 2.0 (CMA) was used for 

DL, with standard continuity corrections (adding 0.5 to all cells for trials with one zero-

event arm, and excluding trials where both arms had zero events). Some authors did not fully 

report the method of meta-analysis used in their papers. Most of these meta-analyses used 

similar analytical methods. The authors who reported the RR methodology for their results 

used random effects and fixed effects (some using DL and some using Mantel-Haenszel 

analysis). Thirteen of these 18 meta-analyses apparently used DL, where our DL results 

agree with the published results to sufficient accuracy. Those JAMA authors who did not 

report their methods failed (and evidently were not required) to comply with the 

recommendation of the International Committee of Medical Journal Editors.

Table II displays point estimates and 95% confidence intervals (CIs) for each eligible 

analysis, as published, by DL [2], and by SGS [1]. DL and SGS give similar results for most 

of the point estimates and CIs. We did find five analyses with substantially different results 

from SGS. The last column provides the ratio of lengths for the CIs. Analyses with major 

differences between DL and SGS are highlighted.

4. DISCUSSION

An example of the strong motivation for the public health importance of using appropriate 

methods is a 2007 meta-analysis for myocardial infarction in 48 trials of rosiglitazone 

(Avandia) in Type 2 diabetes. The sentinel danger signal was published by Nissen and 

Wolski [5] (May, 2007), and the FDA held a hearing in July, 2007, leading to a Black Box 

Warning, and a major reduction in written prescriptions for rosiglitazone. Although the 

meta-analysis was not the sole basis for this action, it probably would not have occurred so 

rapidly without it. Yet, on the basis of the software available to these authors (and still 

widely used today), the ultimate inferences for both Nissen and Wolski [5] (fixed-effects 

Peto method after a preliminary test for heterogeneity) and Diamond and Kaul [26] (both 
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Bayes and DL [2] with standard continuity corrections), reaching conflicting conclusions, 

were flawed methodologically.

The Nissen and Wolski meta-analysis was published using a summary odds ratio (OR), so 

we reconstructed the results using relative risk (RR) as a metric. However, for low event 

rates, the distinction is slight, and relative risk (the ratio of event probabilities) is easier to 

interpret than the odds ratio (ratio of event odds). The FDA decision had considerable 

impact on averting potential harm to patients, on large ongoing rosiglitazone trials, and on 

financial losses to the manufacturer (sales and lawsuits). The meta-analytic basis of the 

decision, which turned out to be correct, can only be attributed to good fortune, in that NW 

used the Peto fixed-effect method rather than the DL method (default in Comprehensive 

Meta-Analysis, the program they used). That program forces the user to see the results of 

DL before the user can select alternative methods. The results are contrasted in Table III, 

with clear-cut added risk in the SGS [1] analyses, but equivocal confidence intervals in both 

the DL and Peto analyses. Although we would not exclude studies in a de novo analysis, we 

also present SGS results after eliminating studies with no events on both arms as a parallel to 

what was published.

In 2010, Nissen and Wolski [27] added eight studies and further follow-up to their original 

meta-analysis. For all three methods, the 2010 results agree well with the respective 2007 

results, and so details are not shown.

One might argue that the Peto and Mantel-Haenszel methods are valid for low-event-rate 

collections in assessing the signal, that is testing that the true relative risk is 1.00 for all 

studies in the universe. This reduces the testing problem to fixed effects under this null 

hypothesis. However, this simplification has two issues. First, when random effects are 

present, these methods do not produce valid point estimates and confidence limits, both of 

which are exceedingly important. Second, with random effects, there can be a true overall 

relative risk of 1.00, with some studies having true relative risks above the neutral value of 

1.00, counterbalanced by other studies with true relative risks below 1.00. Now both the Peto 

and Mantel-Haenszel methods’ theoretical presumptions are not applicable under this less 

restrictive null hypothesis and are likely to misstate the precision of their estimates.

The overwhelming majority of clinical investigators are very reluctant to use Bayesian 

methods in meta-analysis. Biostatisticians and other methodologists should encourage their 

clinical colleagues as to their merits in appropriate situations. As of November 21, 2014, 

there were 15.8 million Google, 2.6 million Google Scholar, and 13,000 PUBMED hits for 

the terms Clinical Trial and Meta-Analysis. When we added the term Bayes, the numbers 

dropped to 370,000 (2.4%), 23,000 (0.9%), and 118 (0.9%), respectively. Therefore, 

methodologists need to be much more proactive in this arena.

We draw one distinction between this article and SGS [1], in that SGS did not choose a 

recommended strategy amongst three metrics and two weighting methods. We recommend 

(a) the use of patient-weighted over unweighted analysis and; (b) relative risk as the metric 

of choice. While SGS showed slightly more accurate coverage for unweighted methods, the 

patient-weighted methods had considerably narrower confidence intervals, and we consider 
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this added precision to be more important. Further, in a non-binomial article by Shuster [28], 

with discussion from Laird, Fitzmaurice, and Ding [29], Waksman [30], and Thompson and 

Higgins [31], with response by Shuster et al. [32], the net message for unweighted methods 

is that, although valid, they are highly inefficient. There was no criticism of a patient-

weighted method of Shuster [28], also presented in that article. As for choosing among the 

three metrics in SGS [1], their relative risk analysis needs to estimate far fewer parameters (5 

sample moments) than their odds-ratio analysis (14 sample moments). Absolute differences 

in proportions are not in common use in meta-analysis of low-event-rate binomial trials, and 

they overly weight studies with very low event rates.

Of related interest, Hamza and colleagues [10] have proposed an alternative and superior 

method of estimating variances via likelihood methodology, rather than the traditional 

methods.

The majority of these recently published JAMA meta-analyses give similar results when 

analyzed with DL [2] or SGS [1]. This might give us some comfort in that the majority of 

published low-event-rate meta-analyses using the DL or Peto method are likely to reach 

similar conclusions to SGS, including fairly similar confidence limits. But we expect a 

substantial minority will have major issues with the conclusions and confidence intervals for 

relative risk. A wider review of the most-cited low-event-rate meta-analyses of clinical trials 

in other publications is therefore essential. Such a review could assess what study properties 

exist when DL is accurate vs. inaccurate. Such an assessment was well beyond the scope of 

our small JAMA review. For the future, it is critically important to heed the warnings issued 

by the Cochrane Handbook, and avoid the use of DL when event rates are low. New 

warnings in major software packages would also help. SGS and a Hypergeometric/Normal 

Bayesian method per Stijnen et al. [33] are attractive alternatives.

Other authors who have approached the low-event-rate problem include Tian et al. [34] and 

Lane [35], but in practice DL continues to be predominantly used. Advantages of SGS over 

other methods for low-event-rate meta-analysis include (a) it targets a more easily 

understood population parameter; (b) its estimates do not rely on asymptotic properties 

within studies; (c) it accommodates a more conservative t-approximation rather than a 

normal approximation when the number of studies is small; (d) it is valid in the more general 

studies at random setting, whereas its competitors all use the more restrictive effects at 

random model, assuming the effect drawn for a given study is independent of the study 

design; (e) it has been vetted for combining small numbers of studies in nearly 40,000 low-

event-rate scenarios, with 100,000 simulations each; (f) zero events on one or both arms of a 

study are handled no differently than any other study. (In fact, if no events occur on both 

arms, the same point estimate is obtained with the study included or excluded [not 

recommended], but these studies have impact on standard errors. For more on zero event 

arms, see Kuss[36]); and (g) it is more robust when some trials have group sequential 

designs. The framework of inference is that the actual trials are complete, that they represent 

a random sample from a large conceptual universe of trials, and that the inference is to the 

actual potential participants in this universe of trials. This immunizes the inference from 

biases of raw proportions within group-sequential trials. Perceived disadvantages include (i) 

the method does not directly estimate heterogeneity of relative risks. (Users can still run a 
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test of heterogeneity of odds ratios, preferably an exact one, but SGS works with or without 

heterogeneity. One can also readily look for heterogeneity in the proportions, but that has 

very limited utility.); (ii) The inferential framework is to a conceptual population of studies 

with the actual completed studies considered to be a random sample (But most alternate 

methods emanate from equation (2) without a true physical population that allows 

associations between weights and estimates. Moreover, the exchangeability after a random 

permutation allows us to legitimately use the exchangeability in our inference, even if the 

targeted population is not fully defined for convenience sampling as opposed to random 

sampling of studies.); and (iii) when the number of studies is small, and the sample sizes 

and/or event rates are highly diverse, the t-approximation may not be accurate.

A question posed and answered by a reviewer is: Why does the DL method receive nearly 

universal use for these low-event-rate binomial meta-analyses, despite the warning in the 

Cochrane Handbook? Neither of the two main software packages (RevMan 5 or CMA 3.0) 

issues user warnings when studies have low event rates. Further, the Deeks and Higgins 

2010 publication on the statistical algorithms in RevMan 5, http://www.researchgate.net/

profile/Jonathan_Deeks2/publication/

241313811_Standard_statistical_algorithms_in_Cochrane_reviews_Ve_r_s_i_o_n_5/links/

54d159b70cf28370d0e07f9f.pdf does not issue a warning. A recent article by Cornell et al. 

[37] suggests sunsetting the method in these low-event scenarios.

A completely counterintuitive application can be seen in the second Neto [17] analysis in 

Table II (Individual study data shown in Table IV). DL gives a point estimate for relative risk 

at 0.71, 95% CI 0.55–0.93, P=0.004. If we double the data (every numerator and every 

denominator), one would think the significance would be amplified. Yet the DL point 

estimate changes to 0.78 and the confidence interval widens by nearly 40% to 0.56–1.09, 

P=0.15. In the actual data, thanks to the Q-statistic being less than the degrees of freedom, 

the fixed and random effects analysis coincided. When all entries are doubled, a random 

effects analysis was mandated as Q more than doubled, thereby making the standard error 

increase. This anomaly cannot occur with SGS.

The following are good topics for future advances: (A) Since we claim validity, not 

optimality of SGS [1], it is of interest to see how its precision compares with Bayesian 

methods (A tutorial on various Bayesian methods would be a good addition to the literature 

on low-event-rate meta-analysis); (B) Since SGS’ validity does not require low event rates, 

its properties for small numbers of studies should be investigated when event rates are not 

low; (C) It would be of further interest to see the gain in precision for methods that rely on 

patient-level data over SGS. With mandatory raw data deposits recently implemented for 

European clinical trials and with ClinicalTrials.gov considering similar requirements, 

patient-level data should become available in the not too distant future, without worries of 

selection bias. Further, we recommend that a doctoral level biostatistician or quantitative 

epidemiologist be part of the research team for conducting any meta-analysis. Finally, when 

called upon to review a manuscript that presents results of a meta-analysis involving clinical 

trials with low-event-rates, make sure that the analytic methods used are appropriate and 

adequately documented before recommending acceptance. These meta-analyses can play 
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major contributing roles in setting health policy and in multimillion-dollar litigation. Using 

inappropriate statistical methods can cause substantial damage.
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Table I

Low-Event-Rate Meta-Analyses Published in JAMA between 2007 and 2013

Reference # Multiple analyses.1 and .2 M Endpoint Lead Author

13 27 Suicide ideation/Attempt Bridge (2007)

14 63 Antibiotic-Associated Diarrhea Hempel (2012)

15 15 Risk of Low Birth Weight Kayentao (2013)

16 15 Venous Thromboembolism Nalluri (2008)

17.1 8 Lung Injury Neto (2012)

17.2 9 Mortality Neto (2012)

18.1 8 Cardiovascular Deaths Nguyen (2011)

18.2 11 Prostate Cancer-Specific Mortality Nguyen (2011)

19.1 21 Incident Pancreatitis in 21 Large Statin Trials Preiss (2012)

19.2 7 Incident Pancreatitis in 7 Large Fibrate Trials Preiss (2012)

20 16 Fatal Adverse Events Ranpura (2011)

21 17 All-Cause Mortality Rizos (2012)

22.1 17 Major Cardiovascular Events-Inhaled Anticholinergics Singh (2008)

22.2 5 Major Cardiovascular Events Long term Inhaled Anticholinergics Singh (2008)

23.1 5 Major Cardiovascular Events Udell (2013)

23.2 5 Cardiovascular Mortality Udell (2013)

24 25 In Hospital Mortality Wiener (2008)

25 35 Mortality Zarychanski (2013)

M=Number of Studies in Analysis

Studies where DL and SGS differ substantially are highlighted.
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Table IV

Neto [17] Study Data

Study Arm 1 Arm 2

1 2/26 1/26

2 3/23 2/13

3 27/163 69/212

4 13/558 15/533

5 24/76 23/74

6 3/154 1/75

7 1/75 2/74

8 0/50 1/50

9 1/20 1/20

Entries are Events/Sample Size
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