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Abstract

Theoretical models distinguish two decision-making strategies that have been formalized in 

reinforcement-learning theory. A model-based strategy leverages a cognitive model of potential 

actions and their consequences to make goal-directed choices, whereas a model-free strategy 

evaluates actions based solely on their reward history. Research in adults has begun to elucidate 

the psychological mechanisms and neural substrates underlying these learning processes and 

factors that influence their relative recruitment. However, the developmental trajectory of these 

evaluative strategies has not been well characterized. In this study, children, adolescents, and 

adults, performed a sequential reinforcement-learning task that enables estimation of model-based 

and model-free contributions to choice. Whereas a model-free strategy was evident in choice 

behavior across all age groups, evidence of a model-based strategy only emerged during 

adolescence and continued to increase into adulthood. These results suggest that recruitment of 

model-based valuation systems represents a critical cognitive component underlying the gradual 

maturation of goal-directed behavior.
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Introduction

Learning to select actions that yield the best outcomes is a lifelong challenge. From even 

very young ages, children demonstrate competence in making many simple value-based 

decisions. However, some aspects of decision-making also exhibit qualitative changes across 

development. Younger individuals often persist with actions that no longer yield beneficial 
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outcomes, with perseveration only decreasing with age (Klossek, Russell, & Dickinson, 

2008; Piaget, 1954). Children and adolescents often make seemingly shortsighted choices 

that prioritize immediate gains over longer-term rewards (Mischel, Shoda, & Rodriguez, 

1989). Such choices have been proposed to reflect regulatory failures, in which insufficient 

executive control leads to pre-potent action or prioritization of hedonically alluring 

outcomes over more valuable alternatives (Posner & Rothbart, 2000). Indeed, executive 

functions such as cognitive control and working memory improve markedly from childhood 

into adulthood (Diamond, 2006). Although typically studied in controlled isolation, these 

executive processes interact to inform our choices in more ecologically relevant behavioral 

contexts. Recent findings in adults suggest that integrated executive functioning provides a 

cognitive foundation for more complex decision computations, altering the manner in which 

reward-related actions are evaluated (Otto, Gershman, Markman, & Daw, 2013; Otto, 

Skatova, Madlon-Kay, & Daw, 2015). This work suggests that normal cognitive 

development may simultaneously give rise to changes in the evaluative process through 

which an individual determines which actions are best.

Theoretical models distinguish two types of evaluative processes that can inform one’s 

choices (Daw, Niv, & Dayan, 2005). A slower, deliberative “goal-directed” process 

compares potential actions and their likely consequences to identify the action most likely to 

obtain a desire outcome. In contrast, a more rapid and automatic “habitual” process links 

rewarded actions to associated cues and contexts, enabling reflexive repetition of previously 

successful behaviors. A large psychological and neuroscientific literature provides support 

for these distinct evaluative strategies (Balleine & O’Doherty, 2009; Dickinson, 1985; Doll, 

Simon, & Daw, 2012). Two classes of reinforcement learning algorithms are proposed to 

approximate their underlying neural computations and capture their key behavioral 

properties (Daw et al., 2005). “Model-based” algorithms select actions via a flexible but 

computationally demanding process of searching a cognitive model of potential state 

transitions and outcomes. In contrast, “model-free” algorithms recruit trial and error 

feedback to efficiently update a cached action value associated with a stimulus. Adaptive 

control of behavior involves a fluid and contextually sensitive balance between these 

dissociable learning systems. Whereas model-free learning promotes the execution of well-

honed behavioral routines without forethought or attention, model-based learning enables 

flexible adaptation of behavior to the dynamic state of the world.

In adulthood, model-free and model-based systems are proposed to operate in parallel, 

competing for control over behavior (Daw, Gershman, Seymour, Dayan, & Dolan, 2011; 

Dickinson, 1985). Reliance upon a given strategy appears sensitive to the cognitive and 

affective demands placed on the individual (Otto, Gershman, et al., 2013; Otto, Raio, 

Chiang, Phelps, & Daw, 2013). From childhood into adulthood, the prefrontal-subcortical 

neurocircuitry implicated in model-based learning (Daw et al., 2005) undergoes substantial 

structural and functional changes (Somerville & Casey, 2010), suggesting that reliance upon 

these alternative forms of learning might change markedly with age. However, the 

developmental trajectory of these action selection strategies has not yet been examined. 

Here, we examined the extent to which children, adolescents, and adults exhibited the 

behavioral signatures of model-free and model-based strategies, using a two-stage 

reinforcement-learning task designed to distinguish these two forms of learning. Whereas a 
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model free strategy was evident across all age groups, model-based influence on choice only 

emerged in adolescence and continued to increase with age. Collectively, these results 

suggest that the recruitment of model-based evaluative processes emerges gradually with 

age, highlighting a critical cognitive component underlying the development of goal-directed 

decision-making.

Method

Participants

30 children (aged 8–12), 28 adolescents (13–17), and 22 adults (18–25), completed the task. 

Based on a previous study (Eppinger, Walter, Heekeren, & Li, 2013) reporting a large effect 

(η2=.2) of aging on model-based evaluation in adulthood, we expected that our target sample 

size of 60 (20 participants per age group), would achieve approximately 90% power to 

detect a “true” effect of a comparable size, assuming an α of .05. We recruited higher 

numbers of children and adolescents as we expected higher rates of attrition in these age 

groups. One child and one adolescent were excluded due to inattentiveness (e.g., looking 

away from the screen, closing eyes) and one adult for complete choice invariance throughout 

the task. We used two criteria to exclude participants whose behavior was inconsistent with 

an intention to obtain rewards in the task. First, the proportion of first-stage stay decisions 

following common transitions had to be at least 0.1 greater following rewarded than 

unrewarded trials (1 child, 4 adolescents, 1 adult). Second, participants who encountered a 

second-stage state that was rewarded on the previous trial were required to repeat the 

rewarded choice at least 55% of the time (8 children, 4 adolescents – 1 who failed both 

criteria, 1 adult). These restrictions require that participants appear to be pursuing reward, 

but are unbiased as to whether they do so via a model-free or model-based strategy. The final 

sample included 59 participants: 20 children (11 females; 9.80 +− 1.54 years), 20 

adolescents (12 females; 15.35 +− 1.39 years), and 19 adults (11 females; 21.63 +−2.03). All 

participants provided written informed consent according to the procedures of the Weill 

Cornell Medical College Institutional Review Board. All participants were compensated $30 

regardless of their performance.

Reinforcement-learning task (“Spaceship task”)

We adapted a sequential learning task from Daw et al. (2011), designed to dissociate model-

free and model-based learning strategies, to use a child-friendly narrative and be engaging 

for a developmental cohort. Prior to the task, all participants completed a tutorial that 

conveyed the task cover story and introduced key concepts such as probabilistic rewards and 

transitions via a series of interactive example trials. The tutorial was automated to ensure 

that all participants received equivalent information and concluded with an instruction 

summary using simple child-friendly terminology. All participants indicated verbally that 

they understood the instructions prior to starting the task. Participants were tasked with 

collecting space-treasure (Figure 1A). They made a first-stage choice between two spaceship 

stimuli, each of which traveled more frequently (70% versus 30%) to one planet than the 

other. For example, choosing the blue spaceship led to the red planet with 70% probability 

(the common transition), and led to the purple planet with 30% probability (the rare 

transition). On each planet, they made a second-stage choice between two stimuli (aliens), 
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and were rewarded (a picture of ‘space treasure’) or not (an empty circle) according to a 

slowly drifting probability (bounded between 0.2 and 0.8). These shifting reward 

probabilities encouraged participants to explore different choices throughout the task in 

order to maximize rewards. Participants had 3 seconds to make each choice, followed by a 1 

second animation, 1 second of feedback, and a 1 second inter-trial interval. The full game 

consisted of 200 trials in four blocks separated by breaks.

Critically, this task structure enables dissociation of the relative recruitment of model-free 

and model-based learning strategies. Whereas a model-based chooser uses a cognitive model 

of the transitions and outcomes in the task to select actions, a model-free chooser simply 

repeats previously rewarded actions (Figure 1B). Thus, how a previous trial influences the 

subsequent first-stage choice depends on one’s learning strategy. For example, consider a 

trial in which one chooses the blue spaceship, makes a rare transition to the purple planet, 

chooses an alien, and is rewarded. A model-free learner is likely to repeat the previous first-

stage choice (blue spaceship), regardless of the transition that led to the reward. In contrast, 

a model-based chooser—taking into account the state transition structure—is likely to 

switch to the green spaceship, increasing the likelihood of returning to that rewarded state.

Behavioral Analysis

The group logistic regression analysis has been described previously (Daw et al., 2011; Otto, 

Gershman, et al., 2013). Briefly, a generalized linear mixed-effects regression analysis of 

group behavior data was performed using the lme4 package for the R-statistics language. 

First-stage choice (stay/switch from previous trial) was modeled by independent predictors 

of previous reward (reward/no reward), previous transition (rare/common), age (z-score 

transformed), and all two-way and three-way interactions as fixed-effects, as well as per-

participant random adjustment to the fixed intercept (‘random intercept’), and per-participant 

adjustment to previous reward, transition, and reward-by-transition interaction terms 

(‘random slopes’). The terms of interest are the main effect of reward (model-free term), a 

reward-by-transition-type interaction effect (model-based term), and the reward-by-age and 

reward-by-transition-by-age interaction effects. The first 9 trials for every subject were 

removed, as were trials in which an individual failed to make a first- or second-stage choice 

(median: child=3.5, adolescent=0.5, adult=0). Additionally, this analysis was performed for 

each age group separately, removing the age and age-interaction terms. Response time data 

for the second-stage actions was analyzed similarly using a linear mixed-effects analysis 

with current transition and age as independent predictors. Finally, the relationship between 

individual random-effects estimates of the model-based term and response time difference 

was examined through bivariate correlation.

We also fit subjects’ choices using a reinforcement model similar to the hybrid model 

described in Otto et al., (2013a), which allows participant’s choices to take into account the 

entire preceding history of rewards. This model assumes that choices are determined by a 

weighted combination of model-free and model-based values. We used hierarchical 

Bayesian model-fitting techniques to derive individual model-based and model-free weight 

parameters. For each parameter, we computed a 95% confidence interval (CI). If the entire 

CI falls above (or below) zero, we can conclude that the parameter of interest is significantly 
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positive (or negative) with 95% confidence. Details of the model fitting procedure are 

provided in SI Text.

Results

Learning behavior

We assessed participants’ recruitment of these alternative learning strategies by examining 

the effects of transition type (common or rare) and reward on their subsequent first-stage 

choices (stay or switch). The qualitative pattern of these choices within the child, adolescent, 

and adult categorical age groups is shown in Figure 2A. Whereas children’s choices closely 

resembled the pattern of an idealized model-free chooser, adolescents and adults exhibited a 

mixture of choice strategies, as has been previously observed in adults (Daw et al., 2011; 

Otto, Gershman, et al., 2013). We conducted a mixed-effects logistic regression analysis 

within each categorical age group to quantify these age-related choice patterns (Table 1). 

Children (p =.0006), adolescents (p = .0066), and adults (p<1e-5) all showed a main effect 

of reward, whereas only adolescents (p=0.0016) and adults (p<0.0001), but not children 

(p=0.65), showed a reward-by-transition interaction effect.

Categorical age groupings reflect rigid but arbitrary delineations between groups. As 

developmental changes in learning are likely to be more gradual, we tested for age-related 

differences in the recruitment of each strategy within the full cohort of participants using a 

continuous age term and its interaction terms (Table 2). The behavioral signatures of both 

model-free and model-based learning were evident in the full cohort of participants, who 

showed both a significant main effect of reward (model-free; p<1e-8) and a reward-by-

transition interaction (model-based; p<1e-6). However, only the model-based learning 

signature exhibited a significant increase with age (reward-by-transition-by-age interaction 

p=0.0004; Figure 2B). Analysis of developmental differences in learning strategy in which 

age is treated as a categorical, rather than continuous, variable yields similar results (SI). 

Collectively, these results suggest that whereas the behavioral signature of model-free 

learning is evident across development, the recruitment of model-based learning increases 

from childhood into adulthood. Finally, the baseline tendency to repeat first-stage choices, 

independent of previous outcome or transition type also increased significantly with age 

(main effect of age: p<0.0003).

We examined whether participants’ choice behavior changed from the first to the second half 

of the task by repeating the mixed-effects regression analyses with an additional factor 

“Half” (indicating whether a trial fell in the first or second half of trials) and its interaction 

terms. There were no significant effects including the Half term when age was included as a 

linear factor (all p-values > 0.23), or within each categorical age group (all p-values > 0.18), 

suggesting that age-related differences in learning strategy were stable across the 200 trial 

session.

Logistic regression analysis of choice strategy only considers how the reward and transition 

from the previous trial influence subsequent choices. This analytical approach has the 

advantages of making few assumptions and yielding results that are easily visualized. 

However, it represents a simple approximation the choice computations implemented by 
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model-free or model-based reinforcement learning algorithms, which draw upon the full 

history of choices and outcomes across trials. To verify that our results are consistent across 

both analytical approaches, we additionally examined the effects of age on model-free and 

model-based decision-making using a computational reinforcement-learning model. We 

found that the βMB-age term was significantly positive (0.205, 95% CI 0.088–0.326), 

indicating an increase in the model-based contribution to value computation with age, 

whereas the βMF-age term (0.058, 95% CI −0.021–0.134) was not significantly different from 

0 (Table 3, SI Text, SI Table 1). This computational analysis corroborates the age-related 

increase in the recruitment of model-based strategy observed in the logistic regression 

analysis.

Knowledge of Transition Structure

There were no age-group differences in participants’ recollection of the state transition 

structure (“Which spaceship traveled to the red planet most of the time?”) (X-squared = 

0.6701, df = 2, p-value = 0.7153, 14/18 children, 14/17 adolescents, and 15/17 adults 

answered correctly; 7 participants were not asked to recall the transition structure). Thus, 

participants across age groups showed explicit awareness of the transition structure. Next, 

we examined participants’ response times (RT) for the second-stage choice as a function of 

transition type. If participants were not aware of the transition structure, we would expect no 

RT differences following common versus rare transitions. A linear mixed-effects model 

revealed that participants were slower after rare versus common transitions (86 ms, SE=14, 

X2=38.6, p<1e-7), and although RTs decreased with age (−78 ms, SE=0.26, X2=9.2, 

p=0.0036), there was no transition-type-by-age interaction (p=0.40) (Figure 3A). These 

response time effects were unrelated to whether participants repeated the same second-stage 

choice on consecutive trials.

We then tested whether this second-stage slowing — reflecting knowledge of the transition 

structure — was related to participants’ recruitment of a model-based strategy, as has 

recently been shown in adults (Deserno, Huys, Boehme, Buchert, & Heinze, 2015). In adults 

(r=0.66, p=0.0023) and adolescents (r=0.54, p=0.014), this slowing was associated with 

more model-based choice behavior; however this relationship was not seen in children 

(r=0.27, p=0.25; Figure 3B). Collectively, these results suggest participants across age 

groups learned the transition structure of the task, however only children did not appear to 

integrate this information into their choices.

Discussion

In this study, we examined developmental changes in model-free and model-based 

evaluation strategies in a sequential decision-making task. We found that children, 

adolescents, and adults all tended to repeat initial choices that led to rewards, the behavioral 

signature of model-free learning. In contrast, although participants of all ages appeared to 

distinguish common from rare transitions, the model-based ability to recruit this knowledge 

to inform one’s choices only emerged in adolescence and continued to strengthen into 

adulthood.
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Model-based behavior reflects the ability to use cognitive representations of the environment 

to inform goal-directed choices. This capacity involves multiple component cognitive 

processes, including working memory (Otto, Gershman, et al., 2013) and cognitive control 

(Otto et al., 2015). Executive functions including working memory (Olesen, Westerberg, & 

Klingberg, 2004), cognitive control (Munakata, Snyder, & Chatham, 2012), and use of 

abstract rules or instruction (Bunge & Zelazo, 2006; Decker, Lourenco, Doll, & Hartley, 

2015) exhibit a protracted maturational trajectory. For example, in late childhood, children 

typically transition from a reactive form of cognitive control supporting behavioral 

correction to a proactive form involving anticipatory representation of goal-related 

information (Chatham, Frank, & Munakata, 2009). This ability continues to mature into 

young adulthood (Braver, 2012). Although gradual development of executive function is 

widely proposed to confer changes in reward-related behavior (Zelazo & Carlson, 2012), a 

mechanistic account for this process has been lacking. Our findings suggest that emergent 

executive functioning may alter reward-guided behavior by providing the necessary 

foundation for model-based computations. Theoretically, this account obviates any need to 

invoke a homunculus-like controller that develops greater capacity to “override” suboptimal 

reward-driven responses (Verbruggen, McLaren, & Chambers, 2014). Instead, goal-directed 

decision-making emerges through normative changes in the computations engaged to 

determine which instrumental actions are optimal. Future studies involving direct assessment 

of executive functions might test directly what component cognitive processes are necessary 

or sufficient to support the developmental emergence of model-based choice.

Strikingly, although children’s choice behavior was strictly model-free, they appeared to 

form a cognitive model of the task. Children, like adolescents and adults, could report the 

task structure and exhibited slower response times following rare transitions, providing 

further evidence of transition knowledge. A previous study in adults found that the 

magnitude of this slowing predicted greater model-based choice (Deserno et al., 2015). 

However, in our study, only adolescents and adults showed this correlation. Thus, although 

children exhibited knowledge of the transition structure, they did not recruit this knowledge 

prospectively in their subsequent first-stage choices. This emergent model-based ability may 

reflect a developmental shift from reactive engagement of cognitive control following 

surprising transitions, to proactive cognitive control engaged at the first-stage choice 

(Braver, 2012; Munakata et al., 2012). Our results accord with a developmental literature 

describing dissociations between the age at which knowledge is present, and when it is 

behaviorally revealed in task performance (Zelazo, Frye, & Rapus, 1996).

Model-based learning algorithms reproduce several defining features of goal-directed 

behavior (Daw et al., 2005). Two key properties distinguish goal-directed from habitual 

behavior: sensitivity to changes in action-outcome contingency and sensitivity to changes in 

the value of the outcome itself. Perseveration in either condition reveals an action to be 

habitual (Balleine & O’Doherty, 2009; Dickinson, 1985). In several canonical assays of 

cognitive development, younger children perseverate with previously rewarded actions 

following contingency changes. For example, in Piaget’s A-not-B task, after an action is 

reinforced several times (e.g. reach left toward a hidden toy), babies 10 months or younger 

are impaired in a critical test trial where they must perform a new action (reach right), but by 

12 months this perseveration is no longer seen (Piaget, 1954). In more complex tasks, this 
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developmental emergence of sensitivity to contingency change is observed at later ages 

(Kirkham, Cruess, & Diamond, 2003; Zelazo et al., 1996). Similarly, sensitivity to outcome 

devaluation has been reported to emerge across development (Klossek et al., 2008). Model-

free learners do not recruit the representations of outcome contingencies and values that are 

necessary to inform goal-directed behavior. Thus, a parsimonious account may be that these 

behavioral changes reflect a developmental transition from model-free to model-based 

action evaluation processes. This transition may be a general characteristic of cognitive 

development that occurs at later ages for tasks of greater complexity, as the capacity to form 

and recruit a model of the task improves.

Studies in adult humans and rodents suggest that model-free and model-based learning 

recruit overlapping, but dissociable, neural circuits (Balleine & O’Doherty, 2009). 

Dopaminergic input to the ventral striatum is proposed to carry computational reward 

prediction error signals that support both model-free and model-based computations (Daw et 

al., 2011), in interaction with dissociable dorsal striatal regions (Balleine & O’Doherty, 

2009). Model-based learning additionally integrates information about states and outcomes 

stemming from a more extensive network of regions, including the prefrontal cortex (PFC) 

and the hippocampus. By encoding associations between actions and their specific 

outcomes, the PFC may maintain a cognitive model of the task (Balleine & O’Doherty, 

2009; Doll et al., 2012). Engagement of the dorsolateral PFC during model-based learning 

(Smittenaar, FitzGerald, Romei, Wright, & Dolan, 2013) may additionally reflect the 

contribution of working memory and cognitive control processes (Miller & Cohen, 2001). 

The hippocampus is widely hypothesized to support model-based learning by encoding 

sequential relationships between states (Doll et al., 2012; Pennartz, Ito, Verschure, Battaglia, 

& Robbins, 2011), and hippocampal-striatal connections are proposed to facilitate the 

integration of state and reward information during choice (Wimmer & Shohamy, 2012).

Developmentally, the striatal prediction error signals underpinning model-free learning 

appear relatively mature from childhood onwards (Cohen et al., 2010; van den Bos, Cohen, 

Kahnt, & Crone, 2012), consistent with our observation of model-free choice behavior 

across development. In contrast, protracted maturation of corticostriatal connectivity from 

childhood to adulthood (Somerville & Casey, 2010) may contribute to the gradual 

development of model-based learning. Collectively, this literature suggests that the 

developmental emergence of model-based learning may reflect the burgeoning integration of 

a prefrontal-hippocampal-striatal circuit that recruits learned information about states and 

outcomes to take goal-directed action (Pennartz et al., 2011; Shohamy & Turk-Browne, 

2013). Future studies examining the development of these circuits and their relationship to 

behavior may elucidate the neurocircuitry underlying the observed developmental increase 

in model-based learning.

Beyond developmental changes in reinforcement learning strategies, we also observed an 

age-related increase in the tendency to repeat a first-stage choice, independent of the 

preceding transitions and rewards. This residual autocorrelation between successive first-

stage choices was low in children, but choices grew “stickier” into adulthood, replicating 

previous observations of greater response variability in younger individuals (Christakou et 

al., 2013). Broad sampling of available choice options may reflect a search process that is 
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more strongly biased toward exploration at earlier stages of development (Gopnik, Griffiths, 

& Lucas, 2015). Such a developmental bias might promote discovery of the environmental 

structure, as well as the eventual identification of optimal responses.

The balance between model-based and model-free learning may have important implications 

for real world decision-making. Model-free learners may be prone to impulsive choices, 

repeating actions that previously yielded small immediate rewards and failing to 

prospectively consider more highly valued long-term goals (Kurth-Nelson, Bickel, & 

Redish, 2012). Furthermore, insensitivity to outcome devaluation may lead model-free 

learners to perseverate with previously rewarded actions that are no longer beneficial. 

Experimentally, children and adolescents have been found to exhibit greater impulsivity and 

perseveration in their choices than adults (Klossek et al., 2008; Mischel et al., 1989), with 

important real-world repercussions. This may be particularly true during adolescence, when 

increased exploration and autonomy confers greater opportunity to make new choices, with 

less parental protection from their consequences. Indeed, the greatest perils of adolescence 

are those associated with poor choices (e.g. reckless driving, unprotected sex, suicide) 

(Eaton et al., 2006), underscoring the importance of understanding developmental changes 

in decision-making (Hartley & Somerville, 2015). The developmental emergence of model-

based learning observed in the present study represents an expansion in the repertoire of 

evaluative processes available to inform one’s actions. This increasing ability to incorporate 

a model of the complex and changing environment into one’s evaluations may promote the 

maturation of goal-directed decision-making from childhood to adulthood.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Sequential “spaceship task” design. (A) For each trial, participants made a first-stage choice 

between two spaceships, followed by a probabilistic transition to a red or purple planet. At 

this second stage, participants chose between two aliens and were rewarded with space 

treasure according to a slowly drifting probability. B) Idealized model-free and model-based 

behavior. Whereas a model-free chooser relies solely on previous reward to determine 

whether to repeat a first-stage choice (a main effect of reward), a model-based chooser 

incorporates both transition and reward information (a reward-by-transition interaction 

effect).
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Figure 2. 
(A) Proportion of first-stage stay choices as a function of reward and transition type for each 

age group. Children showed a model-free strategy, sensitive only to previous reward, 

whereas adolescents and adults exhibited a mixture of strategies, taking into account both 

the previous reward and transition type. (B) The model-based signature of behavior (reward-

by-transition interaction) was not present in children but increased significantly with age (p 

= .0004).
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Figure 3. 
A) Children, adolescents, and adults all had slower second-stage response times following a 

rare transition than a common transition. B) Longer second-stage response times following 

rare versus common transitions were predictive of more model-based behavior in 

adolescents and adults, but not in children.
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Table 1

Logistic regression results examining the effects of previous reward, and previous transition type on first-stage 

choice repetition within each age group. Significant p-values (<.05) denoted in bold.

Predictor Estimate (SE) X2 (df=1) p-value

Child (N=20)

Intercept 0.61 (0.10) 20.45 <1e-5

Reward 0.30 (0.08) 11.79 0.0006

Transition 0.01 (0.04) 0.07 0.79

Reward by Transition 0.02 (0.04) 0.21 0.65

Adolescent (N=20)

Intercept 1.19 (0.23) 17.28 <0.0001

Reward 0.22 (0.08) 7.39 0.0066

Transition 0.09 (0.06) 2.34 0.13

Reward by Transition 0.35 (0.10) 10.00 0.0016

Adult (N=19)

Intercept 1.85 (0.25) 26.32 <1e-6

Reward 0.56 (0.11) 20.43 <1e-5

Transition 0.07 (0.08) 5.06 0.024

Reward by Transition 0.49 (0.13) 15.64 <0.0001
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Table 2

Logistic regression results examining the effects of continuous age, previous reward, and previous transition 

type on first-stage choice repetition. Significant p-values (<.05) denoted in bold.

Predictor Estimate (SE) X2 (df=1) p-value

Full Group (N=59)

Intercept 1.18 (0.11) 62.05 <1e-14

Reward 0.34 (0.05) 35.52 <1e-8

Transition 0.05 (0.03) 2.29 0.130

Age 0.43 (0.11) 13.05 0.0003

Reward by Transition 0.27 (0.05) 26.00 <1e-6

Reward by Age 0.08 (0.05) 2.36 0.124

Transition by Age 0.01 (0.03) 0.08 0.77

Reward by Transition by Age 0.18 (0.05) 12.49 0.0004
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Table 3

Median and 95% confidence interval for parameters relating age to model-free and model-based evaluation.

Parameter Description Median Lower 95% Upper 95%

βMF Model-free weight 0.293 0.214 0.373

βMB Model-based weight 0.314 0.203 0.439

βMF-age Age on model-free weight 0.058 −0.021 0.134

βMB-age Age on model-based weight 0.205 0.088 0.326
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