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Abstract

Bisphenol A (BPA), a high production volume chemical widely used in consumer products, is an 

endocrine active compound associated with complex epigenetic responses in animal models and 

humans. Developmental BPA exposure in mice previously revealed widespread changes in the 

mouse liver methylome. Here, we undertake the first epigenome-wide analysis of the effect of 

BPA concentration on human fetal liver DNA methylation. Enzymatic enrichment of genomic 

DNA for high CG density and methylation followed by next-generation sequencing yielded data 

for positional methylation across the genome. Comparing three groups of BPA-exposed subjects 

(n=18; 6 per group), high (35.44–96.76 ng/g), low (3.50 to 5.79 ng/g), and non-detect (<0.83 

ng/g), revealed regions of altered methylation. Similar numbers of regions of altered methylations 

were detected in pairwise comparisons; however, their genomic locations were distinct between 

the non-detect and low or high BPA groups. In general, BPA levels were positively associated with 

methylation in CpG islands and negatively associated with methylation in CpG shores, shelves, 

and repetitive regions. DNA methylation at the SNORD imprinted cluster (15q11q13) illustrated 

both linear and non-monotonic associations with BPA levels. Integrated methylation and RNA-

sequencing gene expression analysis revealed differential regulation of transcription at low BPA 
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levels, as well as expression changes in RNA for ligand-binding proteins as BPA levels increase. 

BPA levels in human fetal liver tissue are associated with complex linear and non-monotonic as 

well as sequence-dependent alterations in DNA methylation. Future longitudinal studies are 

needed to link these changes with altered health risks.
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 Introduction

Environmental exposures during fetal growth can influence later-in-life health risks, 

including metabolic and phenotypic outcomes. The developmental origins of health and 

disease hypothesis posits that chemical and/or nutritional factors during early life result in 

lasting effects on disease risk, even in the absence of chronic exposure [1, 2]. Growing 

evidence supports epigenetic inheritance of chromatin marks, such as DNA methylation, as a 

mechanistic link between fetal exposure and later susceptibility to disease [3, 4]. Adult 

phenotypic variation deriving from uneven re-establishment of DNA methylation during 

blastocyst formation is seen across the animal kingdom and can be correlated with 

environment in the form of stress, chemical exposures, nutrition, maternal behavior, and 

stochastic effects [5]. Next-generation sequencing enables us to move beyond candidate-

gene-based approaches by expanding coverage and sensitivity to detect previously unknown 

labile regions of the genome that are responsive to early life toxicant exposure. Here, we 

evaluate bisphenol A (BPA) levels and the DNA methylome in human fetal liver, as an 

extension of our previously published controlled BPA exposure in mice [6], to uncover 

BPA’s association with the developing human epigenome (Fig. 1).

BPA entered commercial production in the 1950s, and by 2008, it had reached global 

production of 11.5 billion pounds [7], making it one of the highest volume production 

chemicals in the world. It is used in the manufacture of clear plastics, bottles, can liners, 

eyeglass lenses, cell phones, thermal receipt paper, and adhesives, among many other 

products. The safety of BPA has been the subject of long-standing scientific and public 

debate [8]. A large proportion of the population has detectible levels of BPA in urine [9]. 

Consumption of canned soup results in >1000% increase in urine BPA [10] and dermal 

exposure to receipt paper can increase urine concentration from a baseline of 1.8 to 5.8 μg/l 

[11]. BPA levels in urine have been correlated with obesity in Caucasian children [12]. 

Pregnant women in southeast Michigan were determined to have between 0.5 μg/l and 22.3 

μg/l BPA in circulating blood [13], and our recent study of human fetal livers indicated that 

most BPA is in the unconjugated form not readily eliminated from the body [14]. These 

findings strengthen the case that early life development is a particularly crucial window to 

evaluate BPA’s effects on the epigenome.

Our studies and others have found that developmental exposure to BPA is associated with 

epigenetic changes in specific tissues at specific genes [15–20] and results in genome-wide 

changes in liver in rodents [6, 21]. In a cross-sectional study of Egyptian girls, we identified 
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BPA-associated DNA methylation alterations in saliva. Until now, there has been no 

genome-wide studies of altered epigenetic changes associated with fetal BPA exposure in 

human tissue. By combining enzymatic methods to enrich genomic DNA for high 

methylation and high GC content prior to next-generation sequencing, we identified regions 

of altered methylation (RAMs) between groups of fetal human livers, stratified according to 

quantified BPA levels. We validated selected top-hit genes to confirm DNA methylation 

differences and used RNA sequencing to show differential regulation of transcription at low 

levels of BPA, as well as expression changes in ligand-binding proteins as BPA levels 

increase. Thus, BPA levels in human fetal liver tissue were associated with complex and 

sequence-dependent alterations in DNA methylation, as well as by differentially regulating 

transcription.

 Results

 Analysis Pipeline and Quality Control for Identifying Differential Methylation

We used the MethylPlex-next-generation sequencing (M-NGS) platform to evaluate 

genome-wide DNA methylation patterns associated with various levels of BPA quantified in 

human fetal liver samples. This methodology requires minimal DNA input (~50 ng) and 

enriches methylated DNA using a cocktail of methylation-dependent restriction enzymes 

prior to next-generation sequencing (Fig. 1). We confirmed that MethylPlex library reads 

were enriched in genomic regions containing higher numbers of genes and CpG islands 

(CGIs). To estimate the false discovery rate (FDR) of the data analysis pipeline (see 

Methods for details), we employed a sex-based analysis comparing methylation profiles 

between female and male subjects. Under the conservative assumption that all autosomal 

regions that pass our filters for significance are false positives, the FDR was estimated to be 

11.4% (Supplementary Fig. S1A); however, the actual FDR may be lower, to the extent that 

true autosomal differences in methylation exist between sexes. The difference in mapped 

reads on chromosomes X and Y was clearly distinguishable between male and female 

subjects with minimal background noise observed on chromosome Y from female subjects, 

confirming the noted sex of each sample (Supplementary Fig. S1B).

 BPA-Associated RAMs

We identified BPA-associated RAMs using a moving window approach, the edgeR 
Bioconductor package, and post-processing filtering steps, across three BPA categories (non-

detect vs. low, non-detect vs. high, and low vs. high), and conducted a refined downstream 

analysis. As part of data exploration, overall across autosomal chromosomes, we observed a 

greater number of hypomethylated RAMs with increasing BPA levels, when non-detect 

subjects were compared with either low or high BPA subjects (Fig. 2A and B). In contrast, 

when comparing low BPA to high BPA subjects, approximately similar numbers of genomic 

regions were identified as hyper- and hypo-methylated with increasing BPA levels (Fig. 2C). 

Chromosome level window counts were not tested for significance.

Comparing low BPA subjects with high BPA subjects resulted in the largest number of 100 

bp windows with RAMs (11194). When subjects with non-detectable levels of BPA were 

compared with those with low and high levels of BPA, similar numbers of 100 bp windows 
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with RAMs were identified (6286 and 7337, respectively), yet these regions were highly 

mutually exclusive with only 634 windows overlapping (Fig. 3A). A majority of RAMs (19 

522 out of a total 24817 windows) were distinct from one another, suggesting locus-specific 

and non-monotonic effects of DNA methylation patterns. To identify genic regions 

associated with RAMs, each candidate 100 bp window was mapped to the nearest gene. In 

total, 10 005 RAMs were identified within 5 kb of a TSS (Fig. 3B). A total of 296 RAMs 

were shared across all three comparisons. In contrast to the superset of all RAMs, the TSS-

associated RAMs showed greater overlap.

We also examined the DNA methylation landscape of RAMs around CGIs, CGI shores (0–2 

kb from a CGI), and CGI shelves (2–4 kb from a CGI) among the three BPA groups (non-

detect, low, and high). We observed a trend of increased methylation in CGIs and decreased 

methylation in CGI shores and shelves with increasing BPA levels (Fig. 4). These trends did 

not reach statistical significance.

In addition, we examined the genomic distribution of RAMs relative to various genomic 

regions: promoters, or exons, introns, and intergenic regions, or repeat elements. The 

overview of the statistics of genomic regions overlapping with RAMs is available in 

Supplementary Table S3. In all three comparison pairs, there were more hypermethylated 

than hypomethylated regions in the higher dose group in transcriptional start regions (TSRs), 

exons, and promoters (Fig. 5A). A similar pattern is observed in genomic areas including 

gene locus, defined as the entirety of the gene transcript, as well as for introns alone (Fig. 

5B). However, the reverse pattern is observed in intergenic regions; there were more 

intergenic hypomethylated regions than hypermethylated in higher dose groups (Fig. 5B). In 

the non-detect vs. low comparison, around 40.4 of hypo- and 43.2% of hypermethylated 

regions overlapped with repetitive regions. In both non-detect vs. high and low vs. high 

comparisons, we observed a striking increase in the percentage of RAMs in repetitive 

regions among hypomethylated regions in the higher dose group (73.5 and 72.2%, 

respectively), while the percentage of hypermethylated RAMs in repetitive regions remained 

similar, at 45.2 and 49.6%, respectively (Fig. 5B).

 Validation of RAMs

To investigate the correlation of BPA level with imprinted gene DNA methylation, we 

closely examined the snoRNA cluster surrounding SNORD116, which is a maternally 

imprinted locus implicated in Prader–Willi syndrome. In MethylPlex sequencing, 

SNORD116 was hypomethylated in the non-detect group and hypermethylated in both the 

low and high BPA groups (Fig. 6). Validation via pyrosequencing of four CpG sites in the 

original samples showed linear increased methylation between non-detect and low sample 

groups (P<0.1) but also detected a non-monotonic response with the average of the low BPA 

showing higher methylation than the high BPA group (P<0.05).

A top hit intergenic locus, located on chromosome 7:152888851–152888950, was selected 

for quantitative DNA methylation validation via EpiTYPER analysis. MethylPlex 

sequencing resulted in a P value < 1.5 × 10−10 (FDR <4 × 10−5) between the low BPA and 

high BPA groups with the high BPA group displaying less methylation. This pattern was 
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validated by quantitative bisulfite sequencing verifying the nonmonotonic DNA methylation 

(Supplementary Fig. S2).

 RNA-Seq for Differential Expression

Using RNA-seq, we identified seven, one, and three differentially expressed genes in fetal 

liver for non-detect vs. low, non-detect vs. high, and low vs. high, respectively, using an 

FDR < 0.10 and 2-fold cutoffs. Although these numbers were small, several high ranked 

genes were noted to be involved in estrogen processes, e.g. AHR [P = 0.012 (non-detect vs. 

low) and P = 0.0046 (non-detect vs. high)], PGR (P value = 0.020), GPER (P value = 0.025), 

and PRL (P = 0.046). Several genes had known BPA-related interactions, e.g. genes in the 

Wnt signaling pathway were significantly enriched (WNT2, WNT5a, WNT7A, and 

WNT11). Genes related to pregnancy or placental development were also found (CGA, 

CSH1, CSH2, INSL4, FLT1, ADAM12, PSG4, and PSG5). The remaining genes came from 

a variety of categories and include SERPINE1, INDO, IGFBP1, AREG, LOXL1, LTBP2, 

FGF9, FGF23, EGFL6, LRP2, JAG1, NOTCH3, THBS2, and APOD.

 Pathway Enrichment Analysis

We performed pathway enrichment analysis with hyper and hypo-methylated RAMs using 

ChIP-Enrich (http://chip-enrich.med.umich.edu), which assigns peaks to genes based on a 

chosen method (we used nearest transcription start site, TSS) and tests peaks from ChIP-seq 

experiments for enrichment of biological pathways, GO terms, and other types of gene sets. 

Pathway analysis found a strong enrichment of genes involved in metabolism in the low 

versus high comparison, including regulation of nucleotide metabolic process (q value = 

0.023), which was enriched among hypermethylated regions, and regulation of metabolic 

process (q value = 0.017), which was enriched among the hypomethylated regions. Genes 

predicted to be targeted by the aryl-hydrocarbon nuclear receptor translocator were also 

significantly enriched with hypermethylated regions (q value = 0.0098). Among the genes 

regulated by this transcription factor is the Wilms tumor gene (WT1), an imprinted locus. 

The most consistent enrichment observed across comparisons and both hypo- and hyper-

methylation was sets of genes down-regulated in response to estrogen. These gene sets were 

derived from GEO experiments GSE11324 (3, 6, and 12 h of estrogen treatment), 

GSE11791, and GSE10879, and all were performed using MCF7 cells (Supplementary 

Table S4). In particular, breast carcinoma amplified sequence 4 and breast cancer anti-

estrogen resistance 3, both involved in the growth and maintenance of breast cancers. In 

addition, an enrichment analysis based on transcriptomic data from RNA-seq was performed 

using a logistic regression-based pathway enrichment analysis tool (LRpath) available at 

http://lrpath.ncibi.org. When enriched concepts among hypomethylated regions and over-

expressed genes were compared, the metabolic and catabolic processes as well as cell cycle 

were significantly enriched in both analyses (q < 0.05).

 Integrative Analysis of DNA Methylation and Gene Expression

From the RNA-seq data, we identified 273 (non-detect vs. low), 430 (non-detect vs. high), 

and 484 (low vs. high) candidate genes, whose expression levels are inversely correlated 

with methylation levels (Supplementary File S1). When the top enriched biological 

functions were compared across the three exposure comparison pairs, there were 
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overlapping categories of enrichment shared between the non-detect vs. low and non-detect 

vs. high groups: across all three comparisons, calcium ion binding genes were enriched (P < 

5 × 10−4). Genes in this category included several protocadherins, which are expressed in 

nervous tissue and includes protocadherin19 which, when mutated, results in an epileptic 

phenotype in humans [22]. The shared categories between the non-detect vs. high and the 

low vs. high comparisons included ligand-binding functions, specifically calcium and sulfur 

compound binding functions (P < 4×10−4). Several genes in the sulfur compound binding 

function have also been shown to interact with BPA according to the Comparative 

Toxicogenomics Database [23], including lactotransferrin, chemokine ligand 10, follistatin, 

glypican 4, r-spondin 1, and acyl-coa binding domain containing 5 [24]. Non-detect vs. low 

or high compared with the low vs. high groups shared only the calcium binding function.

 Discussion

Adaptations of next-generation sequencing to assess DNA methylation and chromatin states 

are still rapidly evolving, with a variety of currently available approaches. In this study, 

genomic DNA from BPA-characterized human fetal liver tissue was enriched for methylated 

regions and high CG density, giving a proxy for differential DNA methylation via regional 

read-counts. We previously used this approach to show that the mouse liver epigenome 

responds to BPA exposure at comparable levels found in humans [6]. Our bioinformatics 

analysis pipeline has been used in mouse [6] and human [25] studies and is validated here by 

both RNA-seq and quantitative bisulfite sequencing via EpiTyper and pyrosequencing 

methylation analysis in selected loci. In contrast to the mouse, we find large shifts in RAMs 

at CGIs. We identified an asymmetric difference in hypo vs. hypermethylated loci in the two 

exposure groups compared with the non-detect group, while finding similar numbers when 

comparing low versus high BPA groups. This suggests that BPA exposure biases genes 

towards hypomethylation in general, as we have previously seen in saliva DNA from a 

cohort of prepubescent girls [26] and in mouse tail DNA [16]. However, the total number of 

regions with altered methylation was largest between low and high exposure groups, 

suggesting that there is a dose-dependent effect. Though our analysis found RAMs between 

groups to be largely distinct, enrichment analyses pointed to overlapping sets of affected 

pathways; future studies should be conducted with more granular exposure groups and larger 

sample sizes to confirm whether the number of genes shifting in methylation concomitant 

with BPA exposure is nonlinear with dose.

Growing interest in DNA methylation centers on CGI shores and shelves; e.g. in cancers, 

CGIs have been observed to become hypermethylated, while the surrounding regions tend to 

become hypomethylated, with an overall loss of signal distinguishing CGIs from their shores 

and shelves [27]. We add to this data by showing increasing CGI methylation with BPA 

exposure and decreasing methylation in shores and shelves with BPA. These general results 

cannot indicate whether a specific locus will have altered expression but would be consistent 

with reduced expression. Overall, we observed hypomethylation averaged across genic 

regions; such patterns are also seen in aging cells and tissues [28]. Similarly, long-term 

epigenetic drift can be impacted by early life exposures and also acts in a locus specific 

manner [29].
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Consistent with the CGI results, RAM location analysis showed higher methylation with 

higher BPA exposure in the areas most relevant to gene expression: the promoters and TSRs. 

By raw read count, the highest enrichment by fold-increase of RAMs between all intergroup 

comparisons (when compared with the genome) occurs in promoter regions; however, the 

global response of BPA is hypomethylation. The RAM analysis narrows down the location 

of where the bulk of this hypomethylation is occurring. We observed a decrease in repeat 

region reads in the high BPA group compared with the non-detect group. Hypomethylation 

in LINE1 repeat regions with occupational BPA exposure has been documented previously 

[30]. There was only a small decrease in comparing the low BPA to the non-detect group, 

but the low vs. high group mirrored the non-detect vs. high group. Given the growing 

concern over transposon methylation and the importance of silencing [31], BPA’s activity in 

these genomic regions must be carefully examined in depth.

Imprinted genes are an important bellwether of environmentally induced epigenetic change 

and the SNORD cluster identified here reflects BPA’s complex effects. Mouse studies have 

demonstrated the effect of BPA on imprinted gene methylation through the estrogen receptor 

signaling pathway [32] and on imprinted gene expression in embryos and placenta [33]. 

Even low levels of neonatal BPA exposure (2.4 μg/pup) in rats cause persistent 

hypomethylation in imprinted regions in adult male spermatozoa [34]. Here, despite the 

SNORD cluster’s relatively small size and contiguous maternal imprint, SNRPN and 

adjacent imprinted genes exhibited both linear and non-monotonic responses to BPA 

exposure. The difference between the MethylPlex and pyrosequencing may be explained by 

their different regions of assessment: MethylPlex assessed the average of the region, while 

pyrosequencing probed four specific CpG sites. Interestingly, recent examination of 

genome-wide DNA methylation patterns in paternal sperm of autism risk children identified 

differentially methylated genes involved in developmental processes, including many genes 

in the SNORD family [35].

Pathway analysis was utilized to help understand the likely biological impact of the RAMs, 

supporting the known estrogenic role of BPA by correlating RAMs with estrogen stimulus 

response genes. In all comparisons of altered methylation, estrogen responding gene 

categories were statistically significantly enriched, suggesting that this class of genes is both 

up-and down-regulated by BPA exposure. Genes targeted by aryl-hydrocarbon nuclear 

receptor translocator—AHR complex were hypermethylated in low vs. high BPA, which is 

unsurprising given that BPA is an aryl-hydrocarbon receptor ligand. The RNA-seq GO 

results taken alone are less clear; however, since methylation does not correspond perfectly 

to gene expression, integrating the two datasets provides greater insight. Another potential 

impact may be seen in the detection of pregnancy and placenta-related genes in the RNA-seq 

GO results, suggesting that differential timing of fetal development may account for the 

enrichment of these categories across exposure groups. Thus, by integrating the results of 

methylation data with the RNA-seq data and analyzing GO term enrichment, we found 

several categories of biological function overlapping between the pairwise comparisons of 

the non-detect vs. low and non-detect vs. high, especially those relating to gene 

transcription, suggesting that BPA exposure at both levels has wide-ranging effects on gene 

expression. In contrast, the genes enriched in the low vs. high group are involved primarily 

in ligand binding. The only exception to this was in the calcium binding category. 
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Importantly, given the sample source, our low and high groups both represent 

physiologically relevant concentrations; thus, these results promote the need to examine low-

dose BPA exposures in animal studies where the dose ranges may exhibit large gaps, 

potentially failing to detect discrete but relevant changes.

Ultimately, these results begin to reveal the complexity of BPA’s response in human fetal 

liver at both the DNA methylation and the transcription level. While the global response to 

BPA exposure is hypomethylation in general, especially in repeats, the CGI 

hypermethylation effects appear to be both dose and locus dependent. Thus, BPA levels in 

human fetal liver tissue are associated with complex linear and non-monotonic as well as 

sequence-dependent alterations in DNA methylation. Furthermore, although the RNA-seq 

results represent a functional outcome specific to developmental stage (e.g. gestational age) 

and tissue, the DNA methylation changes may persist across developmental stages and 

tissues, with only a small subset of the RAMs having a functional consequence for any one 

time-tissue combination. These limitations can be addressed by future pregnancy studies 

with larger sample sizes and/or longitudinal studies to link changes in DNA methylation or 

gene expression with altered health risks and to evaluate target tissue DNA methylation 

profiles with surrogate DNA, such as saliva or blood, to best inform studies of epigenetic 

epidemiology, when target tissue DNA is not always readily or ethically available.

 Materials and Methods

 Human Fetal Liver Tissue Samples

Human fetal liver samples (n = 50), ranging from gestational days 70 to 120, were procured 

from the NIH-funded University of Washington Birth Defects Research Laboratory Fetal 

Biobank (2R24 HD000836-47). As previously described [14, 15, 36], these healthy tissue 

specimens were collected from voluntary pregnancy terminations after surgery and proper 

consent from donors and were flash frozen and stored in polycarbonate-free tubing at −80°C 

until processed for BPA analysis and RNA/DNA extraction (Fig. 1, top box). No identifying 

clinical data were available on subjects except for gestational age and occasionally sex and 

race. Thus, samples met the criteria for IRB exemption for human subjects research (UM 

IRB Exemption: HUM00024929). As described previously, sex was determined from 

subjects with missing data (N = 10) using nested polymerase chain reaction (PCR) assays 

specific for the Y-chromosome SRY and the X-chromosome ATL1 genes [14].

Total (free plus conjugated) BPA concentrations were measured via high-performance liquid 

chromatography coupled with an API 2000 electrospray triple-quadrupole mass 

spectrometer (ESI-MS/MS) by the Kannan Laboratory at the Wadsworth Center (New York 

State Department of Health) in 0.5 g of n = 50 human fetal liver tissue samples and ranged 

from below the limit of quantification of 0.1 up to 96.8 ng/g [12, 14]. From the wide range 

of total BPA concentrations quantified in the fetal liver samples, we trichotomized 18 

samples with gestational ages ranging from 80 to 115 into non-detect (total BPA 

concentrations ranging from non-detect to 0.83 ng/g; mean gestational age: 96.2 days), low- 

(3.5 to 5.79 ng/g; mean gestational age: 105.8 days), and high-BPA (35.44 to 96.76 ng/g; 

mean gestational age: 103.3 days) exposure groups (n = 6 samples per group). The n = 18 

samples for this analysis were selected from the available set (n = 50) based on high DNA 
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and RNA quality, as well as age and gender match per exposure group. Thus, no significant 

exposure group differences by gestational age were present.

 M-NGS Library Generation

A MethylPlex library synthesis and GC-enrichment kit (Rubicon Genomics Inc., Ann Arbor, 

MI) was obtained, and the experiments were carried out according to the manufacturer’s 

protocol (Fig. 1, second box). Methylplex enzymatic enrichment in combination with next-

generation sequencing (M-NGS) is capable of identifying RAMs. The method used here was 

previously described for both human and mouse in Kim et al. [6, 25]. Briefly, a patented 

cocktail of methylation-sensitive restriction enzymes were used with 50 ng of DNA prior to 

ligation to universal PCR primer and amplification to create a Methylplex library. A second 

step enzymatic treatment depleted most non-GC-rich DNA sequences, after which, DNA 

was re-amplified in a second round of PCR. The adaptor sequences were removed and the 

product purified prior to incorporation into the Illumina Hi-Seq sequencing platform at the 

end-repair step of the sample preparation kit according to manufacturer’s instructions 

(Illumina Inc., San Diego, CA). After ligation to Illumina adaptors, the product was run out 

on a 2% agarose gel with the DNA excised and extracted at the 400 bp position using 

Qiagen gel extraction kit (Qiagen Inc., Valencia, CA).

 M-NGS Sequencing and Alignment

The purified MethylPlex library was analyzed by Bioanalyzer (Agilent Technologies, San 

Diego, CA) prior to flow cell generation, where 10 nM of library was used to prepare 

flowcells with approximately 30 000 clusters per lane. Sequencing was performed by the 

University of Michigan DNA Sequencing Core on an Illumina HiSeq, and the raw 

sequencing image data using 100 cycles of single ends were analyzed by the Illumina 

analysis pipeline (Fig. 1, middle box). An average of 104 million reads per sample (ranging 

from 78 to 125 million reads) were obtained, where approximately 83.9% of these were 

mapped uniquely to the human hg19 reference genome using the Burrows-Wheeler Aligner 

tool (BWA version 0.5.9-r16, parameters: aln -q 6 -t 6) (Supplementary Material and Table 

S1).

 Differential Methylation Analysis

We applied our tiered-based profiling pipeline developed for mouse BPA exposure studies to 

identify human locus-specific RAMs (Fig. 1, bottom two boxes), which is described in detail 

in Kim et al. [6]. Briefly, we scanned the entire genome using a window size of 100 bp with 

a 50 bp moving shift size, which accounts for over 61 million windows for each sample and 

obtained the number of mapped reads per 100 bp window per sample. Genomic regions 

were then filtered to those with at least three samples having a read count greater than 20. 

The resulting 1.34 million regions were then tested for differential methylation using the 

edgeR Bioconductor package, which we used to test for differences between each pair of 

exposure groups [37]. The edgeR analysis was run using the glmFit function with tagwise 

dispersion estimation, which uses a negative binomial model with moderated dispersion 

estimates, and identified the regions with differential methylation in three different 

comparisons; the methylation levels from the non-detect group (n=6) against the low 

exposure group (n=6), non-detect group against high exposure group (n=6), and low 
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exposure group against high exposure group. To minimize the sample-specific methylation 

variation affecting the results, and because edgeR is sensitive to outliers, we further analyzed 

the data with filtered RAMs that (i) exhibited methylation change in at least half of the 

samples per exposure group and (ii) displayed differential methylation either in at least one 

out of two flanking windows (shift window size is 50 bp) or two 100-bp windows within a 

500 bp stretch.

We used the X and Y chromosomes to confirm the sex of each sample and to estimate the 

overall FDR resulting from using the filtering steps described above. Using the methylation 

reads mapped to chromosome X and Y, the sex of each human fetal sample (8 males vs. 10 

females) was re-confirmed, and the underlying methylation difference among male and 

female subjects was examined and easily visually distinguished. The above edgeR analysis 

and filtering steps were used to test for male versus female methylation differences. Eight 

random sets of six males and six females were generated and used for the analysis. Using the 

conservative assumption that all autosomal methylation differences detected were false 

positives, we calculated the average percent of significant sites that were autosomal as 

11.4% (Supplementary Fig. S1). Thus, we estimate that our FDR is no greater than 11.4% 

and less to the extent that true autosomal sex-specific differences exist. Three separate BED 

files containing 6286 unique genomic coordinates from nondetect vs. low, 7337 unique 

genomic coordinates from nondetect vs. high, and 11 194 unique genomic coordinates from 

low vs. high analysis were uploaded to Genomatix genome analyzer software (v2. Release 

4.7) (https://www.genomatix.de) and mapped to the human genome (NCBI build 37). The 

classification of regions identifying the overlap with exons, introns, promoters, and 

intergenic regions, as well as transcription start regions (TSRs) was performed using the 

RegionMiner workflow. Genomatix defines repeat regions using in-house libraries.

 Gene Set Enrichment Testing

Genome-wide region enrichment of GO terms was performed using the chipenrich 

Bioconductor package (http://chip-enrich.med.umich.edu) [38] with all genomic-regions that 

passed the filter described above. The nearest TSS locus definition and human reference 

genome assembly (hg19) were used. The results were visualized using the Reduce and 

Visualize Gene Ontology (REViGO) web application (http://revigo.irb.hr), which removed 

redundant GO terms and linked highly similar GO terms with the similarity cutoff value of 

0.7 using the Homo sapiens database [39].

 Quantitative Methylation Validation

Top candidate regions were selected based on various factors, including P values, the 

number of samples with RAMs, the number of reads, and the methylation status of adjacent 

regions. Of the two candidate regions selected for validation, the first was in the region 

located 1.5 kb upstream of SNORD116-1 in the SNORD116/SNURF-SNRPN cluster 

(chr15:25050592-25050745), and the other was intergenic on chromosome 7 

(chr7:152888651-152889150, hg38) proximal to an AluSg4 transposon exclusive to 

Hominidae between the genes ACTR3B and DPP6. Genomic DNA (500 ng) from the fetal 

liver tissue used for M-NGS was bisulfite treated using the EpiTect bisulfite kit (Qiagen Inc., 

Valencia, CA) to allow for the conversion of unmethylated cytosines to uracil (read as 
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thymine during PCR amplification), whereas the methylated cytosines remain unconverted 

[40]. Bisulfite-converted DNA (2 μl) was then amplified using Bio-Rad (Model #C1000) 

thermal cyclers (see Supplementary Table S2 for primer information and PCR conditions) 

using primers targeting the SNORD gene cluster and the intergenic region on chromosome 7 

(chr7:152888651-152889150). PCR products were run on a 1.5% agarose gel to ensure PCR 

quality, correct product length, and lack of contamination. Following manufacturers’ 

protocols, amplified SNORD products were analyzed for quantitative DNA methylation 

levels via the PyroMark Q96 MD Pyrosequencing system (Qiagen, Valencia, CA), and 

amplified chromosome 7 products were analyzed via the EpiTYPER platform (Sequenom, 

San Diego, CA). For each primer set, the methylation percentage across individual CpG sites 

was visualized along with the amplicon average for each sample. The differences in mean 

amplicon methylation levels in each paired group were tested using a two-tailed t-test.

 RNA Sequencing and Analysis

RNA-sequencing was performed on 12 human fetal liver samples (N = 4 per group), a subset 

of the 18 samples profiled with M-NGS, for differential expression analysis using 150 bp 

single end reads on the Illumina HiSeq analyzed by the Illumina analysis pipeline. Over 438 

million reads across 12 samples were obtained, where the average number of reads was 36.5 

million per sample. The FastQC tool was used to perform quality control checks on raw 

data. Because of poor quality (<28) in the second half of the reads, we trimmed reads to 70 

bases in length and aligned the reads to the hg19 human reference genome with TopHat, 

using parameters that accept only the best alignment for reads that align in more than one 

location and increased searching time to improve sensitivity. After using SamTools to 

remove duplicate reads to eliminate the effects of PCR duplicates, read counts were 

generated by CuffDiff software. Differential expression between the three pairwise 

comparisons (non-detect vs. low, non-detect vs. high, and low vs. high) was tested with 

edgeR Bioconductor package [37], following the developers’ protocol (calcNormFactors, 

estimateCommonDisp, estimateTagwiseDisp, exactTest, and topTags), using q values 

(Benjamini and Hochberg FDRs) to adjust for multiple testing. Gene set enrichment testing 

for the RNA-seq data was performed using LRpath (http://lrpath.ncibi.org) [41] against GO 

and KEGG Gene set enrichment for the combined Methylplex and RNA-seq datasets were 

analyzed with GOrilla (http://cbl-gorilla.cs.technion.ac.il) [42] when compared with the 

complete complement of human protein coding genes (http://genenames.org). GO testing 

was performed against molecular function at a P value threshold of >10−3 and resulting 

categories are listed in Supplementary File S1.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
schematic overview of experimental design from BPA quantification in human fetal liver 

tissue through next-generation sequencing and analysis to identify RAMs. ND, non-detect
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Figure 2. 
the chromosomal distribution of hyper-methylated (in red) and hypomethylated (in blue) 

sites as counted by 100 bp sliding windows per 1 million bp, normalized by chromosome 

length. (A) Number of windows in the non-detect vs. low groups are normalized to 

chromosome length and overall reflect the GC density of each chromosome. The majority of 

windows were hypo-methylated except for chromosome X. (B) Number of windows in the 

non-detect vs. high BPA groups, similar to (A). (C) Number of windows in low vs. high 

BPA groups shows a balanced number of hyper- to hypo-methylated regions. Overall data 

were not tested for significance
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Figure 3. 
overlap of 100 bp windows with RAMs in non-detect vs. low, non-detect vs. high, and low 

vs. high BPA groups (A) Genome-wide and (B) within 5 kb of TSSs of genes
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Figure 4. 
characterization of genome-wide DNA methylation patterns in CGIs, CGI shores, and CGI 

shelves. Increasing BPA levels were positively associated with DNA methylation in CGIs 

and negatively associated with DNA methylation in CGI shores and shelves
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Figure 5. 
genomic distribution of RAMs. TSRs are defined genomic regions where experimentally 

verified transcriptional initiation has taken place. Exons are regions of coding sequence. 

Promoters are defined as −500 to +100 of the TSR. Gene locus encompasses the entirety of 

the gene, including introns. Intergenic regions are defined as regions outside genic and 

regulatory regions. Repeats are matched against the UCSC Genome Browser RepeatMasker 

track. (A) A greater percentage of RAMs overlap with exons than TSRs or promoters and 

have >2-fold higher RAMs overlapping in the relatively higher exposure group, for all 

comparisons. (B) Among gene locus, intergenic regions, introns, and repeats, only 

hypermethylated RAMs overlapping with repetitive regions are less in the relatively higher 

exposure groups
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Figure 6. 
differential methylation at the SNORD gene cluster on chr15. (A) Each row in the upper 

panel represents the average of the six samples in the group. ND, non-detected BPA; low, 

low BPA level; high, high BPA level. (B) Four CpG sites within the SNORD cluster were 

averaged for validation using pyrosequencing. Exact locations are listed in Supplementary 

Material and Table S2
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