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Abstract

A generative model of category representation is introduced that uses computer vision methods to 

extract category-consistent features (CCFs) directly from images of category exemplars. The 

model was trained on 4800 images of common objects, and CCFs were obtained for 68 categories 

spanning subordinate, basic, and superordinate levels in a category hierarchy. Participants searched 

for these same categories. Targets cued at the subordinate level were preferentially fixated, but 

fixated targets were verified faster following a basic-level cue. The subordinate-level advantage in 

guidance is explained by the number of target category CCFs, a measure of category specificity 

that decreases with movement up the category hierarchy. The basic-level advantage in verification 

is explained by multiplying CCF number by sibling distance, a measure of category 

distinctiveness. With this model the visual representations of real-world object categories, each 

learned from the vast numbers of image exemplars accumulated throughout our everyday 

experience, can finally be studied.
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Introduction

Our categories make us who we are; they are the skeleton upon which grows the rest of our 

psychological being. Reflecting their diverse importance, categories have been studied from 

multiple perspectives: as a lens through which we perceive visual and acoustic objects in the 

world (Liberman, Harris, Hoffman, & Griffith, 1957; Regier & Kay, 2009) and the similarity 

relationships between these objects (Medin & Schaffer, 1978; Goldstone, 1994), and as the 

structure of concepts that organize our knowledge and define who we are (Kaplan & 
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Murphy, 2000; Pazzani, 1991; Murphy, 2002). Some approaches are also highly quantitative. 

The semantic organization literature uses formal methods from logic theory to understand 

the division of information into clusters of semantic nodes (Anderson, 1983; Collins & 

Quillian 1969), and the category learning literature models how corrective feedback about 

category membership can shape our categorization decisions (Anderson, 1996; Ashby & 

Maddox, 1993; Kruschke, 1992; Love, Medin, & Gureckis, 2004; Nosofsky; 1986; 

Nosofsky & Palmeri, 1997).

All of these approaches, however, have skirted a basic question of category representation—

how might the visual features of common object categories be extracted from the many 

exemplar images of these objects that we encounter in our day-to-day lives?

Growing in parallel with these largely behavioral literatures has been another literature that 

may help answer this question. The field of computer vision is rich with operators and 

algorithms developed to detect members of object classes directly from pixels in images 

(Duda, Hart, & Stork, 2012). Moreover, these tools work with featurally-complex real-world 

categories, and their performance is evaluated using new or “unseen” category exemplars not 

used during model training. In contrast, behavioral work on category learning has placed less 

emphasis on real-world application and model prediction, focusing instead on how 

categories defined by a small number of simple features are learned from feedback (see 

Ashby & Maddox, 2005). A gap therefore exists in our fundamental understanding of 

categories; much is known about how simple features can be learned and used to 

discriminate one category from another, but little is known about the features composing the 

categories of common objects that populate our everyday experience. By bridging these 

different approaches we achieve a new understanding of categories. Our premise is that tools 

from computer vision can, and should, be exploited to characterize the feature 

representations of categories as they exist “in the wild”, formed simply from a lifetime of 

experience seeing category exemplars.

The Generative Modeling of Visual Categories

We adopt a generative modeling approach. Because generative models are usually 

unsupervised, they capture the implicit learning from exemplars that people and other 

animals use to acquire the within-category feature structure of visual object categories. 

Figure 1 helps to make this point. A generative model learns the features that are common 

among the objects of a category, much like the human visual system causes the perception of 

rectangles in this figure by finding common features among category exemplars grouped at 

the basic level.

Generative models can be contrasted with discriminative models, which use supervised error 

feedback to learn features that discriminate target from non-target categories (Ulusoy & 

Bishop, 2005). The vast majority of category learning studies adopt a discriminative 

modeling approach (Ashby & Maddox, 1993; Kruschke, 1992; Nosofsky; 1986; Nosofsky & 

Palmeri, 1997), which is appropriate given the heavy reliance on the artificial classification 

learning paradigm in this literature. A generative approach, however, is more appropriate 

when modeling data that do not reflect explicit classification decisions (Kurtz, 2015; 

Levering & Kurtz, 2014; see also Chin-Parker & Ross, 2004), such as the visual search data 
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in the present study. Our position is that generative models better capture the features of a 

category used to construct visual-working-memory representations of search targets, similar 

to the features one might call to mind when forming a mental image of a target category. If 

searching for a Pekin duck one would probably look for a white, mailbox-sized object with 

orange at the top and bottom, despite these features potentially yielding poor discrimination 

from poodles and pumpkins.

Hierarchies of Categories

We evaluate our model within the context of a simple conceptual structure, a three-level 

hierarchy. Objects can be categorized at multiple levels in a conceptual hierarchy. A sea 

vessel powered by wind can be categorized as a sail boat (subordinate level), simply a boat 

(basic level), or more broadly as a vehicle (superordinate level). The basic-level superiority 

effect (BSE) refers to the finding that the acquisition and access of categorical information 

seems anchored around the basic level. It was first reported by Rosch and colleagues (1976) 

using a speeded category verification task, where they found that people were faster in 

judging a picture of an object as a member of a cued category when the cue was at the basic 

level. Subsequent work broadened the scope of the BSE by showing it to be the preferred 

level used in speech, and the first nouns generally learned and spoken by children (Mervis & 

Rosch, 1981; Rosch, 1978).

Explanation of the BSE has appealed to similarity relationships within and between 

categories. Basic-level categories are thought to maximize within-category similarity while 

simultaneously minimizing between-category similarity; subordinate or superordinate-level 

categories do one or the other, but not both (Rosch et al., 1976). Murphy and Brownell 

(1985) advanced this idea by theorizing that the BSE was a by-product of concurrent 

specificity and distinctiveness processes pulling categorization in opposing directions. 

Subordinate-level categories tend to have very specific features; Collies are medium-sized 

dogs with thin snouts, upright ears and white hair around their shoulders. However, these 

features overlap with other dog categories, making Collies sometimes challenging to 

distinguish from German Shepherds or Shelties. Superordinate-level categories have the 

opposite strengths and weaknesses. The features of animals overlap minimally with vehicles 

or musical instruments, making the category distinct. However, animal features are also 

highly variable, making superordinate categories lacking in specificity. The basic level 

strikes a balance between these opposing processes, and this balance is believed to underlie 

the BSE. Despite their variability in appearance, dogs have many features in common yet are 

still relatively distinct from ducks and dolphins and dinosaurs. The present work builds on 

this framework by making the processes of specificity and distinctiveness computationally 

explicit, and applying these principles directly to images of category exemplars.

Categorical Search

We evaluate the visual representation of common object categories using a categorical 
search task (Maxfield, Stadler, & Zelinsky, 2014; Schmidt & Zelinsky, 2009; Zelinsky, 

Adeli, Peng, Samaras, 2013; Zelinsky, Peng, Berg, & Samaras, 2013; Zelinsky, Peng, & 

Samaras, 2013). Categorical search differs from standard visual search in that targets are 

designated by category (e.g., the word “dog”) instead of by a picture pre-cue (e.g., an image 
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of a specific dog), a situation that rarely exists outside the laboratory. Moreover, categorical 

search can be meaningfully divided into two epochs, one being the time between search 

display onset and first fixation on a target (search guidance) and the other being the time 

between first fixation on the target and the correct target-present judgment (target 
verification). Categorical search therefore embeds a standard category verification task 

within a search task, making it a powerful paradigm for studying the relationship between 

overt attention and categorization.

We introduce a method for quantifying the visual features of common object categories, and 

show that these features serve both to guide overt attention to a target and to categorize it 

after its fixation, with a BSE appearing during this latter target-verification epoch. The fact 

that our model captured these disparate behavioral measures provides converging evidence, 

within the context of a single categorical search task, that it can successfully identify the 

visual features used to represent common object categories. As such, this work creates a 

strong theoretical bridge between the attention (search guidance) and recognition (category 

verification) literatures.

Behavioral Methods

Participants

Twenty-six Stony Brook University undergraduates participated in a categorical search task. 

Sample size was determined based on a previous study using a similar method (Maxfield & 

Zelinsky, 2012). All participants reported normal or corrected-to-normal visual acuity and 

color vision, and that English was their native language. All also provided informed consent 

prior to participation in accordance with Stony Brook University’s Committee on Research 

Involving Human Subjects.

Stimuli & Apparatus

Images of common objects were obtained from ImageNet (http://www.image-net.org) and 

various web sources. All images were closely cropped using a rectangular marquee to depict 

only the object and a minimal amount of background. Because object typicality can affect 

categorization and search (Murphy & Brownell, 1985, Maxfield et al., 2014), targets were 

selected to be typical members of their category at the subordinate, basic, and superordinate 

levels. We did this by having 45 participants complete a preliminary norming task in which 

240 images (5 exemplars from each of 48 subordinate categories) were rated for both 

typicality and image agreement (Snodgrass & Vanderwart, 1980) at each hierarchical level 

using a 1 (high typicality/image agreement) to 7 (low typicality/image agreement) scale. The 

three most typical exemplars of each category were used as targets in the search task. Their 

mean typicality and image agreement was 2.29 and 2.31, respectively, and Table 1 lists these 

category names. In total there were 68 categories spanning 3 hierarchical levels; 4 

superordinate-level categories, each having 4 basic-level categories, with each of these 

having 3 subordinate-level categories.

Eye position during the search task was sampled at 1000 Hz using an Eyelink 1000 

eyetracker (SR Research) with default saccade detection settings. Calibrations were only 
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accepted if the average spatial error was less than 0.5°, and the maximum error was less than 

1°. Head position and viewing distance were fixed at 65 cm using a chinrest for the duration 

of the experiment. Stimuli were presented on a flat-screen CRT monitor set to a resolution of 

1024 × 768 pixels and a refresh rate of 100 Hz. Text was drawn in 18-point Tahoma font and 

image patches subtended ~2.5° of visual angle. Trials were initiated using a button on the 

front of a gamepad controller and judgments were made by pressing the left and right 

triggers.

Search Procedure

A category name was displayed for 2500 ms, followed by a central fixation cross for 500 ms 

and finally a six-item search display (Figure 2). Items in the search display were image 

patches of objects arranged on a circle having a radius of 8°. There were 288 trials, half 

target-present and half target-absent. Target-present trials depicted a target and five distractor 

objects chosen from random non-target categories. Each participant saw one of the three 

selected exemplars for a given target category twice at each hierarchical level, with 

exemplars counterbalanced across participants. Half of the target-absent trials depicted six 

distractors; the other half depicted five distractors and one lure. Lures are needed to 

encourage encoding at the cued level (see Tanaka & Taylor, 1991). The lure was a 

categorical sibling of the cued target, drawn from target images one level above in the 

category hierarchy (e.g., a police car when cued with “taxi”, or a truck when cued with 

“car”). Lures at the superordinate level were drawn from other non-target categories, making 

them indistinguishable from the distractor objects.

Behavioral Results

Error rates differed between hierarchy conditions, F(5,21) = 15.19, p < .001, η2 = .378. Post-

hoc tests (LSD corrected) showed that accuracy on target-present trials at the superordinate 

level (M = 84.9%, 95% CI [81.1, 88.7]) was lower than at the basic level (M = 91.6%, 95% 

CI [89.5, 93.7]) and the subordinate level (M = 92.3%, 95% CI [90, 94.6]), ps < .001. These 

additional misses are consistent with previous work (Maxfield & Zelinsky, 2012) and reflect 

participants occasionally failing to recognize a target as a member of the cued superordinate 

category (Murphy & Brownell, 1985). On target-absent trials, accuracy was lower at the 

subordinate level (M = 89%, 95% CI [87, 91]) compared to the basic (M = 96%, 95% CI 

[94.7, 97.3]) and superordinate (M = 95.4%, 95% CI [93.2, 97.5]) levels, ps < .001. This 

increase in false positives was due to lures at the subordinate level being occasionally 

mistaken for the cued target category. Neither pattern of errors compromises our 

conclusions. Only correct trials were included in the subsequent analyses.

As in previous work (Castelhano, Pollatesk, & Cave, 2008, Schmidt & Zelinsky, 2009, 

Maxfield & Zelinsky, 2012), search performance was divided into target guidance and 

verification epochs and analyzed separately. Target guidance was defined in two ways: the 

time between search display onset and the participant’s first fixation on the target (time-to-

target), and the proportion of trials in which the target was the first object fixated during 

search (immediate fixations). Target verification was defined as the time between a 

participant’s first fixation on the target and their correct target-present manual judgment.
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Analyses of the initial guidance epoch of search revealed significant differences in time-to-

target between conditions, F(2,24) = 22.08, p < .001, η2 = .508. Targets cued at the 

subordinate level were fixated sooner on average than targets cued at the basic level, which 

were fixated sooner than targets cued at the superordinate level (ps ≤.021, Figure 3A, dark 

bars). This same trend held for immediate target fixations, F(2,24) = 13.31, p < .001, η2 = .

456 (Figure 3B, dark bars), a more conservative measure of guidance. Subordinate-level 

targets were first fixated more often than basic-level targets (p < .001), and basic-level 

targets were first fixated more often than superordinate-level targets (p < .001). Initial 

saccade latency did not reliably differ between cueing conditions (p = .452), suggesting that 

these differences were not due to a speed-accuracy tradeoff. Differences between conditions 

were also found during the verification epoch of search, F(2,24) = 5.71, p = .006, η2 = .215. 

As shown in Figure 3C (dark bars), these differences took the form of a BSE; targets cued at 

the basic level were verified faster than those cued at the subordinate level (p = .01) and 

superordinate level (p = .004). These findings not only extend previous work in showing that 

the hierarchical level in which a target is cued differentially affects target guidance and 

verification processes (Maxfield & Zelinsky, 2012), they create a challenging guidance and 

verification behavioral ground truth against which our generative model of category 

representation can be evaluated.

Model Methods

Two distinct effects of category hierarchy were found in the behavioral data: a subordinate-

level advantage in target guidance and a basic-level advantage in target verification. We 

explain both of these behavioral patterns using a single unsupervised generative model that 

extracts features from images of category exemplars and then reduces the dimensionality of 

this representation to obtain what we refer to as Category-Consistent Features (CCFs). 

Figure 4 provides an overview of this model.

Feature Extraction

Using the identical category hierarchy from the behavioral experiment, we built from 

ImageNet and Google Images an image dataset for model training. This consisted of 100 

exemplars for each of the 48 subordinate-level categories (4,800 images in total; see Figure 

1 for tiny views of these images), with each exemplar being an image patch closely cropped 

around the depicted object. Exemplars for basic-level and superordinate-level categories 

were obtained by combining the subordinate “children” exemplars under the “parent” 

categories. For example, the basic-level boat category had 300 exemplars consisting of 100 

speed boats, 100 sail boats, and 100 cruise ships, and the superordinate-level vehicle 

category had 1,200 exemplars consisting of the 300 exemplars from each of the boat, car, 

truck, and plane siblings.

The first step in representing an object category is the extraction of features from exemplars. 

Two types of features were used: the Scale Invariant Feature Transform (SIFT) and a color 

histogram feature. SIFT features capture the structure of gradients in images using 16 

spatially distributed histograms of scaled and normalized oriented-edge energy (Lowe, 

2004). The color histogram feature (Van de Weijer & Schmid, 2006) captures the 
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distribution of hue in an image, represented in the current implementation by 64 bins of Hue 

in 360° HSV color space. Using dense sampling (and discarding samples from uniform 

regions), we extracted 5 scales of SIFT descriptors from patches of 12×12, 24×24, 36×36, 

48×48, and 60×60 pixels, and color histogram features from a fixed-size 20×20 pixel patch 

surrounding the center positions of every SIFT descriptor in each of the 4,800 exemplars. 

Color histograms were pooled over patches within exemplars to create a single 64-bin color 

histogram for each. However, to compare SIFT features between exemplars it is necessary to 

find a common feature space, and for this we used the Bag-of-Words (BoW) method 

(Csurka, Dance, Fan, Willamowski, & Bray, 2004). The SIFT features extracted from each 

exemplar were put into a metaphorical bag, and k-means clustering was performed on this 

bag to obtain a common vocabulary of 1,000 visual words (k = 1000). The 64 hue features 

from the color histogram were concatenated to this vocabulary, yielding a 1064-dimensional 

feature space in which each of the 4,800 exemplars could be represented as a BoW 

histogram, where the bins of the histogram correspond to the 1,064 visual word features and 

the height of each bin indicates the frequency of that feature in a given exemplar.

Category-Consistent Features (CCFs)

Having put all the category exemplars in a common feature space, the next step is to find 

those features that are most representative of each target category. This process begins by 

averaging over category the BoW exemplar histograms to obtain what might be called a 

proto-type for each category (Rosch, 1973), although we avoid using this theoretically-laden 

term so as not to associate a proto-type with a particular step in the computation of CCFs. 

Each averaged category histogram captures the mean frequency that each of the 1,064 

features appeared in the category exemplars, along with the variance for each of these means 

(see Figure S2 in Supplemental Materials for a partial averaged histogram for the taxi 

category, and Figure S3A for a visualization of every complete histogram contributing to the 

taxi category averaged histogram).

Although methods abound in the computer vision literature for selecting features (e.g., 

Collins, Liu, & Leordeanu, 2005; Ullman, Vidal-Naquet, & Sali, 2002), most of these are 

tailored to finding features that discriminate between categories of objects for the purpose of 

classification. This makes them poorly aligned with our generative approach. Alternatively, 

feature selection under the CCF model is grounded in signal detection theory (Green & 

Swets, 1966). We assume that features having a high frequency and a low variance are more 

important than the rest, and use these simple measures to prune away the others. 

Specifically, features having a high mean frequency over the category exemplars are 

identified using the interquartile range rule: X′ = X > 1.5*(Q3 (X)–Q1 (X)), where X is the 

average frequency of the 1,000 SIFT features or 64 color features (performed separately) for 

a given category histogram, and Q1 and Q3 are the first and third quartiles, respectively. For 

each of these frequently occurring features we then compute the inverse of its coefficient of 

variation by dividing its mean frequency by its standard deviation, a commonly used method 

for quantifying a scale-invariant signal-to-noise ratio (SNR; Russ, 2011). Finally, we weight 

each feature in the above set by its SNR, then perform k-means clustering, with k=2, on 

these feature weights to find a category-specific threshold to separate the important features 

from the less important features. The CCFs for a given category are those features falling 
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above this threshold. CCFs are therefore the features that occur both frequently and reliably 

across the exemplars of a category, with each category having different CCFs in this 1064-

dimensional feature space. These CCFs, and not the noisier category histogram formed by 

simply averaging exemplar histograms, are what we believe constitutes the learned visual 

representation of an object category (see Figure S3B for the CCFs from the taxi category, 

and how they compare to the corresponding averaged category histogram from Figure S3A).

Model Results

Can the CCF model capture the patterns of target guidance and verification observed in 

behavior? We show that these two very different patterns can be modeled as different 

properties of the same CCF category representations.

Target Guidance

The behavioral data showed that target guidance got weaker as targets were cued at higher 

levels in the category hierarchy. Guidance was strongest following a subordinate-level cue, 

weaker following a basic-level cue, and weakest following a superordinate-level cue. How 

does the CCF model explain target guidance, and its change across hierarchical level?

According to the CCF model, target guidance is proportional to the number of CCFs used to 

represent a target category. The logic underlying this prediction is straightforward. To the 

extent that CCFs are the important features in the representation of a category, more CCFs 

mean a better and more specific category representation (see also Schmidt, MacNamara, 

Proudfit, & Zelinsky, 2014). A target category having a larger number of CCFs would 

therefore be represented with a higher degree of specificity and, consequently, fixated more 

efficiently than a target having a sparser “template” (Schmidt & Zelinsky, 2009). As shown 

in Figure 5 (dark bars), the number of CCFs per category indeed varied with hierarchical 

level; the subordinate-level categories had the most CCFs, followed by the basic-level and 

finally the superordinate-level categories. This too was predicted. Subordinate-level 

categories have more details in common that can be represented and selected as CCFs, 

whereas at the higher levels greater variability between exemplars cause features to be 

excluded as CCFs, resulting in a smaller total number.

Figure 3 shows that the effect of hierarchical level on target guidance can be captured simply 

by the mean numbers of CCFs extracted for the 48 subordinate-level target categories, the 16 

basic-level categories, and the 4 categories at the superordinate level. Specifically, the light 

bars in Figure 3A plot 1/CCF# to capture the increase in time-to-target with movement up 

the category hierarchy, while Figure 3B plots the raw numbers of CCFs to capture the 

downward trend in immediate target fixations. After linearly transforming the number of 

CCF data to put it into the same scales as the behavior, the model’s behavior fell within the 

95% confidence intervals surrounding all six of the behavioral means. This finding has 

implications for search theory. It suggests that the stronger target guidance reported for 

exemplar search (e.g., targets cued by picture preview) compared to categorical search (e.g., 

Schmidt & Zelinsky, 2009) may be due, not to a qualitative difference in underlying 

processes, but rather a quantitative difference in the number of “good” features in the target 

representation used to create the priority map that ultimately guides search (Zelinsky & 
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Bisley, 2015). Many strong guiding features can be extracted when the opportunity exists to 

preview the specific target exemplar, but strong guidance in a categorical search task 

requires a target category represented by many CCFs.

Target Verification

To the extent that more CCFs enable greater specificity in the target representation the 

converse is also true. Movement up the category hierarchy incurs a cost reflecting decreasing 

numbers of CCFs, with superordinate-level categories receiving the greatest cost, 

subordinate-level categories the least, and basic-level categories falling in between. We show 

that target verification can be modeled by combining this trend with a second and opposing 

trend, one based on the distance to neighboring categories.

Sibling Distance—In the context of a categorical search task, target verification refers to 

the time between first fixation on the target and the correct target-present judgment. The 

CCF model predicts that this time is proportional to the distance between the CCFs of the 

target category and the features of the target’s categorical siblings, where siblings are 

defined as categories sharing the same parent (one level up in the category hierarchy). This 

logic is also straightforward. Verification difficulty should depend on the distance between 

the target category and the most similar non-target categories in a test set; as this distance 

increases, target verification should become easier. This follows from the fact that smaller 

distances create the potential for feature overlap between categories, and to the extent this 

happens one category might become confused with another. In the present context, these 

least distant and most similar non-target exemplars would be the categorical siblings of the 

target. If the target was a police car the non-target objects creating the greatest potential for 

confusion would be exemplars of race cars and taxis, with these objects largely determining 

the verification difficulty of the target. Indeed, these siblings were the same objects used as 

categorical lures in order to obtain our behavioral demonstration of a basic-level advantage.

To model the distance between a target and its categorical siblings we took the CCF 

histogram for each sibling and found the mean chi-squared distance between it and the BoW 

histogram for every exemplar under the parent category. We denote the full set of BoW 

features as F = {1,…,1064}, and the CCFs for target category k as F′, such that k ∈ {1,…,

68} and F′k is a subset of F, F′k ⊆ F. Chi-squared distance is defined by:

Eq. 1

where x and y are the two histograms to be compared, and ϕi is the value at the ith bin of the 

1064-bin feature histogram. Note, however, that following the dimensionality reduction that 

occurred in selecting the CCFs the sibling CCF histograms may no longer be in the same 

feature space as the BoW histograms for the exemplars. To compute the above-described 

distances we therefore must put the CCF and BoW histograms back into a common feature 

space, and we do this by adopting the following algorithm. For comparisons between a given 

CCF histogram of category k and its own BoW histogram exemplars, chi-squared distances 
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were computed for only those bins in the BoW histograms for which there were 

corresponding bins in the CCF histogram, such that i ∈ F′k. For comparisons between 

exemplar histograms from category j and histograms from a sibling category, k, chi-squared 

distances were limited to the feature space formed by the union of the two CCF histograms, 

such that i ∈∪(F′j, F′k) for Eq. 1.

To clarify with an example, consider only two sibling categories, A and B, each having non-

identical CCF bins (F′A ≠ F′B) forming CCF histograms μ(A) and μ(B) based on exemplars 

An and Bn, where n describes all of the exemplars for a given category (either 100, 300, or 

1200 for the subordinate, basic, or superordinate categories, respectfully, used in this study). 

We compute the chi-squared distances between μ(A) and the BoW histograms obtained for 

each of A’s exemplars, An, for which there are corresponding bins in F′A. If we denote this 

distance between the CCF histogram of A and all the A exemplar histograms as dA,A, then 

dA,A = χ2(μ(A), An | i ∈ F′A)). We also compute the chi-squared distances between μ(A) and 

the BoW histograms obtained for each of B’s exemplars, dA,B, with these comparisons now 

limited to the bins forming the union of the F′A and F′B CCF histograms, such that dA,B = 

χ2(μ(A), Bn | i ∈∪(F′A,F′B)). Doing the same for μ(B) and the BoW histograms of the B 

exemplars and the A exemplars (based on the union of CCFs F′A and F′B), gives us dB,B and 

dB,A, respectively. Finally, taking the mean over the hundreds of distances in the sets dA,A, 

dA,B, dB,B, and dB,A, we obtain an estimate of the distance between sibling categories A and 

B, which we refer to as sibling distance.

To the extent that smaller sibling distances mean more difficult category verification 

decisions, the CCF model predicts a verification benefit for target categories designated at 

higher levels in the hierarchy. Computing sibling distances for all 64 target categories, then 

averaging within hierarchical level, we found that subordinate-level categories were closest 

to their sibling exemplars and that superordinate-level categories had the largest mean 

sibling distance (Fig 5, light bars). Verification times for race cars should therefore be 

relatively long due to the proximity of this category to taxi and police car exemplars, 

whereas shorter verification times are predicted for vehicles because of this category’s 

greater mean distance to Oreo cookies and other sibling exemplars. The basic-level 

categories again fall between these two, enjoying neither a verification cost nor a benefit.

Basic-level Superiority Effect—Rather than the predicted speed-up in target verification 

times with movement up the hierarchy, we found instead the often-observed basic-level 

advantage; faster verification for targets cued at the basic level compared to the subordinate 

or superordinate levels. However, and consistent with early explanations (Murphy & 

Brownell, 1985), we explain this BSE as a tradeoff between two interacting processes, 

specificity, which we relate to the number of CCFs existing for a given category, and 

distinctiveness, which we relate to the distance between the CCFs of a given category and 

the features of its sibling exemplars. Indeed, the countervailing trends illustrated in Figure 5 

reflect these opposing specificity and distinctiveness processes. To model the net impact of 

these interacting processes on target verification time we simply multiple one by the other. 

Specifically, for each target category we multiply its number of CCFs by its sibling distance 

to obtain a (unit-less) estimate of that category’s verification difficulty. These results, 

averaged by hierarchical level and linearly transformed into the behavioral scale, are shown 
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in Figure 3C (light bars). As was the case for target guidance, model estimates once again 

fell within the 95% confidence intervals surrounding the behavioral means. In a control 

experiment we also showed that randomly selecting the same numbers of visual word 

features failed to produce the BSE observed in behavior, thereby validating the CCF model

—any features will not do, these features have to be CCFs (see Figure S4).

Although categories at the subordinate level have the most CCFs (a specificity benefit), they 

also have the smallest sibling distance (a distinctiveness cost). This results in an intermediate 

degree of verification difficulty. Superordinate-level categories have the opposite 

relationship, relatively few CCFs (a specificity cost) but a large sibling distance (a 

distinctiveness benefit). This, again, results in an intermediate degree of verification 

difficulty. The basic-level categories occupy a privileged position in the hierarchy that avoids 

these two extremes. They have a relatively high number of CCFs while also being relatively 

distant from their sibling exemplars. This favorable trade-off between distinctiveness and 

specificity produces the BSE, faster verification at the basic level relative to the levels above 

and below.

Predicting search behavior using the CCF model

The above-described analyses demonstrated that the CCF model captured trends observed in 

target guidance and verification across the superordinate, basic, and subordinate levels, but 

can this model also predict behavior occurring within each of these categorical levels? As a 

first step towards answering this question, we conducted a trial-by-trial analysis to predict 

how strongly the cued target category would guide search to an exemplar of that target. For 

each target-present trial, we computed the chi-squared distance between the CCF 

representation of the target category and the target exemplar appearing in the search display, 

then correlated these distances with the time-to-target measure of search guidance obtained 

for every trial. To evaluate the CCF model predictions we used the leave-one-out method to 

derive a Subject model, which indicates how well the mean target guidance of n-1 subjects 

predicts the guidance of the subject left out. This analysis provides an upper limit on the 

predictive success of the CCF model, as correlations higher than the Subject model would 

not be expected given subject variability in their guidance behavior. Figure 6 plots time-to-

target correlations for the CCF model and the corresponding Subject model at each 

hierarchical level. Paired-group t-tests revealed that correlations did not reliably differ 

between the CCF and Subject model at the subordinate (p = .078) or basic (p = .334) levels, 

although correlations were significantly different at the superordinate level (p < .001). The 

poor correlation at the superordinate level is consistent with the absence of guidance 

reflected in the chance-level proportion of immediate target fixations at this level (Figure 

3B). These findings suggest that the CCF model not only predicted the fine-grained search 

behavior occurring on individual trials, these predictions at the subordinate and basic levels 

were as good as could be expected given agreement in the participants’ behavior.

Conclusion

Categories determine how we interact with the world. Understanding the forces that shape 

category representation is therefore essential to understanding behavior in every domain of 
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psychological science. We introduce a computational model of category representation, one 

that accepts image exemplars of common object categories and finds the features appearing 

frequently and consistently within each category’s exemplars—referred to here as category-
consistent features (CCFs).

We validated the CCF model through comparison to behavior in a categorical search task. 

Categorical search is important, and has diverse applications. Each time a security screener 

searches for a weapon, or a radiologist searches for a tumor, they are engaging in categorical 

search. Categorical search is also unique in that this single task enables study of the 

representations used to guide attention to categorically-defined targets and the 

representations underlying the recognition of these objects as members of the target 

category. We manipulated the hierarchical level in which categorical targets were cued and 

found that these attention and recognition processes were expressed in very different 

behavioral patterns. One pattern was a subordinate-level advantage in target guidance; 

targets cued at the subordinate level were preferentially fixated compared to targets cued at 

the basic or superordinate levels. Another pattern was a basic-level advantage in target 

verification; fixated objects were verified faster as members of the target category following 

a basic-level cue compared to subordinate or superordinate-level cues.

Under the CCF model, both patterns depend on the number of CCFs extracted from 

exemplars at each hierarchical level. Target guidance weakens with movement up the 

category hierarchy due to exemplar variability at the higher levels restricting the formation 

of CCFs, resulting in less effective target templates for guiding search (Olivers, Peters, Roos, 

& Roelfsema, 2011). The CCF model advances existing search and visual working memory 

theory by making explicit the processes of extracting visual features from image exemplars 

of real-world categories and consolidating these features into lower-dimensional category 

representations (CCFs) that can be used to guide search. It also provides a theory for 

understanding effects of category hierarchy (Maxfield & Zelinsky, 2012) and target 

specificity (Schmidt & Zelinsky, 2009) on search behavior; search is guided more efficiently 

to targets specified lower in the category hierarchy because these objects would usually be 

represented using more CCFs. Target verification was modeled as a multiplicative 

interaction between CCF number and sibling distance—a measure of similarity between the 

CCFs of a target category and the features of its sibling exemplars. In doing this, the CCF 

model appealed to the core principles of specificity and distinctiveness that have been 

guiding categorization research for decades (Murphy & Brownell, 1985). The number of 

CCFs maps onto the idea of specificity. Subordinate-level categories are the most specific 

because they give rise to many CCFs. Sibling distance maps onto the idea of distinctiveness. 

Verification suffers with movement down the hierarchy because target representations start 

to share too many features with their closest categorical neighbors. The CCF model 

advances categorization theory by making these core principles computationally explicit and 

applicable to real-world object categories.

Of potentially even broader theoretical significance is the question of whether search and 

categorization share the same target representation; are the visual features used to guide 

overt attention to a categorical target in a search display the same as those used to categorize 

the target once it is fixated? The CCF model suggests that this is the case, and to the extent 
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that this suggestion is supported through converging evidence (Zelinsky et al., 2013) a strong 

theoretical bridge will be built between the attention and categorization literatures. Future 

work will also strengthen the bridge to the computer vision and computational neuroscience 

literatures by attempting to learn CCFs using a deep convolutional neural network (CNN). 

Supervision is a powerful learning tool (Khaligh-Razavi & Kriegeskorte, 2014), and 

combining it with the generative extraction of features from exemplars may lead to 

significant advances in the understanding of category representation.

The CCF model makes possible the rigorous study of how visual object categories can be 

learned and represented from the vast numbers of diverse image exemplars accumulated 

throughout our everyday experience. Recent decades have seen scientific doors to the real 

world open for many psychological processes. The CCF model opens another such door into 

categorization.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Most of the 4,800 images used to train our model, grouped into the 16 basic-level categories 

used as stimuli. Images are shown as tiny thumbnails for illustration, but each was 

minimally 100×100 pixels and depicted a tightly cropped view of an object against a natural 

background. Common visual features among the 300 image exemplars of each category, and 

category-specific differences between these features, create the appearance of rectangles in 

this stimulus space. See Supplemental Materials for similar illustrations of exemplars 

grouped randomly (Figure S1A), at the superordinate level (Figure S1B), and at the 

subordinate level (Figure S1C).
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Figure 2. 
Procedure for the categorical search task. A target was designated by category name at one 

of three hierarchical levels, followed after a delay by a six-item target-present/absent search 

display. The target guidance and verification epochs used for analysis are indicated by the 

red graphics (not shown to participants) superimposed over the search display.
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Figure 3. 
Behavioral results (dark bars) for the categorical search experiment plotted with the CCF 

model output (light bars) for (A) time to the first fixation on the target, (B) proportion of 

immediate fixations on the target, and (C) time from first fixation on the target until the 

correct target-present button press decision. Error bars indicate 95% confidence intervals.
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Figure 4. 
An overview of the Category-Consistent Features Model. (i) 100 images of object exemplars 

were collected for 48 subordinate-level categories. These exemplars were combined to create 

16 basic-level categories (each with 300 exemplars) and 4 superordinate-level categories 

(each with 1200 exemplars). (ii) SIFT and color histogram features were extracted from each 

exemplar and the Bag-of-Words (BoW) method was used to create from these a common 

feature space consisting of 1064 “visual words”. (iii) 1064-bin BoW histograms were 

obtained for each exemplar, where the bins correspond to the visual words and bin height 

indicates the frequency of each feature in the exemplar image. BoW histograms were 

averaged by category to obtain 68 averaged histograms, each now having a mean frequency 

and variability associated with each visual word. (iv) Features in these averaged histograms 

having too low of a frequency or too high of a variability were excluded, resulting in a 

lower-dimensional feature representation of each category that we refer to as category-

consistent features (CCFs)—those highly informative features that are present both 

frequently and consistently across the exemplars of a category.
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Figure 5. 
Results from the CCF model showing the mean number of category-consistent features (dark 

bars) and mean sibling distances (light bars) by hierarchical level. Error bars indicate 

standard error of the mean, computed by treating the number of categories at each level as 

the number of sample observations (n).
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Figure 6. 
Correlations between the trial-by-trial CCF model predictions and time-to-target (light bars), 

averaged by level (Fisher z-transformation) and plotted with correlations from a 

corresponding Subject model (dark bars) that captures agreement among participants in their 

guidance behavior. Data were from all correct trials in which the target was fixated. Error 

bars indicate one standard error.
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Table 1

Object categories grouped by hierarchical level.

Superordinate Basic Subordinate

Vehicle Car Police Car

Taxi

Race Car

Boat Sail Boat

Cruise Ship

Speed Boat

Plane Passenger Airliner

Biplane

Fighter Jet

Truck 18 Wheeler

Fire Truck

Pickup Truck

Furniture Cabinet Kitchen Cabinet

Filing Cabinet

China Cabinet

Chair Folding Chair

Office Chair

Dining Room Chair

Bed Twin Bed

Canopy Bed

Bunk Bed

Table Coffee Table

Dining Room Table

End Table

Clothing Pants Jeans

Dress Pants

Pajama Pants

Shirt Dress Shirt

T-shirt

Long Sleeve Shirt

Hat Baseball Hat

Knit Cap

Cowboy Hat

Jacket Winter Jacket

Windbreaker

Trench Coat

Dessert Ice Cream Chocolate Ice Cream

Mint Choc. Chip Ice Cream

Strawberry Ice Cream
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Superordinate Basic Subordinate

Pie Pecan Pie

Blueberry Pie

Lemon Meringue Pie

Cookie Oreo

Chocolate Chip Cookie

Sugar Cookie

Cake Chocolate Cake

Wedding Cake

Bundt Cake
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