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Abstract

BACKGROUND—The gap between genotype and phenotype is filled by complex biochemical 

systems most of which are poorly understood. Because these systems are complex, it is widely 

appreciated that quantitative understanding can only be achieved with the aid of mathematical 

models. However, formulating models and measuring or estimating their numerous rate constants 

and binding constants is daunting. Here we present a strategy for automating difficult aspects of 

the process.

METHODS—The strategy, based on a system design space methodology, is applied to a class of 

16 designs for a synthetic gene oscillator that includes seven designs previously formulated on the 

basis of experimentally measured and estimated parameters.

RESULTS—Our strategy provides four important innovations by automating: (1) enumeration of 

the repertoire of qualitatively distinct phenotypes for a system; (2) generation of parameter values 

for any particular phenotype; (3) simultaneous realization of parameter values for several 

phenotypes to aid visualization of transitions from one phenotype to another, in critical cases from 

functional to dysfunctional; and (4) identification of ensembles of phenotypes whose expression 

can be phased to achieve a specific sequence of functions for rationally engineering synthetic 

constructs. Our strategy, applied to the 16 designs, reproduced previous results and identified two 

additional designs capable of sustained oscillations that were previously missed.

CONCLUSIONS—Starting with a system’s relatively fixed aspects, its architectural features, our 

method enables automated analysis of nonlinear biochemical systems from a global perspective, 

without first specifying parameter values. The examples presented demonstrate the efficiency and 

power of this automated strategy.
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INTRODUCTION

Biological systems display an enormous variety of phenotypes that emerge through complex 

interactions between their genotype and environment. Relating genotype and environment to 

phenotype is difficult,1 and at a deep level requires mathematical models of the organism’s 

intervening biochemistry. Realizing an appropriate model for most biological systems is 

challenging because there are large number of parameters and their values are largely 

unknown and difficult to measure or estimate.2,3 The phenotypes manifested by the model 

representing the system are the result of several mappings: genome to genotypically 

determined structural parameters of the model, environment to environmentally determined 

input parameters of the model, and the gene-by-environment space of model parameters to 

the quantitative phenotypes of the model representing the biochemical system. In view of 

this last mapping, we have defined ‘phenotype’ as the attributes of a biochemical system in 

steady-state determined by a unique set of values in the gene-by-environment space of 

model parameters.

Elucidation of the mechanistic link from genotype and environment to phenotype is a nearly 

intractable problem for two primary reasons. (a) The phenotype corresponding to a unique 

point in parameter space is the manifestation of a complex system that is analytically 

intractable and requires sampling numerous simulations for its characterization. (b) The 

parameter space represents an infinite number of phenotypes in a homogenous continuum. 

Thus, a high-dimensional parameter space can only be sparsely sampled, and it is unlikely 

that the full repertoire of phenotypes latent in any particular system design will be revealed. 

Moreover, every complex model has hidden fragilities, which under certain combinations of 

environment and genotype manifest themselves in unintended and dysfunctional 

consequences, and it is a fundamental challenge to identify these.

In previous attempts to address this challenge we developed an approach that partitions 

parameter space into a finite number of ‘chunks’ or regions (technically, space-filling 

convex irregular polytopes). The partitioning is not arbitrarily imposed, but objectively 

determined by the system itself. We defined this space as the ‘system design space’, which 

has a finite number of discrete and structured regions, in contrast to parameter space, which 

is infinite, continuous and homogenous. The characteristic phenotype throughout a region is 

defined as a ‘qualitatively distinct phenotype’, and we simply refer to these as the phenotype 

of a region in design space when the context makes this clear. The collection of qualitatively 

distinct phenotypes (or phenotypic regions) is defined as the ‘phenotypic repertoire’ of the 

system. Moreover, each qualitatively distinct phenotype is characterized by a tractable 

subsystem model that allows efficient analysis of the phenotype and ranking of its relative 

fitness according to objective quantitative criteria. Thus, partitioning the gene-by-

environment space of model parameters into the system design space largely avoids the 

sampling problem and, by efficiently identifying phenotypic regions of interest, it facilitates 

a focused analysis to refine the phenotype characterization using conventional techniques. A 

simple mass-action example, amenable to a completely analytical as well as intuitive 

treatment, can be found in a recent review.4
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We previously used design space methodology to characterize several natural systems5–9 

and a number of synthetic constructs.10,11 In each case, the approach started with 

experimentally determined parameter values for an established model. An early application 

of this approach to the oxygen stress response system in human erythrocytes revealed three 

qualitatively distinct phenotypes whose ranked fitness revealed a physiological, pathological 

and potentially lethal phenotype.12 Experimental data for 67 well-characterized variants of 

the G6PD enzyme, the key component of the stress response system, exhibited two of the 

three phenotypes: variants from ‘normal’ individuals were typically associated with the 

physiological phenotype and those from ‘hemolytic’ individuals were typically associated 

with the pathological phenotype. None of these 67 well-characterized variants was 

associated with the phenotype having the worst fitness characteristics, which we suggest 

might indicate that such variants are lethal. However, as systems become larger and more 

complex with relatively few known parameter values, systematic and automated strategies 

that identify, analyze and rank their qualitatively distinct phenotypes become essential.

Here we introduce a new strategy, based on system design space methodology, that inverts 

the previous order of analysis and automates the entire process. The strategy starts with the 

relatively fixed, architectural, features of a model—as distinct from its parameters (for more 

on this distinction see System Architecture in Supplementary Online Methods)—and 

proceeds automatically in four parts: (a) enumerating the phenotypic repertoire without 

specifying parameter values, (b) finding a set of parameter values for the realization and 

characterization of each qualitatively distinct phenotype, (c) identifying a two-dimensional 

slice of system design space that allows simultaneous visualization of several regions 

representing qualitatively distinct phenotypes and (d) identifying an ordered sequence of 

phenotypes capable of modeling specific functional characteristics of natural systems or 

guiding construction of synthetic systems to achieve desired functions. We demonstrate 

validity of the automated strategy, without specifying parameter values, by applying it to a 

previously analyzed gene circuit oscillator, which was based on experimentally measured 

and estimated parameter values. The demonstration is extended to a general class of two-

gene circuits, showing that it not only reproduces earlier results but also reveals new results 

previously overlooked.

MATERIALS AND METHODS

Details in Supplementary Online Methods provide (a) background on the design space 

methodology, (b) a simple example (see Supplementary Figure M1) as a vehicle to introduce 

the more abstract and technical aspects for each part of the strategy and (c) a description of 

the methodology applied to a general class of two-gene circuits. The Results section 

provides in parallel a more intuitive description of the same strategy and the application to 

synthetic circuits for the design of an oscillator. Readers immediately interested in the 

technical aspects might wish to proceed directly to Supplementary Online Methods and then 

return to the new results presented here.
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RESULTS

We first illustrate our strategy by reanalyzing a two-gene relaxation oscillator circuit that 

displays rich behaviors including hysteresis and oscillations.10 Then, we perform an 

automated analysis for the class of two-gene circuitry involving an activator and a repressor 

as shown in Figure 1.

Two-gene relaxation oscillator

We apply our strategy to a two-gene synthetic oscillator that has been shown to exhibit 

damped oscillations.13 Its design is similar to that in Figure 1 with architectural indices 

given by π1 = 1, δ1 = 1, π3 = 1, and δ3 = 0. We previously formulated a mechanistic model, 

incorporated experimentally estimated parameter values, performed conventional bifurcation 

analysis as well as our design space analysis, and showed that the design is capable of 

exhibiting sustained oscillations.10 Our goal here is to test the extent to which our automated 

methods reproduce the previous results, but without experimentally estimated parameter 

values.

The first part of our automated strategy involves enumerating the qualitatively distinct 

phenotypes of the system to identify its complete phenotypic repertoire (e.g., see 

Supplementary Table M1). The mechanistic model and the meaning of its parameters can be 

found in Supplementary Online Methods. It has a maximum of 36 potentially valid 

qualitatively distinct phenotypes, as defined within the framework of the design space 

approach.14 However, our automatic enumeration reveals that only 15 of these are valid 

somewhere in parameter space. The phenotypic repertoire of the system is listed in Table 1 

and shown graphically in the left panel of Figure 2a by an arbitrary color-coded Case no. in 

design space.

The second part of our automated strategy involves finding a set of parameter values that 

realizes each qualitatively distinct phenotype and facilitates their further characterization 

(e.g., see Supplementary Figure M2). The steady-state solution, or fixed point, of the S-

system model identified with each phenotype can be determined analytically, and diverse 

steady-state and local dynamic characteristics can then be determined.15, 16 As shown in the 

last column of Table 1, we find phenotypes that are stable, exponentially unstable and 

oscillatory unstable. The number of eigenvalues with positive real part is the phenotypic 

characteristic plotted as a heat map in the left panel of Figure 2b. The case with two 

complex conjugate eigenvalues having positive real part is consistent with limit cycle 

oscillations arising through Hopf bifurcations.10,11 Thus, the results of our stability analysis 

show that only one phenotype, Case 23, has the potential to exhibit sustained oscillations. 

By using the automated strategy with a parameter-independent approach we have obtained 

the same oscillatory phenotype as previously obtained with estimated and experimentally 

measured parameter values,10 as well as similar neighboring phenotypes in design space 

(reproduced in the right panels of Figure 2 for comparison).

The third part of our automated strategy involves identification of parameter values that 

allow different phenotypes to be located in the same view (slice) of design space (e.g., see 

Supplementary Figure M3). A special case of this capability allows us to find the maximum 
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number of qualitatively distinct phenotypes capable of being visualized together in a plane 

(e.g., see Supplementary Figure M4), 11 as shown for this example in Figure 2a: Cases 1, 

13, 17, 19, 21, 22, 23, 24, 29, 35 and 36. Thus, our automated design space strategy has (a) 

efficiently reproduced previous results for this relaxation oscillator by identifying the 

phenotype that exhibits the potential for oscillatory behavior and by obtaining a concrete 

example showing sustained oscillations, and (b) demonstrated that the design space in the 

left panel of Figure 2a contains most of the phenotypic repertoire and thus is representative 

of the rich behavior this system is capable of exhibiting.

General class of two-gene oscillator designs

We previously formulated mechanistic models for seven designs, involving one of three 

architectures and four modes of transcriptional control, and compared them under conditions 

that maximize their potential for sustained oscillation.11 Here we use the same three parts of 

the strategy described in the previous subsection to analyze the broader class of 16 two-gene 

circuits shown in Figure 1 with four modes of transcriptional control for both regulators. The 

mathematical model for this general class and the detailed methods of analysis are included 

in Supplementary Online Methods.

For each design we apply our automated strategy to (a) enumerate the qualitatively distinct 

phenotypes, (b) obtain a set of parameter values for each of the valid phenotypes and 

determine the number of potential oscillatory phenotypes, and (c) determine the maximum 

number of oscillatory phenotypes that can be realized and visualized together in a plane. The 

results from the first two parts are summarized in Table 2, where the strategy identified 

seven of the 16 designs that are unable to produce oscillatory phenotypes. These designs 

lack the essential delay and co-operativity required for an unstable focus and a stable 

limitcycle oscillation to exist. For example, the D.7 design (with indices π1 = 1, δ1 = 0, π3 = 

0, and δ3 = 1 in Figure 1) has constitutive expression of activator and a negative auto-

regulatory feedback loop, which is antagonized by the activator (i.e., a repressor-primary 

mode of transcriptional control11). This is a simple three-step pathway with an effective co-

operativity of two. It is known that a system with three steps needs an effective co-

operativity more than eight.17,18 Thus, these seven designs are not expected to exhibit 

sustained oscillations.

Beyond these expected cases, the automated analysis revealed surprising new results. We 

found two additional designs within the general class of 16 that can exhibit oscillatory 

behavior (D.11 and D.3) and cases of multiple oscillatory phenotypes for a given design. 

The first of the newly identified designs (D.11: π1 = 0, δ1 = 0, π3 = 1, δ3 = 1) has the 

potential for oscillation with two different phenotypes: the first phenotype has interactions 

that are effectively equivalent to those of a negative-only architecture (D.9: π1 = 0, δ1 = 0, 

π3 = 1, δ3 = 0); the second phenotype has interactions that cannot be reduced to those found 

in one of the designs we previously identified. The second of the newly identified designs 

(D.3: π1 = 0, δ1 = 0, π3 = 0, δ3 = 1) has the potential for oscillation in one phenotype with 

effective interactions that also cannot be reduced to one of the original designs.11 The new 

designs, D.11 and D.3, involve repressor-only control of activator transcription and dual 

modes of control for repressor transcription. These designs share the same general 
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architecture but involve alternative dual modes of control of repressor transcription; D.11 is 

the activator-primary design (positive feedback antagonized by repressor) and D.3 is the 

repressor-primary design (negative feedback antagonized by activator). Hence, through our 

automatic strategy we have identified two entirely new designs that bring the total to nine 

irreducible designs within this general class that have the potential for oscillatory behavior.

In Table 2 we show that our automated strategy identified five of these nine designs with 

multiple phenotypes that exhibit the potential for oscillation. These additional oscillatory 

phenotypes result from interactions that are equivalent to those found in one of the other 

nine irreducible oscillatory designs. Amongst all the designs, D.12 has the largest number of 

oscillatory phenotypes, with a total of four represented by Cases 16, 18, 43 and 45. Case 45 

maximizes the interactions within the system and has the architecture characteristic of this 

oscillator. Cases 16 and 43 have dominant terms that reduce the system to one of the original 

designs (a simple negative-only feedback loop, D.9, and a relaxation oscillator, D.10, 

respectively). Case 18 has dominant terms that reduce the system to one of the new 

oscillator designs we have identified in this paper (D.3).

In the third part of our strategy, we pose the question: is there a set of parameter values such 

that all four of the oscillatory phenotypes of design D.12 can be simultaneously realized 

within the same two-dimensional slice of design space (i.e., where all but two parameters are 

fixed)? The task of identifying parameter values that simultaneously realize multiple 

observed or desired phenotypes has important implications for critical hypothesis testing; 

yet, this task is extremely challenging using conventional methodologies. By applying our 

strategy we readily identify a slice in which all four potential oscillatory phenotypes are 

simultaneously visualized within adjacent regions, as shown in Figure 3a.

The actual limit-cycle oscillations have parameter values that reside within a single 

contiguous area of design space that includes parts of all four phenotypic regions (Figure 

3b). Simulations of the full system using parameter values located within each of these four 

regions shows three examples of sustained oscillation and one example of damped 

oscillation. Thus, our results have automatically determined that the ensemble of four 

distinct oscillator phenotypes for the D.12 design can be simultaneously realized within the 

same two-dimensional slice of design space. This approach to the identification of 

ensembles of phenotypes also can be used in the fourth part of our four-part strategy to 

automatically order ensembles of phenotypes to achieve a specific sequence of functions to 

replicate natural systems or to rationally engineer synthetic constructs. The details of this 

innovation and a specific example can be found in Supplementary Online Methods.

DISCUSSION

The integration of rigorously defined phenotypes into a system design space allows the 

qualitatively distinct phenotypes of a system to be identified, enumerated, characterized and 

compared. The landmarks in system design space represent particular constellations of 

parameters that define relevant design principles.7 All these aspects of the design space 

strategy would be further enhanced if the strategy could be more fully automated. This has 

been the motivation for the work presented here. The automated strategy provides a novel 
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method of model reduction with the advantage of efficiently identifying regions of interest 

in the overall phenotypic landscape. The behavior in these regions can then be examined 

with conventional methods to obtain a more refined analysis of the full system, particularly 

near boundaries between phenotypes where the differences tend to break down.10 Parameter 

values can be bounded and even fixed by specific constraints, and once constrained, the 

analysis can guarantee that parameters meet realistic requirements. Although scalability is 

an issue being actively explored, there is compensation in that computations can be 

performed in parallel (see Part 1 in Supplementary Online Methods).

As illustrations of these innovations we have provided applications to different gene circuit 

designs exhibiting rich dynamic behaviors that include bi-stability and limit-cycle 

oscillations. In the application to a general class of two-gene circuits we identified nine out 

of 16 designs capable of exhibiting sustained oscillatory behavior, with two being new 

designs overlooked in an earlier study. Moreover, for many designs in this class we 

identified multiple phenotypes capable of exhibiting oscillatory behavior. For one design we 

found an ensemble of four distinct oscillatory phenotypes that can be visualized within a 

single relevant slice of design space.

This identification and characterization of the phenotypic potential of nonlinear models can 

serve as a rigorous basis for model discrimination in the process of hypothesis testing. Once 

a working hypothesis has been formulated in terms of system architecture, the task of 

extracting and testing its latent implications becomes a challenge because of the large 

number of unknown and in many cases unknowable parameter values. The automated design 

space strategy introduced in this paper offers four specific tools that address this challenge. 

First is an enumeration of the phenotypic repertoire for a system that does not require values 

for its parameters. Second is the generation of a specific set of parameter values for the 

realization of each qualitatively distinct phenotype. Third is the discovery of ensembles of 

phenotypes that can be simultaneously realized in particular slices of design space to 

improve visualization and understanding of transitions between phenotypic regimes. Fourth 

is the ability to identify ensembles of phenotypes that can be ordered to achieve a specific 

sequence of desirable behaviors (e.g., see Supplementary Figure M5 and Part 4 in 

Supplementary Online Methods). Automating these steps in the design space strategy allows 

for faster cycles of hypothesis testing.

The automated design space strategy is focused on nonlinear systems governed by chemical 

and biochemical kinetics. Since these characterize the vast majority of cellular processes, 

this strategy is likely to be broadly applicable in biology for understanding natural systems 

and constructing synthetic systems. We speculate that other types of nonlinearity in other 

types of systems also might be amenable to this strategy because a wide variety of nonlinear 

systems can be recast into the generalized mass action system of equations that is at the 

heart of the design space approach.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
General class of two-gene circuits with one activator and one repressor. The species 

represent activator mRNA, X1; nascent activator protein, XA; mature activator protein, X2; 

repressor mRNA, X3; nascent repressor protein, XR; and mature repressor protein, X4. 

Barbed arrows represent stimulatory influences; blunt arrows represent inhibitory 

influences. Arrows ending on the shaft of other arrows represent influence on a given 

process; horizontal arrows represent mass flow. The alternative modes of transcription 

control are shown inside the large dashed boxes. The alternatives include two dual, one 

single and one constitutive mode of transcription control. The π and δ are binary indices that 

define the mode of transcriptional control. The primary mode of transcriptional control 

involves an activator (π = 1) or a repressor (π = 0). The transcriptional control involves dual 

(δ = 1) or single (δ = 0) regulators. The combination δ1 = 0 and π1 = 1 (or δ3 = 0 and π3 = 0) 

indicates a constitutive mode of transcription control for the activator (or repressor). For 

example, the relaxation oscillator design is represented by π1 = 1, δ1 = 1, π3 = 1 and δ3 = 0. 

Note: the single modes of transcriptional control of the activator (Box 1) and repressor (Box 

2) are different.
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Figure 2. 
Analysis of the relaxation oscillator design centered on the set of parameter values 

automatically determined for the oscillatory phenotype. Results from the automated strategy 

without specifying values for the parameters (left panels) are compared with results from a 

previous study10 based on experimentally measured and estimated values for the parameters 

(right panels). (a,b) System design space with the effective rate constant for inactivation of 

the two regulators on the x and y axes. (a) Enumeration of the qualitatively distinct 

phenotypes identified by color. (b) The number of eigenvalues with positive real part 

represented as a heat map on the z axis: blue for 0 eigenvalues with positive real part (mono-

stability); red for an overlap of Cases consisting of one with 1 and two with 0 eigenvalues 

having positive real part (bi-stability); yellow for two complex conjugate eigenvalues with 

positive real part (unstable focus); orange for an overlap of Cases consisting of one with 0, 

one with 1 and one with 2 eigenvalues having positive real part. The overlaps represented by 

orange regions correspond to three fixed points: a stable node, an unstable node and an 

unstable focus; boundaries between orange and yellow regions have the potential for Saddle-

Node into Limit Cycle (SNIC) bifurcations that produce transitions between stable steady-

state behavior and large-amplitude oscillations.10 (c) Temporal behavior of repressor 

concentration X4 determined by simulation of the full system with parameter values from the 

automatic strategy (⚫ in left panels) and with experimentally determined values from the 

previous study (★ in right panels). Note that the values of the parameters on the x and y axes 

of both panels are near the center of the region of potential oscillation (yellow+orange). The 

values in the left panel are automatically determined, whereas those in the right panel are 

manually selected to be near the center of the region of potential oscillation.
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Figure 3. 
Example of an ensemble of four oscillatory phenotypes in a two-dimensional slice of system 

design space for the D.12 design. (a,b) System design space with the effective rate constant 

for inactivation of the two regulators on the x and y axes, normalized with respect to the 

growth rate, μ, with a 1 h doubling time. See caption of Figure 2 for details. (c–f) Temporal 

behavior of normalized repressor concentration x4 determined by simulation of the full 

system within the phenotypic regions of potentially oscillation in panels (a,b) indicated by 

the symbols in the upper-left corners (regions 43 ⚫, 16 ■, 45 ▲ and 18 ▼). It should be 

noted that sustained oscillations may dynamically cycle through different qualitatively 

distinct phenotypes in state space.11
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Table 1

Enumeration of the phenotypic repertoire and potential dynamic behaviors for the relaxation oscillator design

Case no. Case signature No. of eigenvalues with positive real part

1 111111111111 0

7 111121111111 0

8 111121111121 0

13 211111111111 1

15 211111112111 0

17 211111113111 1

19 211121111111 1

20 211121111121 1

21 211121112111 0

22 211121112121 0

23 211121113111 2

24 211121113121 1

29 311111113111 0

35 311121113111 0

36 311121113121 0

Each design has a unique System Signature defined by a pair of integers for each equation of the system; the first of each pair indicating the 
number of positive terms and the second the number of negative terms in each equation. The System Signature in this application is 
[311121113121]. Each potential phenotype has a Case Signature, analogous to the System Signature, with the first of each pair signifying a 
particular term among the positive terms and the second a particular term among the negative terms in each equation. The potential phenotypes are 
given arbitrary sequential Case Numbers according to conventional digital counting of their Signatures. In this application: Case 1, 
(111111111111); Case 2, (111111111121); Case 3, (111111112111); Case 4, (111111112121); Case 5, (111111113111); ‶; Case 36, 
(311121113121). Note that 21 of the 36 potential phenotypes are not realizable; e.g., Cases 2 through 6. The number of eigenvalues with positive 
real part indicates whether the phenotype is stable with zero, exponentially unstable with one, or oscillatory unstable with two that are complex 
conjugate. Eigenvalues are determined using the set of parameters automatically determined for each of the phenotypes. For further details see 
Supplementary Online Methods.
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Table 2

Summary of global properties for the 16 designs in the general class of two-gene circuits

Design identifier Indices for the mode of control
a

Phenotypic fraction
b No. of oscillatory phenotypes

D.1 π1 =0, δ1 = 0, π3 = 0, δ3 = 0 6/16 0

D.2 π1 = 0, δ1 = 1, π3 = 0, δ3 = 0 10/36 0

D.3 π1 = 0, δ1 = 0, π3 = 0, δ3 = 1 15/36 1

D.4 π1 = 0, δ1 = 1, π3 = 0, δ3 = 1 25/81 2

D.5 π1 = 1, δ1 = 0, π3 = 0, δ3 = 0 4/16 0

D.6 π1 = 1, δ1 = 1, π3 = 0, δ3 = 0 10/36 0

D.7 π1 = 1, δ1 = 0, π3 = 0, δ3 = 1 10/36 0

D.8 π1 = 1, δ1 = 1, π3 = 0, δ3 = 1 25/81 1

D.9 π1 = 0, δ1 = 0, π3 = 1, δ3 = 0 9/16 1

D.10 π1 = 0, δ1 = 1, π3 = 1, δ3 = 0 15/36 2

D.11 π1 = 0, δ1 = 0, π3 = 1, δ3 = 1 15/36 2

D.12 π1 = 0, δ1 = 1, π3 = 1, δ3 = 1 25/81 4

D.13 π1 = 1, δ1 = 0, π3 = 1, δ3 = 0 6/16 0

D.14 π1 = 1, δ1 = 1, π3 = 1, δ3 = 0 15/36 1

D.15 π1 = 1, δ1 = 0, π3 = 1, δ3 = 1 10/36 0

D.16 π1 = 1, δ1 = 1, π3 = 1, δ3 = 1 25/81 2

a
The meaning of the π and δ symbols is described in the caption of Figure 1.

b
The phenotypic fraction is shown as the number of valid phenotypes divided by the maximum number of potential phenotypes.
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