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Abstract

Background—Folate intakes that do not meet or greatly exceed requirements may be associated 

with negative health outcomes. A better understanding of contributors that influence the input side 

will help establish dietary guidance that ensures health benefits without associated risks. Colonic 

microbiota produce large quantities of folate, and [13C5]5-formyltetrahydrofolate infused during 

colonoscopy is absorbed. However, it is unclear if significant quantities of folate are absorbed in 

an intact microbiome.

Objective—We determined whether and how much of a physiologic dose of [13C5]5-

formyltetrahydrofolate delivered in a pH-sensitive enteric caplet to an intact colonic microbiome is 

absorbed.

Design—Healthy adults ingested a specially designed pH-sensitive acrylic copolymer–coated 

barium sulfate caplet that contained 855 nmol (400 μg) [13C5]5-formyltetrahydrofolate. After a 

washout period ≥4 wk, subjects received an intravenous injection of the same compound (214 

nmol). Serially collected blood samples before and after each test dose were analyzed by using a 

microbiological assay and liquid chromatography–tandem mass spectrometry.

Results—Caplet disintegration in the colon was observed by fluoroscopic imaging for 6 subjects 

with a mean (±SD) complete disintegration time of 284 ± 155 min. The mean (±SEM) rate of 
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appearance of [13C5]5-methyltetrahydrofolate in plasma was 0.33 ± 0.09 (caplet) and 5.8 ± 1.2 

(intravenous) nmol/h. Likely because of the significant time in the colon, the mean apparent 

absorption across the colon was 46%.

Conclusions—Folate is absorbed across the colon in humans with an undisturbed microbiome. 

This finding and previous observations of the size of the colonic depot of folate and its potential 

for manipulation by diet (eg, dietary fiber, oligosaccharides, and probiotics) suggest that an 

individual’s dietary folate requirement may differ depending on the consumption of dietary 

constituents that affect the size and composition of their gastrointestinal microbiota. In addition, a 

systematic investigation of the role of colonic folate on gastrointestinal development and the 

prevention of colorectal cancer is warranted. This trial was registered at clinicaltrials.gov as 

NCT00941174.

INTRODUCTION

A growing body of evidence suggests a potential dual modulatory role of folate in health and 

disease where both inadequate and excessive intakes are associated with undesirable 

consequences (1). Suboptimal folate status, particularly in countries that do not have a folic 

acid–fortified food supply, is associated with risk of neural tube defects, cleft lip with or 

without cleft palate, colorectal cancer, and, to a lesser degree, stroke and neuropsychiatric 

disorders (2, 3). However, some individuals in countries with a folic acid–fortified food 

supply who also consume folic acid supplements have supraphysiologic concentrations of 

circulating folate, which have been proposed by some authors to negatively modify health 

risks (4–6). The literature in this area is often conflicting and has been polarizing.

To set dietary guidance for folate intake that strikes the right balance between the known 

benefits of addressing suboptimal intake and potential risks associated with very high 

intakes of folate, a better understanding of the input side of folate nutrition is required. To 

our knowledge, on the input side of the equation, only oral intakes of folate have been 

considered. Another potential source of folate is the folate pool produced by microorganisms 

in the colon. Many bacterial species, including several in the colon, are capable of 

synthesizing folate by a process that involves the condensation of paraaminobenzoic acid 

with dihydropterin (7, 8). The size of the colonic depot of folate is significant and was 

shown to approach or exceed the Recommended Dietary Allowance (400 μg) for adults (9, 

10). Work in animal models that used a [3H]paraaminobenzoic acid tracer indicated that 

folate produced by intestinal bacteria can be absorbed across the colon of mammals (11, 12). 

More recently, after cecal infusion of 684 nmol [13C5]5-formyltetrahydrofolate after bowel 

cleansing, we observed the labeled metabolite, [13C5] 5-methyltetrahydrofolate in plasma, 

which showed that folate can be absorbed across the colon in humans (13). Although the 

folate-specific transporter [eg, proton-coupled folate transporter (PCFT)5] is expressed in the 

colon, mechanisms by which folate absorption occurs across the colon remain unclear 

because it is uncertain whether the pH at the absorptive surface is in the range that would 

allow for appreciable PCFT activity (14–17).

5Abbreviations used: Cmax, maximal plasma concentration; LC-MS/MS, liquid chromatography–tandem mass spectrometry; PCFT, 
proton-coupled folate transporter; RBC, red blood cell
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Although we previously showed that preformed folate can be absorbed across the colon after 

cecal infusion in humans during colonoscopy, we do not know what impact bowel cleansing 

in preparation for this procedure had on our findings. In addition, the percentage of 

bioavailability of folate from the colon of humans remains unknown. Therefore, the primary 

objective of the current study was to evaluate folate absorption across the human colon with 

an intact microbiome by using specially designed enteric-coated caplets to deliver 855 nmol 

[13C5]5-formyltetrahydrofolate past the ileocecal junction.

SUBJECTS AND METHODS

Study population

Healthy adults between the ages of 18 and 65 y of age were recruited between September 

and October 2008 by public advertisement from the University of Toronto community. 

During an initial screening visit in the Clinical Investigation Unit at The Hospital for Sick 

Children, individuals provided a venous blood sample to confirm normal red blood cell 

(RBC) folate concentrations and determine their 5,10-methylenetetrahydrofolate reductase 

(MTHFR) 677>.T genotype. Individuals shown to be homozygous for the T allele were 

excluded from participating in the study to minimize potential intersubject differences in the 

way folate was metabolized. Blood samples were also analyzed in the Core Laboratory 

Facilities at The Hospital for Sick Children to ensure subjects had normal blood chemistries 

(serum electrolytes and complete blood counts) and vitamin B-12 and pyridoxal-5-

phosphate concentrations. During screening, potential subjects were also excluded if they 

reported a history of any chronic disease (eg, inflammatory bowel or celiac disease), recent 

gastrointestinal surgery, or medication use known to interfere with folate absorption, folate 

metabolism, intestinal motility, or intestinal pH (eg, dilantin, metformin, antacids, laxatives, 

or antibiotics). Individuals who consumed >1 alcoholic drink/d or were smokers were also 

excluded. Women were screened for pregnancy (Clearview hcG II; Wampole Laboratories), 

and those with a positive pregnancy test, planning a pregnancy, breastfeeding, or taking 

high-dose estrogen (eg, hormone replacement therapy) were also excluded. All subjects gave 

written informed consent. Subjects who met eligibility requirements were asked to refrain 

from the use of vitamin or mineral supplements ≥2 wk before study initiation and avoid 

alcohol within 24 h of receiving the folate test dose. Anthropometric measurements were 

determined according to standardized procedures (18). The study protocol was approved by 

the Human Research Ethics Board at The Hospital for Sick Children, and regulatory 

approval was received from the Therapeutic Products Directorate, Health Canada.

Test compound and dose formulations

The isotopically labeled test compound [glutamyl-13C5]-[6S]-5-formyltetrahydrofolic acid 

was synthesized by Merck Eprova AG and purchased in powdered form as a calcium salt. 

The chemical purity of the compound was confirmed to be 98% pure by the manufacturer by 

using HPLC and infrared spectroscopy. [13C5]5-Formyltetrahydrofolate was mixed with 

barium sulfate, which is a radioopaque substance, to allow for the monitoring of the transit 

of the test compound through the gastrointestinal transit via serial fluoroscopic imaging as 

we have described previously (19). This mixture was pressed into a caplet and coated with 2 

different pH-sensitive acrylic copolymer products in a 3:1 mass ratio (Eudragit L100 and 
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Eudragit S100; Evonik Industries AG). We previously reported that this combination of 

Eudragit products was the most efficacious in ensuring caplets did not start to disintegrate 

before the ileocecal junction but did so in the colon (19). Caplets in the current study were 

produced by the Toronto Institute of Pharmaceutical Technology following good 

manufacturing practices, and except where indicated, all ingredients used to prepare caplets 

were purchased from Sigma. Each compressed caplet core was formulated to contain 855 

nmol [13C5]5-formyltetrahydrofolate (400 μg), 64% (wt:wt) barium sulfate, 7% (wt:wt) 

polyvinyl pyrillidone K90, 13% (wt:wt) microcrystalline cellulose, and 4% (wt:wt) sodium 

starch glycolate (JRS Pharma) to a target weight of 2220 mg (19). Caplets were coated by 

first dispersing Eudragit L100 (4% wt: wt) and S100 (1% wt:wt) in water and adding a 

plasticizer (triethylcitrate) (4% wt:wt), glidant (talc) (2% wt:wt), and a neutralizing agent 

(potassium hydroxide) (0.1% wt:wt). The final aqueous coating mixture was filtered to 

eliminate sediment or agglomerates and sprayed on barium sulfate caplet cores [Laboratory 

Development Coating System 5 (LDCS-5) Hi-coater; Vector Corp] to achieve an increase in 

caplet mass ~12.6%. Caplets were stored in the dark at 4°C.

For the intravenous test dose, [13C5]5-formyltetrahydrofolate (214 nmol; 100 μg) was 

dissolved in physiologic saline (pH 7.0; 74 μg folate/mL) under aseptic conditions in the 

Department of Pharmacy at The Hospital for Sick Children. After testing for sterility and 

bacterial endotoxins, intravenous solutions were stored in the dark at 4°C for up to 1 mo. 

Folate concentrations of intravenous solutions and caplets were confirmed by microbial 

assay to be ±10% of the targeted folate concentration.

Study protocol

On study day 1, a fasting baseline venipuncture blood sample (5 mL) was collected. On day 

2, at ~0600, subjects consumed the test caplet that contained 855 nmol [13C5]5-

formyltetrahydrofolate with as much water as desired. A standard breakfast that consisted of 

puffed rice cereal and a nondairy rice beverage was provided. This breakfast was previously 

assessed to provide low amounts of folate (direct analysis in our laboratory), energy, and 

residue (food-composition tables and product labels) (19). Approximately 2 h later, the 

location in the gastrointestinal tract and disintegration profile of each caplet was determined 

by a qualified radiation technologist by using a fluoroscope (Infinix; Toshiba America 

Medical Systems Inc) in the Image Guided Therapy Unit at The Hospital for Sick Children 

(19). Imaging proceeded at ~60-min intervals and concluded at 1800 h or earlier if complete 

caplet disintegration was observed. Each image required an average of 2–3 s fluoroscopic 

exposure and delivered an approximate radiation entrance dose of 20 mRem/image. In total, 

subjects received an average (±SD) of 127 ± 22-mRem exposure, which was comparable to 

one-tenth of the effective dose for an adult abdominal X-ray. In the event that the caplet had 

not completely dissolved by 1800, the next stool was collected. Between imaging sessions, 

subjects were able to move around freely but were asked to abstain from vigorous exercise. 

All fluoroscopic images were independently reviewed by one of the authors, a radiologist 

(BC), and a doctoral student to confirm the anatomical location where caplets disintegrated 

and determine caplet transit and disintegration times. The caplet disintegration initiation 

time was defined as the time when clear erosion of the caplet edges could be observed, and 
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complete caplet disintegration time was defined as the time when a solid caplet core was no 

longer discernible.

Peripheral blood samples (5 mL) were collected hourly via an indwelling catheter after the 

caplet had passed through the pyloric sphincter and until 2000 and again at 24 and 48 h 

postcaplet ingestion. Once the caplet had exited the stomach, lunch and snacks were 

provided ad libitum from a selection of low-folate–containing foods that investigators 

provided.

After ≥4 wk, subjects returned to the Clinical Investigation Unit to complete the intravenous 

arm of the study. After an overnight fast, blood samples were collected from each subject at 

~0800. Thereafter, subjects were immediately injected thereafter with 214 nmol [13C5]5-

formyltetrahydrofolate in 1.35 mL sterile saline. We previously showed that a lower dose of 

[13C5]5-formyltetrahydrofolate was necessary to produce a detectable plasma folate 

response than with the administration of the dose through the colon (13). Blood samples (5 

mL) were collected 15 min postinjection and at 30-min intervals thereafter for 4 h via an 

indwelling catheter inserted in the arm that was not used for injection of the test dose. 

During blood collection, low-folate snacks and beverages were provided ad libitum.

All foods and beverages consumed while subjects were in the Clinical Investigation Unit 

were recorded by one of the authors (AL) during both caplet and intravenous injection arms 

of the study. Each participant received written and oral instructions on how to record their 

food intakes by using household measures after they went home and until the 48-h blood 

draw during the caplet arm of the study was completed. Subjects were also asked to limit 

foods high in folate during this time and were provided with food lists. Total energy, 

macronutrient, and folate contents of foods consumed were determined from food records 

and a food-composition database (Food Processor SQL version 10.2.0; Esha Research).

Biochemical and mass spectrometry analyses

Blood samples for folate analyses were collected into EDTA-treated tubes and processed as 

described previously (13). The total folate concentration of whole blood and plasma was 

determined by using standard microbial assay with the test organism Lactobacillus 
rhamnosus and folic acid to generate the standard curve (ATCC7649; American Type Tissue 

Culture Collection) (20). The RBC folate concentration was calculated by subtracting 

plasma folate from whole-blood folate with correction for the packed red cell volume. A 

whole-blood reference standard (certified value of 29.5 nmol/L, 95/528; National Institute of 

Biological Standards and Control) was used to assess the reproducibility and accuracy of our 

microbial assay. During this study, the analysis of the whole-blood reference standard 

yielded a folate concentration of 29.7 ± 1.8 nmol/L and an interassay CVof 6% (n = 36). The 

genotyping of MTHFR C677T (CC, CT, and TT) was determined by DNA extracted from 

the buffy coat of whole blood after centrifugation and processed by an allele-specific real-

time polymerase chain reaction by using the TaqMan SNP Genotyping for MTHFR (Applied 

Biosystems) (21).

The plasma enrichments of the administered test dose of [13C5] 5-formyltetrahydrofolate 

and its metabolite [13C5]5-methyltetrahydrofolate were determined by using liquid 
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chromatography–tandem mass spectrometry (LC-MS/MS) at the CDC as described in detail 

previously (13, 22). Briefly, folates were extracted from plasma by using phenyl solid-phase 

extraction 96-well plates, and extracts were analyzed with the use of LC-MS/MS by using 

reversed-phase chromatographic separation with an isocratic mobile phase. Mass-to-charge 

ratios of transitions of interest [(M + 0) and (M + 5)] were monitored in positive-ion mode 

via turbo ion electrospray on an AB Sciex 5500 triple quadrupole mass spectrometry system 

(Applied Biosystems). Plasma samples collected immediately after intravenous injection 

showed a mean (±SEM) enrichment with [13C5]5-formyltetrahydrofolate of 11.6 ± 1.5%.

Quantification of plasma folate response

In addition to reporting data as molar ratios of 5-formyltetrahydrofolate and 5-

methyltetrahydrofolate, they are also presented as the sum of peak areas as nanomoles of 

folate per person. The quantification of the plasma response was done with a number of 

important assumptions detailed previously (13). Most importantly, to calculate the sum of all 

peak areas, we added the peak areas for labeled (M + 5) and unlabeled (M + 0) 5-

formyltetrahydrofolate and 5-methyltetrahydrofolate and folic acid. To account for the 

difference in the LC-MS/MS signal of 5-formyltetrahydrofolate, 5-methyltetrahydrofolate, 

and folic acid, we adjusted peak areas for 5-formyltetrahydrofolate (divided by 0.92) and 

folic acid (divided by 0.7). Second, to quantify the total concentration of labeled (M + 5) 5-

formyltetrahydrofolate or 5-methyltetrahydrofolate (nmol folate/L plasma), we multiplied 

the peak area for each labeled metabolite by the baseline total plasma folate concentration 

determined by using a microbial assay for each subject at each treatment period and divided 

this value by the sum of all peak areas as we have done previously (13). Finally, to express 

results on a whole-body basis (ie, convert from nmol/L to nmol/person), each individual 

subject’s total blood volume was estimated by using the standard value of 75 mL/kg for men 

and 66.5 mL/kg for women (23). The plasma volume was calculated from the estimated 

whole blood volume by using the packed red cell volume.

Statistical analysis

Our sample size was based on our previous work in this area that facilitated a prediction of 

the percentage of specially coated caplets that would release their test dose quantitatively in 

the colon and the number of subjects required to produce a robust estimate of the mean rate 

of [13C5]5-methyltetrahydrofolate appearance in plasma (13, 19). Descriptive statistics were 

generated with SAS for Windows software (version 9.3; SAS Institute Inc). We analyzed the 

change in molar ratios of formyltetrahydrofolate or 5-methyltetrahydrofolate or in the total 

plasma folate concentration (ie, nmol/L or nmol/person) over time by using repeated-

measures ANOVA (PROC MIXED; SAS Institute Inc) with the sample as the main effect 

and quadratic sample or cubic sample as necessary. The baseline RBC folate concentration 

was included as a covariate in these statistical models.

The individual rate of appearance of [13C5]5-methyltetrahydrofolate in plasma over time 

after caplet ingestion was determined from the linear slope of the ascending portion of each 

plasma response curve and with GraphPad Prism version 4.00 for Windows software 

(GraphPad Software). The estimated apparent plasma half-life (one-phase exponential 

decrease over time) of [13C5]5-formyltetrahydrofolate after the intravenous injection for 
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each subject was determined from the slope of the descending portion of each plasma 

response curve.

RESULTS

Subject characteristics

Eleven adults responded to the poster advertisement about the research project, attended the 

screening visit, and provided a blood sample to determine their eligibility for the study. One 

individual was excluded because the person was homozygous for the MTHFR 677C>T 

allele, and one person withdrew after the screening visit but before any study intervention 

because of other commitments. All 9 remaining individuals completed both the caplet and 

intravenous injection arms of the study. Characteristics of these 6 men and 3 women (22–26 

y old) are summarized in Table 1. Screening RBC folate concentrations varied but were well 

above the cutoff of 360 nmol/L associated with liver folate depletion (18). Blood indexes of 

vitamin B-12 status and vitamin B-6 status were within common normative ranges (18); 

however, one subject’s pyridoxal-5-phosphate concentration exceeded the group mean by >3 

SDs and, therefore, was not included in the calculation of the baseline mean value. All other 

blood vitamin concentrations for this subject were included in the calculation of baseline 

means. Four subjects, including the individual with the very high pyridoxal-5-phosphate 

concentration, consumed supplements that contained folic acid and vitamin B-6 before the 

screening visit, but all participants discontinued supplementation ≥2 wk before the study 

intervention. The BMI (in kg/m2) of each subject was <30. During the period of serial blood 

sample collection after caplet ingestion (14 h) and the intravenous injection (4 h), mean 

(±SD) dietary intakes of folate were 47.9 ± 8 and 12 ± 1.2 μg dietary folate equivalents, 

respectively.

Caplet transit and disintegration

No caplet began to disintegrate before the ileocecal junction in any subject as assessed by 

the intact caplet edges observed during fluoroscopic imaging (see Supplemental Table 1 

under “Supplemental data” in the online issue). In 8 of 9 subjects, some initial disintegration 

of the caplet occurred in the colon during the 14-h observation period, and in 6 of 9 subjects, 

disintegration was complete. In the one remaining subject (subjects G), no disintegration of 

the caplet was observed in the colon. However, a complete disintegration of the caplet was 

noted in a subsequently collected stool sample. We observed plasma uptake of [13C5]5-

methyltetrahydrofolate after caplet ingestion in all subjects but 2 subjects (subjects H and I; 

one subject with complete caplet disintegration, and one subjects without complete caplet 

disintegration. These 2 subjects were removed from subsequent analyses unless otherwise 

indicated.

Pharmacokinetics

Summaries of pharmacokinetic data from the caplet and intravenous injection arms of the 

study are shown in Tables 2 and 3, respectively. We did not detect [13C5]5-

formyltetrahydrofolate in the plasma of any subject after test caplets were consumed; 

however, its metabolite [13C5]5-methyltetrahydrofolate was detected in the plasma of 7 

subjects (subjects A–G). For 6 subjects (subjects A–F) in whom complete caplet 
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disintegration was observed, the mean (±SEM) delay in appearance of [13C5]5-

methyltetrahydrofolate in plasma after caplet ingestion was 6.6 ± 1.0 h and appeared at a 

rate of 0.33 ± 0.09 nmol/h that reached a maximal plasma concentration (Cmax) of 2.6 ± 0.6 

nmol/person. We were unable to include subject G in the pharmacokinetic analysis because 

only trace amounts of [13C5] 5-methyltetrahydrofolate appeared in plasma, and there was no 

discernible linear slope on the ascending portion of the plasma response curve (Figure 1).

The mean Cmax of [13C5]5-formyltetrahydrofolate after intravenous injection was 13.5 ± 1.6 

nmol. The concentration of labeled 5-formyltetrahydrofolate in plasma decreased from its 

maximum after intravenous injection with a half-life of 0.3 ± 0.03 h. The mean Cmax for 

[13C5]5-methyltetrahydrofolate was 6.8 ± 0.8 nmol/person.

Plasma labeled folate response

The molar ratios (M + 5:M + 0) for 5-methyltetrahydrofolate during the caplet and for 5-

formyltetrahydrofolate and 5-methyltetrahydrofolate during the intravenous injection arms 

of the study are illustrated in Figure 1 and Figure 2, respectively. After caplet ingestion (n = 

7), there was a statistically significant change in the molar ratios for 5-

methyltetrahydrofolate (P = 0.0250). Similarly, after intravenous injection (n = 9), there was 

a significant change in molar ratios for 5-formyltetrahydrofolate and 5-

methyltetrahydrofolate (P < 0.0001).

We converted LC-MS/MS (M + 5) and (M + 0) peak areas for5-formyltetrahydrofolate and 

5-methyltetrahydrofolate to nanomoles per person in each arm of the study as illustrated in 

Figure 3. After caplet ingestion, there was a significant change in the total amount of labeled 

5-methyltetrahydrofolate in plasma over time which returned to baseline within 24 h (P = 

0.0192). After intravenous injection, there was a significant change in labeled 5-

formyltetrahydrofolate, 5-methyltetrahydrofolate, and unlabeled 5-formyltetrahydrofolate 

over time (P < 0.0001).

Calculation of apparent absorption

We intended to calculate the percentage bioavailability of the [13C5]5-formyltetrahydrofolate 

from the test caplets by comparing the AUC produced for [13C5]5-methyltetrahydrofolate in 

plasma after caplet ingestion with that generated after intravenous injection. However, as 

illustrated in Figure 2B, the molar ratio of 5-methyltetrahydrofolate in plasma after in 

travenous injection did not return to baseline, and thus, the calculation of the percentage of 

bioavailability by comparison of AUCs was not possible. Therefore, we elected to calculate 

the apparent absorption of [13C5]5-formyltetrahydrofolate from the test caplets by using the 

mathematical model for a simple one-compartment model for folate absorption across the 

small intestine described by Wright et al (24). In this set of 3 equations, C was defined as the 

plasma concentration of labeled 5-methyltetrahydrofolate, and M was the mass of the dose 

absorbed. The apparent volume of distribution for folate in the sample compartment was 

defined as V and estimated to be 387 mL/kg body weight (25). From the plasma labeled 5-

methyltetrahydrofolate curve, tlag was defined as the length of time plasma enrichment 

remained at baseline before the first appearance of labeled folate in plasma (set at 1 h). In 

addition, tmax was defined as the time to peak labeled 5-methyltetrahydrofolate 
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concentration, and T was calculated as the difference between tmax and tlag. The rate 

constant of elimination of labeled 5-methyltetrahydrofolate from the plasma compartment to 

body tissues or excretion was defined as k, whereby

(1)

(2)

(3)

The mean absorption of the 855-nmol dose of [13C5]5-formyltetrahydrofolate was 46.2 

± 16.5%. This estimate of folate absorption did not consider the fraction of newly absorbed 

folate that may have been metabolized by colonocytes or sequestered by the liver.

DISCUSSION

[13C5]5-Formyltetrahydrofolate (855 nmol; 400 μg) delivered to the colon by enteric-coated 

caplets was absorbed across the colon of humans. This observation was consistent with 

earlier work that used the rodent or pig as an animal model (11, 12) and in which labeled 

folate was quantitatively infused into the cecum of humans after bowel cleansing (13). The 

enteric-coated caplets, which were specially designed for this study, allowed for the 

systematic investigation of folate absorption across the colon without disruption of the 

microbiome, which was a major strength of this work. This approach could be applied in 

future research to investigate the availability of other nutrients and bioactive components in 

the colon that are of interest to human health.

In subjects who had a linear plasma folate response after caplet ingestion (n = 6), the mean 

(±SEM) rate of absorption assessed by the appearance of [13C5]5-methyltetrahydrofolate in 

plasma was 0.33 ± 0.09 nmol/h. We previously observed the rate of folate absorption after 

infusion of a bolus dose of [13C5]5-formyltetrahydrofolate (684 nmol; 320 μg) directly into 

the cecum to be 0.6 ± 0.02 nmol/h. A comparison of results from the 2 studies must be 

approached with caution. However, a significant difference in the rate of absorption between 

the 2 studies was shown (P = 0.02; unpaired t test). Nonetheless, the rate of absorption 

across the colon in both studies was significantly lower than that reported in the literature for 

the small intestine (24,26). With the use of data derived from published reports of Wright et 

al (24, 26) in which the appearance of [13C5]5-methyltetrahydrofolate was measured after an 

oral bolus dose of [13C5]5-formyltetrahydrofolate (421–569 nmol), we estimated that the 

rate of folate absorption across the small intestine is ~34 nmol/h.

The difference in reported rates of folate absorption across the small intestine compared with 

the colon is consistent with the current understanding of how physiologic concentrations of 

the vitamin are absorbed throughout the gastrointestinal tract. Beyond the early postnatal 

period, folate must be in the monoglutamyl form to be absorbed, which is the form of the 
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vitamin secreted into the lumen by folate synthesizing bacteria and lost during enterohepatic 

circulation (27–29). In the colon, the lysis of prokaryotes and eukaryotic cells yields a 

source of polyglutamylated folates. Folate absorption across the apical side of the enterocyte 

in the small intestine is thought to occur mainly by PCFT (optimum pH of 5.5). This 

transporter is also present in the colon at lower concentrations (17). More work needs to be 

done to ascertain whether the pH at the absorptive surface of the colon would allow for an 

appreciable PCFT activity.

Available evidence, primarily from in vitro and animal studies, has suggested that many 

factors influence the expression of folate transporters and or folate absorption (2, 16, 30, 31). 

These factors include the folic acid concentration in cell culture media, mix of folates 

consumed (monoglutamylated compared with polyglutamylated) fiber intake (soluble or 

insoluble), genetic mutations in folate metabolism or transport, and the use of proton-pump 

inhibitors. Although the concentration of bacteria in the small intestine is considerably lower 

than the colon, it has been shown that folate synthesized by bacteria in the small intestine 

can similarly be absorbed (32). Whether these factors or differences in microbial community 

composition in the colon account for the wide subject-to-subject variability in the current 

study is not clear.

Although the rate of folate absorption is much slower in the colon than small intestine, the 

residence time in the colon is up to 20 times longer (33, 34). A longer transit time allows for 

greater opportunity for folate absorption to occur and likely accounts for the estimated 46% 

bioavailability of the [13C5]5-formyltetrahydrofolate dose in the current study. With the use 

of the same assumptions as used in the current study, Wright et al (24) reported an apparent 

absorption of 38 ± 6% after a 500-nmol orally administered test dose of [13C5]5-

formyltetrahydrofolate in the small intestine. If the 46% apparent rate of absorption across 

the colon estimated herein is taken into account and with the assumption of the total folate 

content in the aqueous fraction of colonic evacuates that we previously reported in a sample 

of South Africans (699 ± 131 μg) and white Americans (860 ± 129 μg), we estimated that 

~322–396 μg colon-derived folates could be potentially absorbed daily (10). These estimates 

do not take into consideration that many folates are polyglutamylated and, hence, differ in 

their bioavailability compared with that of monoglutamylated folate used as a test dose in 

the current study, but these study results emphasize the potential contribution of colonic 

folate to whole-body folate metabolism and colonic health (2). Previous research has 

suggested at least one-half of folates in stools of infants and piglets were short-chain folates 

with a significant fraction comprised of monoglutamylated folates (9). The hydrolysis of the 

polyglutamate chain of folate occurs in the brush border of the small intestine of humans by 

glutamate carboxypeptidase II (17). Although glutamate carboxypeptidase II transcripts are 

present in the colon, they have been shown at much-lower concentrations than in the small 

intestine (35). Similarly, we know that bacteria themselves contain folate conjugase, usually 

at low amounts (36). The impact of these sources of folate conjugase on conversion of 

polyglutamylated folate to the bioavailable monoglutamyl form is unknown.

We acknowledge the limitations of this study and offer suggestions for future research. As 

described, we intended to calculate the [13C5]5-formyltetrahydrofolate bioavailability from 

test caplets by comparing the AUC produced for [13C5]5-methyltetrahydrofolate in plasma 
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after caplet disintegration with that generated after intravenous injection. However, the molar 

ratio of methyltetrahydrofolate in plasma after intravenous injection did not return to 

baseline; hence, this approach was not possible. We observed this same phenomenon in our 

previous colonoscopy study after 4 h of blood sampling; therefore, we suggest that blood 

samples be collected for a longer period of time after intravenous injection in future studies 

(13).

Second, to formulate the enteric coating on caplets to ensure that they remained intact until 

after the ileocecal junction, in 3 of our 9 subjects, caplets did not appear to completely 

disintegrate in the colon. In an earlier study that assessed the efficacy of the enteric coating 

on these caplets, Aimone et al (19) noted, in 2 of 10 subjects, that there was no observable 

dissolution of caplets in the colon. These observations suggest that, in future work that uses 

these caplets to investigate the colonic absorption of folate, other nutrients, or bioactive 

components, some type of imaging will be required to confirm in which subjects caplets 

dissolved. In addition, in 2 subjects, one in whom the caplet appeared to completely 

disintegrate and one in whom it did not, there was no observed plasma folate response after 

caplet ingestion. Our estimate of the [13C5]5-formyltetrahydrofolate bioavailability from the 

colon did not include these 2 subjects. If we assume the true bioavailability of the test dose 

in these 2 subjects was zero and included them in the analysis, the estimated (±SEM) 

bioavailability in our sample would have been 34.7 ± 14.3%. Future studies should examine 

the availability of polyglutamylated folates across the colon because they comprise a 

significant fraction of colonic folate. Finally, we acknowledge that our sample size of 6 

subjects was small, and hence, the generalization of the rate of folate absorption across the 

colon or the percentage of the total dose of folate absorbed to the larger population must be 

approached with caution.

In conclusion, results from the current study suggest that a physiologic dose of folate 

delivered to the colon by means of enteric-coated caplets is absorbed. We estimate an 

apparent rate of absorption of 46% compared with 38% reported previously for the small 

intestine by using similar methodology. Previous studies used to establish the Recommended 

Dietary Allowance for folate included participants with an intact microbiome (2). However, 

because of the large quantity of folate present in the colon and its potential for manipulation 

by diet (eg, dietary fiber increasing the bacterial load and folate synthesis), we speculate that 

an individual’s dietary requirement for folate may differ depending on the consumption of 

dietary constituents that influence the size and composition of the gastrointestinal 

microbiome. Although there has been some evidence from animal and human studies that 

suggested that systemic folate concentrations are associated with bacterial folate 

biosynthesis, more research is required before changes to dietary recommendations should 

be considered (37–40). In addition, the current research suggests that a systematic 

investigation of the role of colonic folate on gut health, including gastrointestinal 

development during infancy and the prevention of colorectal cancer, is warranted.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Mean (±SEM) (A) and individual subject (B) molar ratios of (M + 5) to (M + 0) for 5-

methyltetrahydrofolate in plasma after initiation of disintegration of enteric-coated caplets 

containing 855 nmol [13C5]5-formyltetrahydrofolate. The change in the mean molar ratio 

was significant (P = 0.0250; repeated-measures ANOVA). No [13C5]5-

formyltetrahydrofolate was observed in the plasma of any subject.
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FIGURE 2. 
Mean (±SEM) molar ratios of (M + 5) to (M + 0) for 5-formyltetrahydrofolate (A) and 5-

methyltetrahydrofolate (B) after IV injection of 214 nmol [13C5]5-formyltetrahydrofolate in 

9 subjects. The change in the molar ratio for both [13C5]5-formyl- and [13C5]5-

methyltetrahydrofolate was significant (P < 0.0001; repeated-measures ANOVA). IV, 

intravenous.
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FIGURE 3. 
Mean (±SEM) plasma folate content of [13C5]5-formyltetrahydrofolate (circles, M + 5), its 

metabolite [13C5]5-methyltetrahydrofolate (upward triangles, M + 5), and unlabeled 5-

formyltetrahydrofolate (downward triangles, M + 0) after administration of [13C5]5-

formyltetrahydrofolate by an enteric-coated caplet (855 nmol; n = 7) (A) and IV injection 

(214 nmol; n = 9) (B). Note that y axes differ between panels. The change in [13C5]5-

formyltetrahydrofolate after IV injection was significant (P < 0.0001) (B). The change in 

labeled [13C5]5-methyltetrahydrofolate was significant after caplet ingestion (P = 0.0192) 

(A) and IV injection (P < 0.0001) (B). The change in unlabeled 5-formyltetrahydrofolate 

was significant after IV injection (P < 0.0001) (B). Repeated-measures ANOVA statistical 

analyses were used to determine the change in the amount of plasma folate per person after 

administration of the test dose. IV, intravenous.
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TABLE 1

Subject characteristics1

Value Range

Sex (F/M) (n) 3/6 –

Age (y) 25 ± 12 22–26

Weight (kg) 73.2 ± 17.2   47.8–103.6

BMI (kg/m2) 24.6 ± 3.6  18.8–29.9

Plasma volume (L)3 2.91 ± 0.7  1.87–4.07

MTHFR 677C>T

 CC 5 –

 CT 4 –

Red blood cell folate (nmol/L) 1108 ± 437    604–1988

Total plasma folate (nmol/L) 41.7 ± 17.7 14.9–68.5

Vitamin B-12 (pmol/L) 331 ± 188 151–583

Pyridoxal-5-phosphate (nmol/L)4 53 ± 17 34–82

Ethnicity (n)

 Middle Eastern 1 –

 White 5 –

 Chinese 2 –

 South Asian 1 –

Dietary intake of folate during blood sampling (μg DFE)

 After intravenous injection 12 ± 1.2 7.3–25

 After caplet ingestion

  0–14 h 47.9 ± 8.0  2.47–65.9

  15–24 h 48.0 ± 19.4       0–162.3

  25–48 h 327.3 ± 74.9  26.6–677.2

1
n = 9 unless otherwise indicated. DFE, dietary folate equivalent.

2
Mean ± SD (all such values).

3
Whole blood volumes were calculated by using an estimate of 66.5 mL/kg for women and 75 mL/kg for men (23). The plasma volume was 

calculated from the estimated whole blood volume by using an adjustment for the packed cell volume.

4
n = 8.
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TABLE 3

Pharmacokinetic data after intravenous injection of 214 nmol [13C5]5-formyltetrahydrofolate1

5-formyltetrahydrofolate 5-methyltetrahydrofolate

Cmax t1/2 Cmax Rate of appearance

nmol h nmol nmol/h

Subject

A 14.1 0.376 10.0  4.0 ± 1.0

B   7.5 0.279 5.0 4.2 ± 1.8

C 10.9 0.315 6.0 3.1 ± 0.8

D 15.2 0.300 5.8 5.3 ± 1.6

E 20.0 0.262 6.8 6.4 ± 1.1

F 10.2 0.330 6.6 6.2 ± 1.6

G 20.3 0.305 10.2  14.5 ± 7.7

H   7.1 0.244 3.1 2.9 ± 0.6

I 15.9 0.593 7.8 5.6 ± 0.2

Mean ± SEM 13.5 ± 1.6 0.3 ± 0.03 6.8 ± 0.8 5.8 ± 1.2

1
Rate of appearance was determined from the ascending slope over time of the concentration of labeled [13C5]5-methyltetrahydrofolate in plasma 

(n = 9). Cmax, maximal concentration; t1/2, apparent plasma half-life.
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