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Abstract

Background—While the association of diet and disease is well documented, the biologic 

mechanisms involved have not been entirely elucidated. In this study we evaluate how dietary 

intake influences gene expression to better understand the underlying mechanisms through which 

diet operates.

Methods—We used data from 144 individuals who had comprehensive dietary intake and gene 

expression data from RNAseq using normal colonic mucosa. Using the DESeq2 statistical 

package, we identified genes that displayed statistically significant differences in expression 

between individuals in high intake and low intake categories for several dietary variables of 

interest adjusting for age and sex. We examined total calories, total fats, vegetable protein, animal 

protein, carbohydrates, trans-fatty acids, mutagen index, red meat, processed meat, whole grains, 

vegetables, fruits, fiber, folate, dairy products, calcium, and Prudent and Western Dietary Patterns.

Results—Using a false discovery rate (FDR) of <0.1, meat-related foods were statistically 

associated with 68 dysregulated genes, calcium with three dysregulated genes, folate with four 

dysregulated genes, and non-meat related foods with 65 dysregulated genes. With a more stringent 

FDR of <0.05, there were nine meat-related dysregulated genes and 23 non-meat related genes. 

Ingenuity pathway analysis (IPA) identified three major networks among genes identified as 

dysregulated with respect to meat-related dietary variables and three networks among genes 

identified as dysregulated with respect to non-meat related variables. The top networks (IPA 

Network Score >30) associated with meat-related genes were 1) cancer, organismal injury and 

abnormalities, tumor morphology and 2) cellular function and maintenance, cellular movement, 

cell death and survival. Among genes related to non-meat consumption variables the top networks 

were 1) hematological system development and function, nervous system development and 
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function, tissue morphology and 2) connective tissue disorders, organismal injury and 

abnormalities.

Conclusions—Several dietary factors were associated with gene expression in our data. These 

findings provide insight into possible mechanisms whereby diet may influence disease processes.
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Introduction

Diet has been associated with several diseases including atherosclerosis [2], inflammatory 

bowel disease [3], steatosis and non-alcoholic fatty liver disease [4, 5], seizures [6], and 

various cancers including colon and breast carcinoma [7–9]. Moreover, diet has also been 

identified as a risk factor for Type 2 diabetes mellitus, obesity, and metabolic syndrome [10]. 

Beyond its role in disease status, diet has been shown to play an important role in a number 

of physiologic and metabolic processes including bone remodeling [11] and aspects of the 

immune response [12]. The biologic mechanisms involved in these processes is less clear.

Studies have evaluated the role of diet in the regulation of specific physiologic and 

pathologic processes, showing that single dietary metabolites and nutrients play a role in the 

regulation of certain signaling pathways [11, 13–15] or cytokine profiles [16]. Other studies 

have focused on the dietary effects on oxidative stress [17] or the role of potentially 

chemoprotective nutrients [18]. Some of these studies also have looked at localized gene 

expression within specific hypothesized pathways and processes, suggesting that diet has a 

role in the regulation of gene expression [7, 8, 16, 19]. Recently the effects of dietary 

patterns on the entire gene expression profile were investigated, suggesting a differential 

expression of genes in individuals with a Prudent Dietary Pattern verses a Western Dietary 

Pattern and identified specific canonical pathways associated with both dietary patterns [20].

In this study we hypothesize that levels of gene expression in normal colonic mucosa will be 

associated with dietary factors. Dietary factors we consider include sources of calories, 

including animal protein and vegetable protein, carbohydrates, and total fat. We also 

consider trans-fatty acids, total red meat, processed meat, mutagen index, dairy products, 

fruit, vegetables, refined grains, whole grains, sucrose, dietary fiber, calcium, and folate with 

gene expression profiles. Lastly, we examined the association between Prudent Dietary 

Pattern and Western Dietary Pattern with gene expression.

Methods

Total RNA was available from normal colonic mucosa for colon cancer cases who were part 

of the Diet, Activity, and Lifestyle study, an incident, population-based, case-control study 

of colon cancer from Utah and the Kaiser Permanente Medical Research Program (KPMRP) 

[21]. Cases were identified using a rapid-reporting-system and had tumor registry 

verification of a first primary adenocarcinoma of the colon and were diagnosed between 

October 1991 and September 1994 and tumor tissue blocks (used for RNA) were obtained 
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for 97% of all Utah cases and for 85% of all KPMRP cases [22]. Individuals with known 

adenomatous polyposis coli (APC), Crohn’s disease, or inflammatory bowel disease were 

not eligible for the study. The study was approved by the Institutional Review Board of the 

University of Utah and at KPMRP; all study participants signed informed consent prior to 

participation.

Dietary Data

Data were collected by trained and certified interviewers using laptop computers shortly 

after diagnosis. All interviews were audio-taped as previously described and reviewed for 

quality control purposes [23]. Any interview deemed questionable by the interviewer was 

reviewed centrally; this allowed us to evaluate the data by distinguishing between an 

interview that was difficult for the interviewer versus one that was difficult for the 

participant. Additionally, we reviewed audio tapes for all individuals whose nutrient levels 

were considered outliers (over the 95%tile or under the 5 percentile of intake); this enabled 

us to correct any coding errors and determine the quality and face validity of the interview. 

Dietary information was obtained for the year two years prior to diagnosis using an 

extensive diet history questionnaire adapted from the validated CARDIA diet history; most 

individuals were asked to recall usual dietary intake from two to three years ago in order to 

obtain pre-diagnosis diet [24]. Foods were converted to nutrients using the Nutrition Coding 

Center Nutrient Data System Version 19 as well as being grouped into categories of similar 

foods. We assessed both foods and nutrients with gene expression. Foods units were 

standard servings per day, which was ½ cup of fruit, vegetable, or dairy product; meat 

servings were 2 to 3 oz of meat; grain products were ½ cup of rice-type grains or one slice 

of bread. Prudent and Western Dietary Patterns were developed based on principal 

component program [25]. Our Prudent Dietary Pattern was heavily loaded towards diets high 

in fruits, vegetables, whole grains, fish, and chicken, while the Western Dietary Pattern was 

highly loaded towards red meat, processed meats, and refined grains and high-sugar-high-fat 

foods. Additional questions were asked about meat consumption, doneness, and preparation 

methods that were combined and used to create a mutagen index score [26].

RNA processing

RNA was extracted from formalin-fixed paraffin-embedded colonic tissues. FFPE tissue has 

been shown to be a reliable source of RNA for use in conjunction with RNA-seq [27]. The 

study pathologist reviewed slides to delineate carcinoma and normal colonic mucosa. Total 

RNA was extracted, isolated, and purified using the RecoverAll Total Nucleic Acid isolation 

kit (Ambion), RNA yields were determined using a NanoDrop spectrophotometer.

Sequencing Library Preparation

Library construction was performed using the Illumina TruSeq Stranded Total RNA Sample 

Preparation Kit with Ribo-Zero as previously described [28]. Briefly, ribosomal RNA was 

removed from 100 ng total RNA using biotinylated Ribo-Zero oligos attached to magnetic 

beads. Following purification, the rRNA-depleted sample was fragmented and primed with 

random hexamers. First strand reverse transcription was accomplished using Superscript II 

Reverse Transcriptase (Invitrogen). Second strand cDNA synthesis was accomplished using 

DNA polymerase I and Rnase H under conditions in which dUTP is substituted for dTTP, 
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yielding blunt-ended cDNA fragments in which the second strand contains dUTP. An A-

base is added to the blunt ends as a means to prepare the cDNA fragments for adapter 

ligation and block concatamer formation during the ligation step. Adapters containing a T-

base overhang were ligated to the A-tailed DNA fragments. Ligated fragments were PCR-

amplified (13 cycles) under conditions in which the PCR reaction enables amplification of 

the first strand cDNA product. The PCR-amplified library was purified using Agencourt 

AMPure XP beads (Beckman Coulter Genomics).

Sequencing and Data Processing

Sequencing libraries (18 pM) were chemically denatured and applied to an Illumina TruSeq 

v3 single read flow cell using an Illumina cBot. Hybridized molecules were clonally 

amplified and annealed to sequencing primers with reagents from an Illumina TruSeq SR 

Cluster Kit v3-cBot-HS. Following transfer of the flowcell to an Illumina HiSeq instrument, 

a 50 cycle single-read sequence run was performed using TruSeq SBS v3 sequencing 

reagents. The single-end 50-base reads from the Illumina HiSeq2500 were aligned to a 

sequence database containing the human genome (build GRCh37/hg19, February 2009, from 

genome.ucsc.edu) plus all splice junctions generated using the USeq MakeTranscriptome 

application (version 8.8.1, available here: http://useq.sourceforge.net/). Alignment was 

performed using NovoAlign version 2.08.01 available from novocraft.com, which also 

trimmed any adapter sequence. Genome alignments to splice junctions were translated back 

to genomic coordinates using the USeq SamTranscriptomeParser application. Alignments 

were then sorted and indexed using the Picard SortSam application (version 1.100, available 

here: http://broadinstitute.github.io/picard/). Aligned read counts for each gene were 

calculated using pysam (https://code.google.com/p/pysam/) and samtools (http://

samtools.sourceforge.net/). A python script using the pysam library was given a list of the 

genome coordinates for each gene, and counts to the exons and UTRs of those genes were 

calculated. Gene coordinates were downloaded from http://genome.ucsc.edu. Over 17000 

genes that were expressed in colon mucosa were analyzed with dietary factors. Rigid quality 

control procedures were implemented to assure high quality data; participants failing QC 

were dropped from the analysis.

Statistical Methods

Of the 197 initial tumor/non-tumor tissue pairs, 22 subjects failed quality control (QC) based 

on low number of sequence leaving 175 subjects with high quality expression data. Of these, 

144 had dietary questionnaire data. For each dietary factor, our analysis centered on 

contrasting individuals with lower intake to those of individuals with higher intake. Dietary 

data were evaluated using nutrients per 1000 calories and standard servings of food; sample 

tertiles were computed for the consumption levels of each dietary factor. For each such 

dietary variable, we determined which genes displayed statistically significant differential 

expression between the lowest and highest intake tertile categories after adjusting for age 

and sex using the Bioconductor package DESeq2 written for the R statistical programming 

environment; these genes were considered dysregulated. DESeq2 assumes the RNA-Seq 

counts are distributed according to negative binomial distributions. It utilizes generalized 

linear modeling and variance reduction techniques for estimated coefficients to test 

individual null hypotheses of zero log2 fold changes between high and low categories (i.e. 
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no differential expression) for each gene. It employs both an independent-filtering method 

and the Benjamini and Hochberg (BH) [29] procedure to improve power and control the 

false discovery rate (FDR). The default DESeq2 options were used, including replacement 

of outliers, as defined by Cook’s distance, and the Wald test. For further details regarding 

DESeq2, see Love et al. [30]. In identifying genes with differential expression, an FDR of 

0.10 was used. The fold change calculations for differentially expressed genes was 

determined by DESeq2 and represents the log2 change in expression level (i.e. counts) for 

the high versus low dietary categories.

Bioinformatics analysis was performed on the list of Ensemble IDs associated with genes 

identified as differentially expressed between high and low consumption categories for the 

dietary variables of interest using QIAGEN’s Ingenuity Pathway Analysis (IPA) [31]. We 

used genes from Ingenuity Knowledge Base and considered both indirect and direct 

relationships. Causal and interaction networks were generated. Interaction networks were 

limited to 35 molecules per network and 25 networks per analysis, and excluded endogenous 

chemicals. We focused on algorithmically derived interaction networks, which are assigned 

a score based on their relevance to the genes in the input dataset, the number of focus genes 

(i.e. dysregulated genes in our data that are in that network), and their connectivity [32]. The 

score is calculated as −log10P, where P is generated using a Fisher’s exact test [33]. Studies 

have found scores >3 to be significant, with a score of 3 indicating a 1/1000 chance that the 

focus genes are in a network due to random chance [34–36]. Other studies have opted to 

utilize more stringent criteria and higher scores to ensure that their discovered networks are 

highly significant [37, 38]; we utilized highly stringent criteria, only including networks 

with scores over 20. We applied the BH multiple testing correction to assess pathways in 

IPA.

Availability of data are restricted to that authorized in patient consent form and in 

accordance with data transfer agreements and IRB requirements.

Results

The majority of our study population was male and the median age was 65, 13.2% were 

current smokers, and 37.3% currently took aspirin or non-steroidal anti-inflammatory drugs 

on a regular basis (Table 1). The median BMI was 29.6. Within this population few people 

consumed processed meat, with the highest level of intake being less than one serving per 

day. The highest red meat consumption was less than two servings per day. Over half of 

study participants had over two servings of vegetables per day and one serving of whole 

grains per day.

Seven genes were differentially expressed for dietary calcium and folate (Table 2). Sixty-five 

genes were differentially expressed between high and low intake categories among non-meat 

variables (i.e. Prudent Dietary Pattern, fruits, vegetables, and whole grains). This can be 

further broken down to one gene with Prudent Dietary Pattern, one gene with fruit intake, 26 

genes with vegetable intake, and 37 genes with whole grain intake, (Table 3, FDR <0.1). 

Several genes were identified as differentially expressed between consumption categories for 

multiple dietary variables. TXNDC17 was upregulated for both Prudent Dietary Pattern and 
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vegetable intake; MUC5AC was down regulated for vegetable intake, whole grain intake, 

and dietary folate. FOXJ2, NECAP1, and C3AR1 were upregulated for both calcium intake 

and vegetable intake Using a more stringent FDR <0.05, we identify one gene with 

differential expression between calcium intake categories, one with Prudent Dietary Pattern, 

13 with vegetable intake, and eight with whole grain intake (Table 2 and Table 3). Among 

the genes with an FDR <0.05, FOXJ2 was upregulated with high calcium intake and 

TXNDC17 was upregualted with high Prudent Dietary Pattern. In contrast, five of the eight 

genes associated with whole grains were downregulated and four of the 13 genes associated 

with vegetables were downregulated.

Our IPA analysis found three interaction networks significantly associated with non-meat 

consumption (IPA Network Score ≥20). These IPA networks were identified as functioning 

with: cancer, organismal injury and abnormalities, and tumor morphology (Score=31, Focus 

Molecules=11) (Figure 1A); cellular function, maintenance, cellular movement, cell death 

and survival (Score=31, Focus Molecules=15) (Figure 1B), and drug metabolism, molecular 

transport, and small molecule biochemistry (Score=26, Focus Molecules=13) (Figure 1C).

Among genes identified as significantly differentially expressed between high and low meat-

related intake categories, 64 genes were differentially expressed with red meat, two genes 

were differentially expressed with processed meat, and three genes were differentially 

expressed with a Western Dietary Pattern (Table 4). Of these, eight genes were differentially 

expressed by level of red meat and LSAMP was differentially expressed by level of Western 

Dietary Pattern when using a more stringent selection criterion of a maximal FDR of <0.05. 

The majority of these genes were downregulated by red meat consumption; of all of the 

genes identified only IL22RA1, SLC17A4, SLC25A25, MUC17, ZFY, FRK, PEX11G, 
NEDD9, NR3C2, and RPS4Y1 were upregulated by red meat consumption. The two genes 

identified as being differentially expressed for Western Dietary Pattern also were 

differentially expressed for red meat; C3 was downregulated by red meat and processed 

meat.

In IPA analysis, three interaction networks were significantly associated (Score ≥20) with 

meat-related variables (i.e. red meat, processed meat, and Western Dietary Pattern). These 

IPA networks were identified as Hematological system developmental function, nervous 

system development and function, Tissue Morphology (IPA Network Score = 31, Focus 

Molecules 22) (Figure 2A); Connective Tissue Disorders, Organismal Injury and 

Abnormalities, Cardiovascular System Development and Function (Score=29, Focus 

Molecules=14) (Figure 2B); and cellular compromise, cellular function and maintenance, 

protein degradation (Score=21, Focus Molecules 11) (Figure 2C). Online Supplement 1 

shows genes up and down regulated in each of these networks. Some genes were 

differentially expressed between high and low consumption categories for both meat and 

non-meat dietary variables. COL1A1 was down-regulated for vegetables and meat intake; 

MUC5AC was down-regulated for folate, vegetables, whole grains, and meat. Foods and 

nutrients analyzed that were not associated with any differential gene expression (FDR <0.1) 

were mutagen index, total dairy products, carbohydrates, trans-fatty acids, total dietary fat, 

dietary fiber, refined grain products, and sucrose. Additionally, we observed no differences 

in gene expression by level of vigorous physical activity.
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Discussion

Our study provides support for associations between level of dietary intake and gene 

expression in normal colonic mucosa utilizing RNA-Seq which allowed assessment of over 

17,000 genes. Some genes were differentially expressed by intake level across multiple 

dietary variables, generally in the same direction, although there was limited overlap 

between meat and non-meat variables. We observed three IPA interaction networks highly 

associated with meat consumption and three IPA interaction networks associated with non-

meat consumption. These data suggest that dietary influence on gene expression plays an 

important role in a number of physiologic and pathologic processes.

The majority of genes that were differentially expressed with high red meat consumption 

were downregulated. These genes predominately play a role in extracellular matrix (ECM) 

assembly and structure, calcium binding, and the regulation of signal transduction via the 

Wnt signaling pathway. The canonical Wnt signaling pathway triggers β-catenin-dependent 

gene expression, allowing cell cycle progression at the G1/S transition [39]. In particular, we 

found that high intake of meat correlated with downregulation of FZD3, TMEM132B, 

CCDC150, EGFLAM, and NKD1. Both TMEM132B and NKD1 are known to 

downregulate Wnt signaling [40]. Thus meat consumption can contribute to the 

dysregulation of a proto-oncogenic pathway. At the same time, we found that high red meat 

consumption was associated with a downregulation of TP53, encoding for the tumor 

suppressor p53. Both of these findings are consistent with previous findings that red meat 

intake can induce pro-carcinogenic gene expression changes through the p53- and Wnt 

signaling pathways [19]. This is possibly due to the fact that red meat is high in dietary 

heme, a luminal irritant associated with hyperproliferation and hyperplasia through the 

downregulation of feedback inhibitors, including Wnt inhibitors [17]. These findings add to 

the literature that suggest red meat increases risk of several chronic diseases including 

cancer.

High red meat consumption also downregulated the expression of genes associated with 

ECM. Dysregulation of genes involved in the regulation of the ECM and cell matrix 

adhesion, such as matrix metalloproteinases (MMPs), collagen-related genes such as 

COL4A2, COL1A2, and COL1A1, tissue inhibitor of metalloproteinases (TIMPs), and one 

cut homeobox 2 (ONECUT2) have been implicated in a variety of diseases [41]. Moreover, 

red meat is associated with both acute oxidative stress and delayed cytotoxic stress [17]. 

Several genes dysregulated by meat, including THY1, NCL, COL4A2, and KRT1, 
contribute to metastasis and angiogenesis. We found that diet downregulated a variety of 

genes associated with ECM assembly and maintenance, including TIMP1, providing an 

additional mechanistic link between red meat and disease processes.

It is also worth noting that red meat upregulated some genes, namely genes with products 

involved in phosphate transport (SLC17A4 and SLC25A25) and cytokine signaling (MUC17 
and IL22RA1). Diet is known to play an important role in bone health, with meat protein 

increasing acid load and regulating calcium balance [42]. The upregulation of genes 

involved in phosphate transport, as well as our observed downregulation of calcium binding 

genes (SPARC, CEMIP, HSPA5, HSP901B, VWDE, SLC25A25, CIR, CLDN1, and 
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EGFLAM), may help explain the mechanism by which meat consumption modulates bone 

metabolism, beyond the effects of dietary protein on acid load. Moreover, the upregulation 

of MUC17 and IL22RA1 may play a role in meat-induced inflammation and inflammation-

related diseases. The exact function of MUC17 is unknown; however, other mucins are 

reportedly involved in the regulation of inflammation [43] and MUC17 expression is related 

to certain cancers, including pancreatic cancer [44]. IL22 is produced by T lymphocytes and 

mediates cellular inflammatory responses via the activation of intracellular kinases and has 

been implicated in a variety of inflammatory diseases, including colon cancer and ulcerative 

colitis [45], both of which have been associated with red meat consumption [17, 46].

Several genes associated with immune response were down-regulated by high meat 

consumption, including TRIL and IGFGH1. We found that high red meat consumption 

decreased expression of C1R and C1S. C1S encodes for a component of C1 in the classic 

complement pathway; CIR is the R subcomponent of C1. The downregulation of the 

components of the complement cascade by meat consumptions seems paradoxical; however, 

evidence suggests that the proximal classical complement components may provide a 

protective effect against atherosclerosis [47, 48]. While atherosclerosis is an inflammatory 

disease, Hovland et al. suggest that the classic complement pathway may be important for 

tissue homeostasis by the clearance of cell debris and immune complexes [48]. Thus it is 

possible that a downregulation of proximal components of the classic pathway, such as 

components of C1, could paradoxically contribute to the pro-inflammatory effects of red 

meat. On the other hand, upregulation of MUC17 by meat could help explain its association 

with a number of factors, including inflammation [20, 46].

Further evaluation of the genes associated with non-meat related variables showed that genes 

associated with calcium were upregulated, two of the four genes associated with folate were 

upregulated, and the TXNDC17 gene associated with Prudent Dietary Pattern was 

upregulated. The genes associated with calcium consumption were involved in 

transmembrane transport, regulation of transcription and translation, cell survival and the 

complement system. Calcium plays a key role in muscle contraction and relaxation, blood 

coagulation, nerve transmission and keratinocyte differentiation [49]. The genes upregulated 

by high calcium consumption include FOXJ2, encoding for a transcription activator; 

NECAP1, whose product is involved in receptor mediated endocytosis; and C3AR1, 

encoding for a C3A receptor. A Prudent Dietary Pattern was associated with roughly three 

servings of milk per day in one study [20] and was associated with decreased risk of cancer 

and the B cell receptor pathways [20]. Our observed calcium-associated upregulation of 

tumor suppressors and a C3A receptor is consistent with these earlier findings.

Folate-rich foods include green vegetables and citrus fruits, and folate plays a key role as a 

coenzyme involved in DNA synthesis, amino acid metabolism, and methylations [50]. High 

versus low folate intake was associated with the upregulation of SLC37A2 and CLDN4 and 

the downregulation of MUC5AC. The gene products for SLC37A2 and CLDN4 are involved 

in carbohydrate transport and tight junction organization, respectively. Tight junction 

proteins, such as claudins, are related to NF-κB, mTOR and Nrf2 [51, 52], while the 

expression of tight junction proteins is associated with amino acids, such as arginine and 

tryptophan [51, 52]. As folic acid regulates amino acid metabolism, this could explain its 
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role in modulating the expression of tight junction proteins. Dietary folate also 

downregulates the expression of MUC5AC, as some mucins have been associated with 

inflammation [43], this could help explain the reported association between folate and 

certain cancers and cardiovascular diseases [50]. We also found that a Prudent Dietary 

Pattern upregulated TXNDC17, which modulates NF-κB. NF-κB signaling plays a role in 

inflammation, apoptosis and a variety of cellular stress responses [15]. TXNDC17 
overexpression has been shown to inhibit TNF-α induced activation of NF-κB [53], thus its 

upregulation could contribute to the decrease in inflammation and cancer previously noted 

with a Prudent Dietary Pattern [20].

We found that the majority of genes differentially expressed between intake levels of whole 

grains and vegetables were down-regulated, especially for vegetable intake. The genes that 

are differentially expressed with level of whole grain and vegetable consumption are 

associated with NF-κB signaling, regulation of apoptosis, cytoskeleton dynamics, and 

carbohydrate metabolism. Carbohydrates are important modulators of insulin action on 

glucose metabolism [54], which is consistent with our findings regarding PFKL, ABCC3 
and GMPPB down-regulated expression with whole grain consumption and HSPG2 and 

REG4 which were down-regulated by high vegetable consumption. Both fiber and 

polyphenols attenuate inflammation [46]. Phenolic compounds are major bioactive 

compounds in whole grains and polyphenols are known to interfere with the NF-κB 

signaling pathway [55], which is consistent with our data showing a downregulation of 

genes involved in the NF-κB signaling. Our data suggests that the previously described 

polyphenolic perturbation of nuclear signaling, and anti-inflammatory effects [56], may be 

explained by the differential gene expression seen with both whole grain and vegetable 

levels of intake.

Some genes were up-regulated by high vegetable intake, including ANP32A, NECAP1, and 

HELZ. ANP32A, encodes for a tumor suppressor [57]; HELZ, encodes an RNA helicase, 

which has been shown in conjunction with other genes to regulate downstream genes as a 

transcription factor containing histone methyltransferase activity [58]. In association with 

SMYD3, HELZ plays a role in the proliferation of cancer cells [58]. It has also been 

suggested that HELZ plays a wider role in global translation activation and the 

phosphorylation (activation) of Ribosomal protein S6, which in turn activates eIF4b [59]. 

This indicates that the upregulation of HELZ, could help explain the association of 

vegetables with several factors, including inflammation [20, 46] through the translational 

activation of numerous genes within the inflammatory process.

IPA found three interaction networks with meat consumption and three interaction networks 

associated with non-meat consumption. This correlates with earlier IPA studies showing that 

Western Dietary Pattern is associated with five canonical pathways related to cancer, six 

pathways related to immune and/or inflammatory responses and three pathways related to 

cardiovascular signaling and that Prudent Dietary Pattern is associated with nine IPA 

canonical pathways associated with immune/inflammatory response, and six pathways 

associated with cancer [20]. It has previously been noted that Western Dietary Patterns are 

associated with a pro-inflammatory gene expression profile and that Prudent Dietary 

patterns are associated with an anti-inflammatory gene expression profile [60], which would 
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be consistent with our described networks. Moreover our networks suggest that while both 

meat and non-meat related dietary variables are associated with the cellular functions of 

intracellular transport and ECM regulation, the signal transduction pathways differ between 

meat and non-meat networks. We found meat consumption to be associated with TP53, 

NFκB1, and MAPK signaling through the ERK1/2 signaling pathway. The Ras-MAPK 

system is involved in cell proliferation [61]; moreover, our findings in this network are 

consistent with earlier findings that high fat diets, the cooked meat carcinogen 2-Amino-1-

Methyl-6-phenylimidazo[4,5-b]-pyridine (PhiP), and sodium nitrate can activate the MAPK 

pathways [9, 16, 62]. Non-meat consumption appears to play a greater role in the regulation 

of the PI3K complex, TNF-signaling, and TGFB1-signaling pathways. All of these pathways 

have been identified as major signaling pathways for colon cancer [63–66].

To the best of our knowledge this is one of the few studies to examine the role of diet on 

gene expression using data from a population-based study and comprehensive gene 

expression data. Our study has a number of strengths including using RNA-Seq which 

produces global gene expression data for each RNA sample and is an ideal method to 

undertake a discovery study such as ours [67, 68]. However, it is important to keep in mind 

that the gene expression profile is most relevant to current diet exposure. The time between 

tissue ascertainment and referent period for diet in our study could be from several months 

to three or possibly four years. While lack of findings could indicate a disparity in time 

between exposure and tissue sample acquirement, finding associations would imply that the 

exposure is recent enough, in that dietary patterns are consistent over time, to alter the 

expression. Additionally, we have utilized normal colonic mucosa, so genes would have to 

be expressed in colon tissue for detection. It should be recognized that different platforms 

carry different technical strengths and weaknesses that can influence results. Thus, it is 

essential to validate these findings in other populations using the methods we used here as 

well as other platforms to better understand associations between diet and gene expression. 

We utilized DESeq2 to assess gene expression data adjusting for age and sex. We previously 

have shown associations between cigarette smoking and alcohol and gene expression in 

these samples [69]. Likewise, we report statistically significant differential expression as an 

indicator of dysregulated genes, however, it is not clear the level of dysregulation that is 

necessary to result in functional significance.

Although this study was conducted in a rigorous manner, there are limitations. Our dietary 

data were collected shortly after diagnosis. Although our dietary questionnaire allowed for 

reporting of over 800 food items and we implemented extremely rigid quality control 

procedures, it is possible that recall could have been influenced by the disease status. While 

this is a possibility, it should be noted that our risk estimates for diet and colon cancer are 

almost identical to those reported by large cohort studies [70]. Additionally, these data 

reflect foods consumed in the early 1990s. While we believe that people still eat the foods 

that we report here, different dietary patterns may be more important today than the Western 

and Prudent diet that we report.

Our data support the hypothesis that diet is associated with gene expression. Our data 

showed that diet was involved in de-regulation of genes involved in numerous pathways and 

functions such as Wnt-signaling, MAPK, NF-κB, TP53, ECM maintenance, cytoskeletal 
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structure, and cell cycle regulation. These data suggest that differential gene expression 

associated with dietary intake is a possible mechanism by which diet can influence a variety 

of biological processes and functions. Focused functionality studies evaluating dietary 

influence on gene expression are needed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. IPA networks associated with dysregulated genes based on level of non-meat-related 
dietary intake
Figure 1A. Hematological system development and function, nervous system development 

and function, tissue morphology (Score 31)

Figure 1B. Connective tissue disorders, organismal injury and abnormalities, cardiovascular 

system development and function (Score 29)

Figure 1C. Cellular compromise, cellular function and maintenance, protein degradation 

(Score 21)

Red indicates up-regulation and green indicates down regulation. Node shapes denote 

enzymes ; phosphatases Δ; kinases ; peptidases , G-protein coupled receptor ; 

transmembrane receptor ; cytokines ; ion channel ; transporter ; translation regulator 

; transcription regulator ;; and complex/group 
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Figure 2. IPA networks associated with dysregulated genes based on level of meat related dietary 
intake
Figure 2A. Cancer, organismal injury and abnormalities, and tumor morphology (Score 31)

Figure 2B. Cellular function and maintenance, cellular movement, cell death and survival 

(Score 31)

Figure 2C. Drug metabolism, molecular transport, small molecule biochemistry (Score 26)

Red indicates up-regulation and green indicates down regulation. Node shapes denote 

enzymes ; phosphatases Δ; kinases ; peptidases , G-protein coupled receptor ; 

transmembrane receptor ; cytokines ; ion channel ; transporter ; translation regulator 

; transcription regulator ;; and complex/group 
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Table 1

Description of Study population

N %

Sex Male 80 55.6%

Female 64 44.4%

Smoking Status Never 60 41.7%

Former 65 45.1%

Current 19 13.2%

Recent NSAID Use No 89 62.7%

Yes 53 37.3%

Alcohol Long Term and Current (gm/day) Low 53 36.8%

Mod 68 47.2%

High 23 16.0%

Race/Ethnicity Non-Hispanic White 124 86.1%

Black 8 5.6%

Hispanic 9 6.3%

Other/NA 3 2.1%

Education (years) <High School 24 16.7%

High School 42 29.2%

Some College 50 34.7%

College Grad/Higher 28 19.4%

Median Interquartile Range (IQR)

Age (years) 65.0 (56, 71)

BMI (kg/m2) 29.6 (26.6, 33.2)

Hours Moderate Physical Activity/week 1.5 (0.0, 3.9)

Meat Consumption

Processed meat (2–3 oz servings/day) Low1 0.05 (0.01, 0.07)

Intermediate 0.19 (0.14, 0.23)

High 0.45 (0.35, 0.59)

Red Meat (2–3 oz servings/day) Low 0.43 (0.29, 0.61)

Intermediate 0.95 (0.84, 1.07)

High 1.58 (1.41, 1.93)

Non-Meat Consumption

Calcium (mg/1000 Kcal) Low 300.71 (261.72, 326.90)

Intermediate 406.47 (380.31, 445.51)

High 585.69 (541.01, 697.95)

Fiber (g/1000 Kcal) Low 7.32 (6.75, 8.09)

Intermediate 10.03 (9.52, 10.43)

High 13.06 (12.15, 15.62)

Folate (mcg/1000 Kcal) Low 118.35 (103.41, 126.46)

Pharmacogenet Genomics. Author manuscript; available in PMC 2017 June 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Pellatt et al. Page 19

N %

Intermediate 151.61 (142.85, 161.84)

High 203.63 (189.98, 247.94)

Vegetables (1/2 cup servings/day) Low 1.41 (1.03, 1.90)

Intermediate 2.85 (2.55, 3.25)

High 4.59 (4.13, 5.74)

Whole Grains (servings/day) Low 0.43 (0.33, 0.63)

Intermediate 1.12 (1.02, 1.29)

High 2.14 (1.82, 2.52)
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