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Abstract
The primate visual system is arranged hierarchically, starting from the retina and continuing through
a series of extrastriate visual areas. Selectivity for motion is first found in individual neurons in the
primate visual cortex (V1), in which many simple cells respond selectively to the direction and speed
of moving stimuli. Beyond simple cells, most studies of direction selectivity have focused on either
V1 complex cells or neurons in the middle temporal area (MT/V5). To understand how visual
information is transferred along this pathway, we have studied all three types of neurons, using a
reverse correlation procedure to obtain high spatial and temporal resolution maps of activity for
different motion stimuli. Most complex and MT cells showed strong second-order interactions,
indicating that they were tuned for particular displacements of an apparent motion stimulus. The
spatiotemporal structure of these interactions showed a high degree of similarity between the
populations of V1 complex cells and MT cells, in terms of the spatiotemporal limits and preferences
for motion and their two-dimensional spatial structure. Much of the structure in the V1 and MT
second-order kernels could be accounted for on the basis of the first-order responses of V1 simple
cells, under the assumption of a Reichardt or motion-energy type of computation.
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Introduction
Neurons in the primary visual cortex (V1) encode many aspects of the visual input, including
shape, color, depth, motion, and spatial position. In contrast, neurons in the many extrastriate
areas are less tuned for stimulus position and more tuned for other visual features. In particular,
neurons in the middle temporal area (MT or V5) are tuned for the direction of stimulus motion,
primarily as a consequence of a strong projection from direction-selective V1 neurons
(Maunsell and van Essen, 1983; Movshon and Newsome, 1996). As a result, comparisons of
motion selectivity between V1 and MT are useful for understanding how the visual cortex, and
perhaps the cortex as a whole, processes information.
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Neurons in MT have receptive field diameters that are ∼10 times those found in V1 (Gattass
and Gross, 1981), raising the possibility that MT neurons can measure motion over a greater
spatial range than V1 neurons (Mikami et al., 1986). Alternatively, MT neurons may simply
sum the outputs of V1 neurons that have different receptive field locations but common
direction preferences. In this case, the spatial aspects of motion selectivity would be determined
by V1, and one would not necessarily expect to find substantial differences between the two
areas.

One general approach to understanding the processing of visual information is to measure the
input-output relationships of individual neurons. For any given stimulus, the input corresponds
to the time-varying distribution of luminances reaching the retina, and the output corresponds
to the spiking activity of the neuron under study. The luminance distribution comprises the
first-order statistics of the input: it can be captured by a composite of individual measurements
made at specific points in space and time. In contrast, motion is a second-order feature of the
input: it requires a conjunction of measurements at two points separated by some distance in
space and time. The ratio of the separations in two dimensions of space and one dimension of
time corresponds to the stimulus velocity, and such a second-order measurement is a common
feature of motion-processing models (Adelson and Bergen, 1985; van Santen and Sperling,
1985).

In this paper, we report measurements of the second-order kernels of MT neurons and V1
complex cells and compare them with first-order maps from V1 simple cells. The kernels
capture the input-output relationship between motion stimuli and spiking activity, for a range
of stimulus velocities. Quantification of the kernels suggests a high degree of similarity
between the processing of motion in V1 and MT, in terms of both the preferences and limits
of spatiotemporal selectivity. In MT, the same basic kernel structure is repeated across
individual spatial receptive fields, in a manner that is predictable from a simple summation of
V1 complex cell activity. Moreover, many of the spatiotemporal aspects of the observed
second-order responses can be predicted from the first-order properties of V1 simple cells, as
has been shown previously for V1 complex cells (Rybicki et al., 1972; Movshon et al.,
1978b; Baker and Cynader, 1986; Emerson et al., 1987; Livingstone and Conway, 2003).

Materials and Methods
Experimental procedures

Electrophysiology. Monkeys were prepared for chronic recording from V1 and MT, as
described previously (Livingstone, 1998; Born et al., 2000). All procedures were approved by
the Harvard Medical Area Standing Committee on Animals.

We recorded from single units in V1 and MT of five alert rhesus macaque monkeys while they
performed a simple fixation task. The monkeys fixated a small spot and were rewarded for
keeping their gaze within a fixation window that was 2° in diameter Each single unit was
isolated by spike height and waveform.

Visual stimuli. Neurons were screened with a bar stimulus. The bar luminance was 39 cd/m2

on a gray background (20 cd/m2). Once a neuron was isolated properly, we obtained a direction-
tuning curve and, in some cases, a speed-tuning curve. Cells that responded at least twice as
strongly in one direction as in the opposite direction were considered direction selective. This
criterion included every MT cell that could be well isolated but excluded ∼75% of V1 neurons
(De Valois et al., 1982; Foster et al., 1985). The direction-tuning curve was calculated from 5
to 15 1-s sweeps of the stimulus in each of 20 directions spaced evenly around the circle. For
MT neurons, tuning curves were obtained with random-dot fields sized to the classical receptive
field of the neuron under study. The size of the individual dots was equal to that of the spots
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used in the noise mapping experiments (side length, 0.20 - 0.25°). For V1 cells, direction tuning
was assessed with either a dot field or a long bar of optimal length and contrast polarity that
was swept in a direction perpendicular to its orientation. Direction-tuning curves were obtained
by averaging the firing rate over the period of stimulus presentation, which was 1000 ms. The
mean bandwidth of direction tuning (measured by fitting a circular Gaussian to the direction-
tuning curves) was 94.1 ± 39.5° (SD) in MT. In V1, the mean bandwidth was 99.4 ± 51.5° for
cells measured with random-dot fields (n = 54) and 65.9 ± 29.8° for cells measured with long
bars (n = 59). Thus, the bandwidth depended in part on the stimulus used to measure direction
selectivity (Albright, 1984).

The sparse noise stimuli were identical to those used previously (Livingstone et al., 2001). All
cells were studied with two-dimensional white-noise stimuli, consisting of pairs of spots
flashed at 60 Hz. We used white and black stimuli that were 19 cd/m2 above and below the
mean background gray luminance of 20 cd/m2. The dots changed position at random from
frame to frame, within a square stimulus range that was at least 2.0 × 2.0°. When black and
white stimuli overlapped, the resultant stimulus was the same gray as the background. To
achieve maximum spatial resolution, we used the smallest black and white spots that elicited
reliable spiking activity from the neuron under study. For MT neurons, this was almost always
0.25 × 0.25°, whereas in V1 neurons, we were usually able to use spots that were 0.20 × 0.20°.

Analysis Measurement of kernels. The correlation analysis used here was identical to the
analysis used in previous studies (Livingstone et al., 2001). Briefly, a computer recorded the
evoked spike train (1 ms resolution), each stimulus position, and the monkey’s eye position (4
ms resolution). For each map, between 5000 and 50,000 spikes were collected over a 20 - 60
min period. The kernels were then calculated by correlating the spike train with the stimulus
sequence. Before the kernel computation, the positions of the stimuli on each frame were
corrected to account for small drifts in the monkeys’ eye position.

In this paper, we present our results in terms of the “forward correlation” between the stimulus
and the spike train. This was computed by smoothing the spike train with a 17 ms boxcar filter
and counting the average number of spikes that followed each stimulus at a given correlation
delay. Computed in this manner, the forward correlation is equivalent (up to a scaling factor)
to the more standard “reverse correlation” procedure (Marmarelis and Marmarelis, 1978;
Baker, 2001; Ringach et al., 2003). The advantage of the forward correlation is that it can be
interpreted as the average number of spikes per stimulus presentation, which makes it
analogous to the standard poststimulus histogram. Second-order kernels were computed for
MT cells and complex V1 cells, and first-order kernels were computed for V1 simple cells.

First-order kernels. The first-order portion of the neuronal response to a spatiotemporal
stimulus s(x,y,t) is given by the following convolution integral:

R1(t) = ∫−∞∞ ∫−∞∞ ∫0th1(x, y, τ)s(x, y, t − τ)dxdydτ,

where τ is the delay between the stimulus and the response. When the stimulus is random, the
kernel h1(x,y,τ) can be obtained by cross-correlating the response R1(t) with the stimulus
sequence s(x,y,t - τ) (Marmarelis and Marmarelis, 1978), where τ is the chosen correlation
delay. In our analysis, this was accomplished by computing separate correlations for the white
and black stimulus sequences. For a linear system, stimuli that consist of positive and negative
deviations from mean luminance evoke opposite responses, so the correlations with the white
and black stimuli represent measurements of h1(x,y,τ) and -h1(x,y,τ). The final estimate of the
kernel h1(x,y,τ) is obtained by subtracting the correlation with the black stimulus from the
correlation with the white stimulus and dividing by two (Emerson et al., 1987).
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Second-order kernels. The second-order kernel specifies the response of the neuron to two spot
stimuli located at spatial positions (x1,y1) and (x2,y2) and occurring τ1 and τ2 time units before
time t. The stimulus-dependent portion of the second-order response to an arbitrary stimulus
s(x,y,t) is given by the following convolution integral (Marmarelis and Marmarelis, 1978):

R2(t) = ∫∫∫∫∫∫ h2(x1, y1, τ1; x2, y2, τ2)s(x1, y1, t − τ1)s(x2, y2, t − τ2)dx1dy1dτ1dx2dy2dτ2,

where h2 is the second-order kernel. The integration limits have been suppressed for clarity
here and in subsequent equations.

As with the first-order kernels, the second-order kernels were estimated by cross-correlation.
However, in this case, the relevant stimulus quantity is the contrast polarity of the product of
pairs of stimuli separated in space and time. Thus, the displacement of a white spot on one
frame to a black spot on the second frame constituted a negative stimulus, and a white-to-white
sequence constituted a positive stimulus. In practice the kernel was estimated by correlating
the spike train with the four possible sequences that occurred between any two frames (white-
white, white-black, black-black, and black-white). The complete kernels were then calculated
by summing the same-contrast individual maps (white-to-white and black-to-black) and
subtracting the opposite-contrast maps (white-to-black and black-to-white), as described by
Livingstone et al. (2001). The resulting kernel is similar to a second-order Wiener-like
calculation (Emerson et al., 1987). An important advantage of this procedure is that the
subtraction cancels any terms attributable to responses to individual white or black stimuli.
This is important, because direction-selective complex cells and MT cells are both driven
strongly by flashed stimuli (Mikami et al., 1986), which do not by themselves contain
information about velocity. Our second-order measurement is essentially uncontaminated by
such on-diagonal and lower-order influences (Emerson et al., 1987).

The result of the second-order kernel computation was a six-dimensional function
h2(x1,y1,x2,y2,τ1,τ2) describing the response of the cell to all stimulus displacements. Previous
work has shown that such kernels change very little with absolute spatial position in V1
(Movshon et al., 1978b; Baker and Cynader, 1986; Emerson et al., 1987; Livingstone and
Conway, 2003) and MT (Livingstone et al., 2001). Consequently, we focused on the responses
as a function of the relative positions of the stimuli. This enabled us to simplify the kernel by
substituting x2 = x1 + Δx and y2 = y1 +Δy and integrating over space to get the following:
I (Δx, Δy, τ1, τ2) = ∬ h2(x1, y1, x1 + Δx, y1 + Δy, τ1, τ2)dx1dy1.

Averaging over space in this manner improves the quality of the kernels substantially, without
sacrificing information about their structure (Emerson et al., 1987).

We further simplify the terminology by defining the temporal separation between stimuli as
τ2 = τ1 + Δτ. This gives us the interaction function (Gaska et al., 1994), as follows:

I (Δx, Δy, Δτ1, τ2) = ∬ h2(x1, y1, x1 + Δx, y1 + Δy, τ2 − Δτ, τ2)dx1dy1.

The interaction function I describes the second-order kernel as a function of the separation
between two stimuli in space (Δx, Δy) and time (Δτ). The time course of the impulse response
is measured from the time of occurrence of the second stimulus (τ2).

In this paper, we describe the second-order kernels in terms of displacement maps, each of
which corresponds to the response of a neuron to all stimulus displacements (Δx, Δy) at a fixed
interstimulus interval (Δτ) and correlation delay (τ2). These maps generally contain both
positive and negative regions, which we will refer to as “facilitatory” and “suppressive,”
respectively. These terms make sense only in the context of the kernel formulation and are not
meant to imply specific synaptic mechanisms. In this way, the analysis is quite similar to the
measurement of the first-order kernels of V1 simple cells described above (Movshon et al.,
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1978a; Jones and Palmer, 1987), in which one relates spiking activity to the sign of contrast
of a single stimulus. In those studies, the response to a dark stimulus was subtracted from the
response to a bright stimulus to estimate the “inhibition” attributable to the dark stimulus. In
the case of the second-order kernel, we are interested in the sign of contrast of the product of
two stimuli, so we subtract opposite-contrast sequences from same-contrast sequences.

Figure 1a shows an interaction function for a single MT cell. Each panel contains a pseudocolor
displacement map depicting the response of the neuron for a particular stimulus displacement
(Δx, Δy), with the position of the second spot in any two-spot stimulus sequence being at the
origin (0,0). Each column corresponds to successive time points (τ2) after the displacement of
the stimulus (i.e., response latency), and each row corresponds to a different temporal
separation (Δτ) between stimuli. In all maps, red indicates facilitation and blue indicates
suppression. Thus, the red and blue regions in the maps demonstrate that the response of the
cell was facilitated by a rightward apparent motion sequence and suppressed by leftward
motion. The scale bar on the left of the figure indicates that the depth of this modulation was
0.12 spikes per stimulus presentation. Thus, on average, for every 100 presentations of the
noise stimulus, the most effective stimulus led to 12 more spikes for same-contrast sequences
than for opposite-contrast sequences. The response was strongest for small temporal
separations and peaked at a poststimulus time of ∼65 ms.

To quantify the time course of the responses shown in Figure 1a, we computed the variance
of each displacement map at 1 ms intervals. By using the variance, we take into account both
positive (facilitatory) and negative (suppressive) deviations from the baseline activity, which
is near zero. For each row in Figure 1a, the variance as a function of time is as follows:

V (τ2; Δτ) = 1
N − 1 ∑

Δx,Δy
I (Δx, Δy, Δτ, τ2) − Im

2,

where N is the number of pixels in each map, and Im is the mean of all the pixels. Figure 1b
shows the time course of the response for the cell in Figure 1a, for Δτ values of one frame
(solid line), two frames (dashed line), and three frames (dotted line). When Δτ is equal to one
frame (∼17 ms), there is a strong response that begins at ∼45 ms and peaks at 64 ms. Larger
values of Δτ lead to smaller responses. This cell was typical in that the response was strongest
at the shortest temporal separation Δτ, and the spatial structure was stable across the correlation
delay τ2.

For correlation delays (τ2) of <30 ms, the responses of neurons in V1 and MT are unrelated to
the stimulus sequence, so we can use this portion of the data to estimate the noise in the
recording. The noise was therefore estimated as the mean of V during the first 30 ms of the
response, and subsequent responses were considered statistically significant if they exceeded
this level by 3 SDs. This significance threshold is shown as the horizontal dashed line in Figure
1b. The individual pixels that exceeded baseline by ±3 SDs are outlined by the dotted contours
in Figure 1a.

Curve fitting
For speed-tuning curves, data were averaged over a 1000 ms stimulus presentation. The
preferred speed was determined as the peak of a log-Gaussian fit to the tuning curve. The map
profiles were fit to Gabor functions of the following form:

G(x) = a + b exp − 0.5
(x − x0)2

σ 2
cos 2πf (x − x0) + ϕ ,
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where a is the floor, b is the amplitude, x0 is the center, σ is the envelope width, f is the
frequency, and ϕ is the phase. Function fits were optimized via a least-squares criterion using
the Levenberg-Marquardt algorithm in Matlab (MathWorks, Natick, MA).

Permutation test
To test the significance of the singular values obtained from the Δs/Δτ maps, we performed a
permutation test. The order of stimulus frames was shuffled, and the reverse correlation
procedure was repeated to generate a new map. The singular value decomposition (SVD) was
then performed on this map, and the entire procedure was repeated 100 times. To be considered
significantly above the noise, a singular value obtained from the data had to be 2 SDs above
the mean of the maps obtained during the shuffling procedure.

Tilt direction index
The degree of tilt in each spatiotemporal map was computed from the discrete Fourier transform
of the map. Taking the peak of the transform as the optimal spatial and temporal frequencies
(Fs and Ft), the tilt direction index (TDI) was computed as (Rp - Rn)/(Rp + Rn), where Rp and
Rn are the response amplitudes at (Fs, Ft) and (Fs, -Ft) (Anzai et al., 2001).

Biphasic index
For each neuron, we computed the facilitatory time course P(τ2; Δx, Δy, Δτ), using the values
of Δx, Δy, and Δτ that yielded the peak of the interaction function I(Δx, Δy, Δτ, τ2). Only
responses that were significantly above baseline were considered. Some examples of P appear
as the red lines in the bottom row of Figure 12a. Similarly, the optimal suppressive response
is defined as N(τ2; Δx, Δy, Δτ), where Δx, Δy, and Δτ are the points at which the minimum
response is obtained. These are shown as the blue traces in the bottom row of Figure 12a.

As is evident from Figure 12a, the facilitatory and suppressive time courses were generally
mirror images of each other, so they were combined in the calculation of the biphasic index.
We did this by subtracting the suppressive trace from the facilitatory trace, which is equivalent
to flipping the blue traces in Figure 12a about the x-axis and adding them to the red traces. We
then integrated the total negative deviations from baseline over time to get a measure of the
extent to which the cell reversed direction and normalized this number by the total positive
deviations, again obtained by integrating over time. The biphasic index (BI) was thus defined
as follows:

BI =
∫0300 − P(τ2) + N (τ2) +dτ2
∫0300 P(τ2) − N (τ2) +dτ2

,

where [...]+ is the rectification operation. Thus, a BI of 0 indicates that the response of a neuron
never showed suppression in the preferred direction [-P(τ2)] or facilitation in the null direction
[+N(τ2)]. A BI near 1 indicated that the neuron fired as many spikes for motion in the null
direction as in the preferred direction.

Reichardt/motion energy models
Many models suggest that direction selectivity involves a multiplication or squaring of
luminance signals, after linear filtering (Reichardt, 1961; Adelson and Bergen, 1985; van
Santen and Sperling, 1985). Both computations can be reduced to a second-order kernel of the
type we have computed (Courellis and Marmarelis, 1992), in which the outputs of linear filters
are combined in a nonlinear manner and summed over space. Using the notation introduced
previously, this is equivalent to the following:

h2(Δx, Δy, τ2 − Δτ) = k ∬ h1(x1, y1, τ2 − Δτ)h1(x1 + Δx, y1 + Δy, τ2)dx1dy1,
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where k is a scaling factor. This is equivalent to the spatial autocorrelation of the linear filter
h1 (Emerson et al., 1992; Baker, 2001) evaluated for pairs of time points separated by Δτ (see
Fig. 13).

In our experiments, the linear filters were estimated as described above from the responses to
V1 simple cells. The autocorrelation was then computed between slices through h1(x,y,τ) at
two delays separated by 16 ms (see Fig. 13), to facilitate comparison between second-order
kernels computed with Δτ equal to one frame. The peak of this function was then compared
with second-order kernels measured in complex cells and MT cells.

Kernel predictions
Predictions based on the first- and second-order kernels were generated 1 by calculating
1
T ∫ R1(t)

+ and 1T ∫ R2(t)
+, where T is the total time over which the response was averaged.

Results
We computed second-order kernels for 131 V1 complex cells and 166 MT cells recorded from
five awake, fixating macaque monkeys. Eighteen of the V1 cells and 21 of the MT cells did
not have responses that were significantly above the noise and so were discarded from
additional analysis. The remaining cells all had second-order kernels with clear structure.

Our analysis allowed us to express the behavior of the neurons in terms of a two-spot apparent
motion sequence. Each sequence involved the displacement of a spot over a distance (Δx,
Δy) in some time interval (Δτ). The response of the neuron had a time course that we measure
from the time of occurrence of the second stimulus (τ2). The full response is therefore expressed
in terms of the interaction function I(Δx, Δy, Δτ, τ2). In the following sections, we describe the
characteristics of various two-dimensional slices through this interaction function.

Spatial subunit structure: I(Δx, Δy)
We first examined the spatial structure of the interaction functions by taking all of the responses
to spatial displacements (Δx, Δy) at the optimal Δτ and τ2. Figure 2a shows such a displacement
map for the MT cell shown in Figure 1a. The peak response occurred at a latency of τ2 = 64
ms and Δτ = 17 ms (one frame), at which point the map exhibited strong facilitatory and
suppressive regions in the Δx, Δy space. The red regions indicate facilitatory interactions, in
which the response to a single spot was facilitated when the immediately preceding spot was
to its left and slightly up. This means that the cell preferred rightward motion. Similarly, the
blue regions indicate suppression for leftward apparent motion. In keeping with previous
terminology (Movshon et al., 1978a; Emerson et al., 1987), we will refer to the structure of
each displacement map as a subunit.

Taking the peak displacement map allows us to examine the spatial structure of the subunits
while ignoring the temporal aspects of the kernels. In subsequent sections, we show that the
maps are generally separable in space and time, so this procedure captures most of the spatial
features of the subunits. The peak map in Figure 2a was typical in that it showed slightly
elongated regions of facilitation and suppression, arranged perpendicular to the axis of
elongation (Pack et al., 2003a). The dashed line in the figure connects the origin of the map
with the peak of the facilitatory region. Plotting the value of the map at each point along this
line yields the cross-section shown in Figure 2b. The cross-section was well fit by a one-
dimensional Gabor function (blue line), with an R2 of 0.97.

All of the cross-sections were 2° in length, as indicated by the circle in Figure 2b. For all of
the neurons in the V1 and MT populations, we fit these profiles with Gabor functions (mean
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R2 = 0.97). The Gabor function captures key aspects of the displacement map, including the
preferences and limits of direction selectivity. One of the main goals of this work was to
compare these features between V1 and MT.

Dependence on eccentricity—In comparing the spatial aspects of direction selectivity
between V1 and MT, it is important to consider the influence of retinal eccentricity (Mikami
et al., 1986). For V1, the receptive fields were typically within 5° of the fovea, although a few
had eccentricities >20°. These two clusters of eccentricities corresponded to recordings from
the operculum and from the roof of the calcarine sulcus, which were often encountered along
the same penetration. For the MT population, eccentricities were sampled more evenly. In all
cases, the noise stimulus was centered on the center of the receptive field under study.

Across both cortical regions, there was a consistent relationship between retinal eccentricity
and the frequency of the best-fitting Gabor function: more eccentric cells had broader tuning
for stimulus displacement and, hence, lower Gabor frequencies. This relationship is plotted for
the population of V1 and MT cells in Figure 3. Although there is a great deal of scatter at any
given eccentricity, there is clearly a negative slope in the data, and there is no obvious difference
between V1 and MT. The relationship between eccentricity and Gabor frequency was highly
significant for MT (linear regression, p < 0.01) and for the combined population from both
areas (p < 0.0001). The regression could not reliably be performed on V1 because of the non-
normality of the distribution of eccentricities, but the trend appears to be similar. Note that this
does not imply that spatial frequency preferences for drifting gratings are identical between
V1 and MT [in fact, MT as a population prefers lower spatial frequencies than V1 (Priebe et
al., 2003)]. Rather, our stimuli provided a coarse measure of spatial frequency in displacement
space and may have missed some of the responses to high spatial frequencies that are known
to be present in V1 (Foster et al., 1985).

Somewhat surprisingly, the tendency for the subunits to become coarser at greater eccentricities
was not accompanied by an increase in the size of the spatial envelope of the Gabor function
fits (Fig. 3b). Although there is a slight upward trend in the data, particularly for V1 neurons,
the relationship for the population as a whole did not reach significance (linear regression, p
> 0.1). Based on previous work in V1 (Ringach, 2002), such a correlation would have been
expected. However, the difference may be attributable to our inability to sample longer-range
interactions that may have been present at large eccentricities. For example, we cannot
determine whether the more eccentric profile in Figure 4b remains at zero or contains another
subregion beyond 1°. Overall, these results suggest that the effect of stimulus displacement on
the responses of V1 and MT neurons is determined in part by the retinal eccentricity of the
subunit. Cells at greater eccentricities tolerate larger stimulus jumps, just as V1 neurons at
larger eccentricities prefer lower spatial frequencies (De Valois et al., 1982) and higher
velocities (Orban et al., 1986).

The receptive field sizes of most MT neurons were much greater than the longest apparent
motion sequence that elicited a response. Consequently, we were in some cases able to study
the relationship between eccentricity and subunit structure within the same MT receptive field,
by performing multiple noise mappings at different spatial positions. Figure 4a shows an
example of one cell for which additional noise maps were obtained at two different positions,
each displaced symmetrically from the center by ∼3° (the center map has been omitted for
clarity). Although the two maps clearly indicate a preference for the same motion direction
(down-left), the map taken at the greater retinal eccentricity is coarser. As such, it responds to
a broader range of stimulus displacements, and its absolute peak response is shifted toward
larger displacements. This can be seen clearly in the cross-sections of the two maps, along with
their Gabor function fits (Fig. 4b). As in the population data in Figure 3, the decrease in Gabor
frequency is not accompanied by a change in the size of the spatial envelope. Both profiles
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decay to zero at approximately the same point, and the extra bumps visible in the profile of the
more foveal subunit suggest that the frequency is changing in a manner that is essentially
independent of the envelope.

For this cell, we obtained separate speed-tuning curves for the two subunits, using random-dot
fields centered on the same positions as the noise maps. The dots fields were larger than the
stimuli used to generate the maps, but they did not overlap spatially. The resulting curves,
shown in Figure 4c, indicate that speed tuning was very similar at the two locations, although
the more foveal curve responded more strongly to slower speeds. Similar results of speed tuning
at different spatial locations were obtained with five other MT neurons, suggesting that there
may be modest changes in preferred speed across individual MT receptive fields (Treue and
Andersen, 1996).

We measured the subunit structure at multiple eccentricities within 17 MT receptive fields.
For each cell, we first obtained a map at the center of the receptive field and then obtained one
or more maps at other positions within the receptive field. Thus, we had 17 center maps and
37 maps from the receptive field peripheries. For each map, we calculated a corresponding
Gabor frequency, defined as Fc for the center maps and Fp(n) for each of the n peripheral maps
obtained from a given cell. The value of n ranged from 1 to 4. Thus, a simple way to quantify
the effect of eccentricity on Gabor frequency is to compute, for each peripheral map, the ratio
ΔF = log(Fc/Fp(n)). This captures the change in Gabor frequency, which can be related to the
difference in retinal eccentricities at which the two maps were obtained: ΔE = (Ec - Ep). The
values of (ΔE, ΔF) are plotted in Figure 4d.

If the Gabor frequency were constant across the entire receptive field, the frequency difference
(y-axis) would be zero, regardless of the eccentricity difference (x-axis). In contrast to this
prediction, a linear regression indicates a highly significant correlation between ΔE and ΔF
(p < 0.0001), with a slope of -0.014. As in the between-cell data shown in Figure 3a, greater
eccentricities are associated with lower frequencies. This means that, even within a single MT
receptive field, the range of dot displacements to which a cell responds changes in a predictable
manner. Note that the lower signal-to-noise ratio near the edges of the receptive field cannot
explain this result, because it would introduce similar effects at all eccentricities, leading to a
V-shaped plot in Figure 4d.

The result in Figure 4d means that, on average, a 1° change in eccentricity within an MT
receptive field is accompanied by a shift in the subunit frequency of ∼0.014 octaves. By
comparison, the slope of the regression line for comparisons made across cells (Fig. 3a) was
-0.016. In other words, one encounters a similar change in subunit structure across
eccentricities, whether moving across V1 receptive fields, across MT receptive fields, or within
MT receptive fields.

Preferred spatial displacement—The cross-sections shown in Figures 2 and 4 capture
the preferences and limits of neuronal responses to two-spot apparent motion. As such, it is
useful to compare these quantities between V1 and MT to determine to what extent the behavior
of MT neurons can be accounted for on the basis of their inputs. For each cell, we computed
the preferred dot displacement Dopt as the peak of the Gabor fit to the cross-section through I
(Δx, Δy). This is shown as the vertical dotted line through the peak in Figure 2b. We also
computed the optimal spatial displacement for suppression from the Gabor function (Fig. 2b,
vertical line through the trough). Histograms of these values are shown in Figure 5a for both
V1 (left) and MT (right). The distributions are clearly quite similar, with the means for
facilitation being 0.26° (0.11° SD) for V1 and 0.31° (0.13° SD) for MT. This difference was
marginally significant (p < 0.06, t test), but the substantial overlap in the two populations is
consistent with a simple explanation in terms of a selective projection from V1 to MT.
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Similarly, the mean values of Dopt for suppression were 0.33° (0.14° SD) in V1 and 0.26°
(0.14° SD) in MT. This difference did not reach significance (p > 0.2, t test).

Figure 5b shows the relationship between preferred speed for random-dot fields and Dopt for
facilitation and suppression in 94 MT cells. Although no correlation is apparent for suppression,
a significant correlation exists between Dopt for facilitation and preferred speed (Spearman’s
rank correlation, p < 0.05). The correlation is weak (R2 = 0.31), and Dopt clearly underestimates
preferred speed for speeds greater than ∼20°/s. This latter finding can be further appreciated
by inspection of Figure 5a (right), which shows very few neurons that prefer values of Dopt
beyond ∼0.5°, which corresponds to a speed of 30°/s.

Maximum spatial displacement—To get an idea of the limits of speed tuning, we also
measured the maximum spatial displacement Dmax. This was defined as the first zero-crossing
of the Gabor function (Baker and Cynader, 1986) in the preferred direction of each neuron
(Fig. 2b, leftmost vertical line).

As with measurements of Dopt, the distributions of Dmax were similar for V1 and MT (Fig. 6).
For facilitation, the mean value for V1 was 0.59° (0.28° SD), whereas the mean value for MT
was 0.67° (0.31° SD). These differences were again marginally significant (p < 0.05), but the
distributions were mostly overlapping. The distributions of Dmax for suppression were nearly
identical between V1 (0.49 ± 0.17°) and MT (0.49 ± 0.22°). Together with the measurements
of Dopt, these results suggest that there is no systematic difference between the subunit
structures found in V1 complex cells and in MT cells. Similar results were obtained with
random-dot field stimuli (Churchland et al., 2005).

Subunit aspect ratio—In addition to the overall sizes of the subunits, we can examine their
two-dimensional shape. Nearly all of the subunits consisted of one facilitatory and one
suppressive subregion. From inspection of Figure 2a, it is clear that both the facilitatory and
suppressive regions are elliptical in shape, with the axis of elongation being perpendicular to
the preferred-null direction axis (Pack et al., 2003a). Because our probe stimuli are not oriented,
the elongation of the subunits must reflect the orientation selectivity of the inputs of each
neuron.

To study the elongation of the V1 and MT subunits, we fit each displacement map with an
elliptical Gaussian function (Fig. 2a, ellipses). For the orientation of the facilitatory region, we
truncated the maps at the 1/e contour. Suppressive regions were studied in the same way, after
first inverting the positive and negative portions of the map. Gaussian fits were generally
excellent, with only 12 MT neurons and 9 V1 neurons being rejected, with R2 values <0.9.

Figure 7 shows the distributions of subunit aspect ratios found in V1 and MT for the facilitation
and suppression. The geometric means of the aspect ratios for facilitation were 2.2 in V1 and
2.1 in MT (p > 0.2, t test). For suppression, the corresponding values were 2.1 and 2.0 (p > 0.3,
t test). Thus, it appears that the subunits are modestly elongated, suggesting a limited degree
of orientation selectivity in the inputs to both V1 and MT cells, although it is possible that our
procedure slightly underestimated aspect ratio (Jacobson et al., 1993).

Spatiotemporal interactions: I(Δs, Δτ)
One possible reason for the limited range of spatial displacements indicated in Figure 5 is that
peak displacement maps ignore crucial aspects of the interaction function I(Δx, Δy, Δτ, τ2). For
example, the neurons might respond to larger spatial displacements at larger values of Δτ. Such
a change in preferred spatial displacement with increased temporal separation between stimuli
might render MT neurons sensitive to the ratio Δs/Δτ, where s is the magnitude of a two-
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dimensional spatial displacement. This type of invariant velocity selectivity is often assumed
to be one of the primary functional differences between direction selectivity in V1 and MT.

We tested the velocity sensitivity of neurons in V1 and MT by computing profiles like those
in Figure 2b at values of Δτ ranging from 16 to 150 ms. To do this, we first computed the profile
for the peak displacement map to establish the preferred-null access (Fig. 2a, thick dashed
line). We then used the same axis to obtain profiles at the other values of Δτ and stacked the
profiles to obtain the Δs-Δτ maps. Using the same axis for each value of Δτ allowed us to
measure changes in preferred spatial displacement regardless of changes in preferred direction,
which were generally negligible (Perge et al., 2004). For most neurons, we did not measure
simultaneous interactions (Δτ = 0), although it would be of some theoretical interest to do so
(Jacobson et al., 1993; Baker, 2001; Livingstone et al., 2001; Livingstone and Conway,
2003).

Figure 8 shows example Δs-Δτ maps for three V1 cells and three MT cells. The y-axis indicates
the time Δτ between stimuli, and the x-axis indicates the spatial displacement Δs. The colors
indicate facilitation and suppression, as in the maps in Figures 1 and 2. Thus, a horizontal row
is a color-coded version of the cross-sections shown in Figures 2b and 4b. The slant evident
in some of the maps suggests that the preferred spatial displacements for these cells change as
a function of the temporal separation between stimuli.

As Δτ is increased, the V1 cell in the bottom left panel of Figure 8 shows an increase in its
responses to large stimulus displacements. This is evident in the slant of the reddish regions
on the left of the map, and it is exactly what one would expect from a cell that was tuned to
the ratio Δs/Δτ. In contrast, the cell in the top left panel of Figure 8 shows a reversal in the
spatial profile of its suppressive responses, so that the overall effect of increasing Δτ appears
to be a phase shift in the response profile. This latter result is similar to the predictions of motion
energy models (Adelson and Bergen, 1985), which do not encode velocity per se, but rather a
limited range of spatiotemporal displacements. We will first consider the slant present in the
Δs-Δτ maps in V1 and MT and then examine specific predictions of a simple model of velocity
tuning.

Separability of I(Δs, Δτ) maps—One way to examine the slant in the (Δs, Δτ) space is to
examine separability of responses to spatial and temporal displacements. For a neuron with
responses that are separable in space and time, the Δs-Δτ maps in Figure 8a can be described
as the product of a spatial profile (like those in Fig. 2b) and a temporal profile. The temporal
profile may be biphasic (as the one in the top left panel of Fig. 8a appears to be), but the
separability of the response implies that responses to velocity will depend on individual values
of Δs and Δτ rather than their ratio. In contrast, a neuron with an inseparable response map will
have a response to spatial displacements that varies systematically with the temporal interval
between stimuli and so could be tuned to the ratio Δs/Δτ.

We tested the separability of V1 and MT responses by performing a singular value
decomposition on the Δs-Δτ map of each neuron. The SVD calculates a series of orthogonal
maps (known as singular vectors), each capturing less of the variance than the preceding one.
A completely separable map would be described by one singular vector, whereas inseparable
maps would require more singular vectors. The extent to which a singular vector contributes
to the map is described by a scalar known as the singular value. The statistical significance of
each singular value was tested with a permutation test (p < 0.05), in which the maps were
recalculated with the order of the stimulus frames shuffled (see Materials and Methods). The
permutation test led us to discard 31 V1 neurons and 20 MT neurons, because none of their
singular values reached significance.
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Using the singular values for each map, we can describe separability in a continuous manner
by calculating a separability index (SI) (Mazer et al., 2002; Grunewald and Skoumbourdis,
2004):

SI = λ1
2 ∕ (∑

i
λi
2),

where λn is the nth singular value. The SI measures the extent to which the first singular vector
is sufficient to account for the variability in each map, with an SI of 1 meaning complete
separability and an SI near 0 indicating inseparability. The SIs for the V1 neurons shown in
Figure 8 were 0.64, 0.75, and 0.88, from left to right. For the MT neurons in Figure 8, the SIs
were 0.58, 0.70, and 0.91. Across the populations, the distributions of SIs for V1 and MT are
shown in Figure 9. For V1, the mean SI was 0.71 (0.15 SD), whereas in MT, the mean was
0.70 (0.10 SD). These differences were not significantly different (t test, p > 0.2). If we consider
only singular values that were significantly above the noise (permutation test, p < 0.05), then
the mean SI becomes 0.80 (0.22 SD) for V1 and 0.86 (0.18 SD) for MT. Similar results on the
separability of V1 and MT neurons have been obtained with sinusoidal grating stimuli (Foster
et al., 1985; Priebe et al., 2003).

Orientation in I(Δs, Δτ) maps—A second way to examine the separability of the neurons
is to examine the orientation of the Δs-Δτ maps. Neurons that change their preferred spatial
displacement as a function of the interstimulus interval (Δτ) should show a slant in their Δs-
Δτ maps. The degree of this slant can be computed with a tilt direction index, which describes
the amount of slant from 0 to 1, with 0 indicating no slant and 1 indicating that the map is
completely described by one direction of tilt (Anzai et al., 2001; Baker, 2001) (see Materials
and Methods). Thus, the TDI should be inversely related to measures of separability, which
was indeed the case in both V1 (p < 0.01) and MT (p < 0.002). This suggests that much of the
inseparability found in the data were attributable to spatiotemporal slant.

For the V1 cells shown in Figure 8, the TDIs were, from left to right, 0.86, 0.52, and 0.10. The
corresponding values for the MT cells were 0.85, 0.51, and 0.04. The distribution of TDIs is
shown at the bottom of Figure 9 for V1 (left) and MT (right). The mean TDI for the population
of V1 cells was 0.42 (0.22 SD) and that for MT cells was 0.39 (0.21 SD), which did not differ
significantly (t test, p > 0.16).

Modeling of velocity tuning—Neither of the previous two analyses tested any particular
hypothesis about velocity tuning. Both simply looked for structure in the data that one might
expect to find if the neurons were velocity tuned. This is a rather indirect way to examine
velocity tuning, because a neuron such as the one shown in the top left panel of Figure 8 can
show slant in Δs/Δτ space without being tuned to velocity. Indeed, there are many ways in
which a neuron can exhibit inseparability without being tuned for velocity (Baker, 2001). We
therefore examined a third way to explore velocity tuning by developing and testing specific
models that predict particular space-time structure for velocity-tuned neurons. These models
can then be checked against the data to determine which accounts for more of the variance
(Levitt et al., 1994;Priebe et al., 2003).

We performed such an analysis for our population of V1 and MT neurons. A separable model
was derived from the spatial and temporal profiles (horizontal and vertical slices) through the
peak of each map. These are shown for two example cells in Figure 10a. The left column shows
the Δs/Δτ maps for two of the cells shown in Figure 8, with the dashed rectangles along the
sides of the maps indicating the spatial and temporal profiles taken at the peaks of the maps.
The separable prediction was then the outer product of these functions (middle column). The
velocity-tuned prediction was computed by shifting each spatial profile by an appropriate
amount to obtain a line of constant velocity (right column). To determine which model provided
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a better fit to the data, we computed the partial correlations between the models and the data
(Levitt et al., 1994; Priebe et al., 2003).

For the neuron in Figure 10a, the correlation between the velocity-tuned prediction and the
data were 0.70, whereas the correlation for the separable prediction was 0.44. For the neuron
in Figure 10b, the values were 0.29 and 0.83. Thus, the neuron in Figure 10a conforms to a
simple model of velocity tuning, whereas the neuron in Figure 10b is tuned for a particular
displacement in space and time.

Figure 11a (top row) shows the results for V1 and MT. In both areas, there was a preponderance
of separable neurons. In V1, 9 of 113 neurons were significantly velocity tuned, whereas in
MT, there were only 2 of 145 that were significantly velocity tuned. The rest were either
significantly separable or could not be classified by this technique.

The lack of velocity tuning in MT is somewhat surprising given previous results with sinusoidal
gratings (Perrone and Thiele, 2001; Priebe et al., 2003). These studies found that a
subpopulation of MT neurons exhibited velocity tuning that was invariant over a range of
spatial and temporal stimulus frequencies. One study (Priebe et al., 2003) found that velocity
tuning increased with contrast, which may reconcile our findings with theirs. The stimuli in
our experiment, although high in luminance contrast (99%), were extremely compact in space
and time, so that the total contrast per stimulus was extremely low. Also, relative to receptive
field size, the stimuli were much larger in V1 than in MT, which might explain why we find
slightly more inseparability in V1.

We examined this issue by collecting additional maps from 30 MT neurons with the spot stimuli
replaced with a pair of long bars (2.4°) oriented perpendicular to the preferred direction of each
neuron. The stimulus sequence and analysis were otherwise identical, but the total contrast
(power) delivered to the receptive field on each stimulus frame was greater by a factor of
∼100. Figure 11a (bottom row) shows a comparison of the nonparametric analysis for the 30
neurons. The panel on the left shows the results for the bar stimuli, which clearly indicate a
shift for some neurons toward inseparability. This shift was significant in 10% (3 of 30) of the
neurons (Fisher’s r-z transformation, p < 0.05). The panel on the right shows the results for the
same neurons using the small spot stimuli. As in the larger sample, nearly all were significantly
separable. Thus, it appears that MT neurons exhibit more velocity-tuned behavior at higher
stimulus contrasts, as reported previously (Priebe et al., 2003).

The difference appears to be genuinely attributable to the higher contrast and not to the
difference in the spatial structure of the spot and bar stimuli. When we tested 11 of these neurons
with lower-contrast (12%) bars of the same length, the space-time maps were once again
separable. There was little difference between these maps and those obtained with spots (data
not shown).

One of the primary reasons for the lack of space-time interactions in our data were the strong
preference of most neurons for short interstimulus intervals (Δτ). In fact, most of the neurons
had very little response to spatial displacements of any magnitude when Δτ was more than two
refreshes (33 ms) (Churchland and Lisberger, 2001). Consequently, the Δs-Δτ maps were often
quite noisy. Noise tends to increase the TDI and decrease the separability of most neurons, so
that our analyses probably overestimated the extent of the interactions. (The TDI increases
because random noise has, on average, equal energy at all orientations, so that the position of
the peak of the discrete Fourier transform is random. Consequently, the mean TDI for random
noise is near 0.5. Similarly, random noise has a relatively flat distribution of singular vectors,
leading to low separability.) This becomes clear when one examines the total responsiveness
of the neurons as a function of Δτ [the value of the function V(τ2; Δτ) described in Materials
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and Methods, at the peak of τ2]. The normalized population averages shown in Figure 11b
indicate that, on average, by Δτ = 50 ms, the responses had fallen to approximately one-third
of their peak. In other words, V1 and MT do not exhibit invariant velocity tuning in Δs/Δτ
space in large part because they simply do not respond to large values of Δτ.

Impulse responses: I(Δs, τ)
The analyses thus far have examined the interaction function I(Δx, Δy, Δτ, τ2), with the
correlation delay (τ2) fixed at the point that provided the highest signal-to-noise ratio. However,
for many cells in V1 and MT, the displacement maps change significantly with correlation
delay (τ2). To examine this dynamic response in more detail, we calculated cross-sections
through the map at different delays. The cross-sections were color coded and stacked vertically
to create a Δs-τ2 map.

Examples of Δs-τ2 maps are shown in Figure 12a. The middle cell is a V1 cell, and the other
two are MT cells. Within each map, the rows describe the activity as a function of spatial
displacement (Δs) along the preferred-null axis, and the columns show the time course of the
impulse response from 0 to 300 ms. For the cell on the left, the response begins ∼60 ms, peaks
at 80 ms, and has mostly disappeared by 120 ms. For the other two neurons, there is a similar
time course to the early part of the response but, at longer correlation delays, both neurons
reverse their preferred directions. For the rightmost neuron, the reversal is pronounced and
long lasting.

As in Figure 12, the dynamics of facilitation and suppression were generally mirror images of
each other, with the exception that the peak amplitude of suppression was often slightly smaller
than that of facilitation. Thus, the amplitude of facilitation was highly correlated with the
amplitude of suppression, with the best-fitting regression line having a slope of 0.79 in MT
and 0.78 in V1 (p < 0.0001).

To quantify the extent of direction reversals, we calculated a biphasic index (see Materials and
Methods) from the Δs-τ2 map of each neuron. The biphasic index measures the extent to which
neurons reversed preferred direction over time, with a value of 1 indicating a complete reversal
and 0 meaning no reversal. The three example neurons in Figure 12a had biphasic indices of
0.07, 0.34, and 0.71, from left to right. For the population of V1 neurons (Fig. 12b, left), the
median biphasic index was 0.14, meaning that most of the neurons behaved like the one in the
leftmost column of Figure 12a. Results for MT neurons were similar, with the mean biphasic
index being 0.22 (Fig. 12b, right). There was no significant difference between the V1 and MT
populations (t test, p > 0.12). Thus, most V1 and MT neurons maintained the same preferred
direction throughout most of their impulse responses, although a few clearly showed direction
reversals. Similar results were obtained with random-dot stimuli (Perge et al., 2004).

V1 simple cells
In previous work, we showed that an apparent motion sequence in which the stimulus contrast
reversed led to a reversal of direction selectivity in both V1 and MT (Livingstone et al.,
2001; Livingstone and Conway, 2003). Thus, a cell that preferred leftward motion for a white-
to-white sequence preferred rightward motion for a white-to-black sequence. Such a reversal
of direction selectivity means that the measured subunits are derived from the outputs of
neurons that are sensitive to stimulus contrast polarity. This is not a characteristic of either MT
neurons or the complex V1 cells that project to MT (Movshon and Newsome, 1996).

V1 simple cells, conversely, are sensitive to contrast polarity (by definition), and many of them
are direction selective. This suggests that the second-order subunits that we have described
here might originate from V1 simple cells (or their inputs). To test this idea, we recorded from
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57 simple cells using the same sparse noise stimulus as in the previous experiments. Simple
cell responses can be described primarily by their first-order kernels, which represent the firing
probability as a function of the positions and contrast polarities of individual stimulus elements
in space and time.

An example is shown in Figure 13a. As in the previous examples, the response unfolds from
left to right, and the spatial structure of the subunits is shown in each map. However, rather
than showing displacements Δx and Δy, the maps now show the response as a function of spatial
position (x,y). Similar to the second-order kernels, the first-order map in Figure 13a shows a
clear subunit structure with two elongated positive and negative regions arranged in a parallel
manner. Cells with more than two subregions were rare (Ringach, 2002). Over time, the relative
positions (or phases) of the positive and negative regions shift, suggesting a preference for
stimuli moving perpendicular to the axis of elongation. This type of spatiotemporal structure
is characteristic of direction-selective simple cells (McLean and Palmer, 1989; Reid et al.,
1991; DeAngelis et al., 1993a).

Theoretically, the type of direction selectivity observed in simple cells could give rise to the
second-order kernels found in complex cells and in MT. The minimal requirement is that first-
order responses of the kind shown in Figure 13a be multiplied or squared and summed over
space (Adelson and Bergen, 1985; van Santen and Sperling, 1985). (Actually, true direction
selectivity requires at least two simple cells with differing positions or phases, but because
information about spatial phase is absent from the second-order kernels, we have ignored this
requirement for the present discussion.) In other words, the motion energy is the product of
the first-order responses at two points in space and time. In this sense, it is analogous to the
second-order kernels that we have described, and we can use the same methods to predict the
response of a neuron that performed this multiplication. Such a neuron would likely be a V1
complex cell or an MT cell, both of which have strong second-order responses. In fact, if these
second-order responses are derived from the outputs of simple cells like the one shown in
Figure 13a, we might expect a population of predicted second-order responses to match what
we have described in our spatiotemporal measurements of actual second-order kernels.

Figure 13b shows the result of this calculation (for details, see Materials and Methods), using
the simple cell in Figure 13a as the input to the simulated second-order kernel. Here the axes
of each map represent stimulus displacement (Δx, Δy), and the results are qualitatively similar
to the second-order maps shown in Figure 1 and in previous work. In this case, the subunit
exhibits a preference for motion down and to the right, along with elongated suppressive and
facilitatory regions. The subunit structure agrees well with the direction tuning observed when
bars were swept through the receptive field (Fig. 13b, right).

Figure 13c (left) shows a space-time map derived from the first-order responses shown in
Figure 13a. The slant evident in the map indicates a preference for rightward motion, as is
observed in the direction-tuning curve shown in Figure 13b. The right panel of Figure 13c
shows the simulated Δs-Δτ map for the same cell.

We simulated second-order kernels of this type for each of the 57 simple cells in our population.
Measurements of aspect ratio, Gabor frequency, optimal spatial displacement (Dopt), and
space-time slant are shown in the histograms in Figure 14. The solid and dashed lines
superimposed on each histogram show the corresponding distributions for each measurement
in V1 complex cells and MT cells. From the left column of Figure 14, it is clear that the
simulated kernels exhibit spatial structure similar that of the observed kernels. That is, second-
order kernels derived from the first-order responses of simple cells seem to account for the
distributions of aspect ratios, Gabor frequencies, and preferred spatial displacements found in
complex cells and MT cells. The mean subunit aspect ratio was 2.51, which was slightly higher
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than what we observed in complex and MT cells. However, the distributions were clearly very
similar across all three cell types, as was also the case for the subunit spatial frequency (Fig.
14, top right). Similarly, the mean preferred spatial displacement (Dopt for facilitation) was
0.30 (0.23 SD), which was comparable with that observed in complex cells and MT cells.

Conversely, the simulated kernels do not account even qualitatively for the space-time slant
seen in the actual second-order kernels. The bottom right panel of Figure 14 shows the
distribution of TDIs for the simulated kernels. In contrast to the actual second-order kernels,
there is a preponderance of cells with TDIs near 0, indicating very little slant in the Δs-Δτ
space. Many of these cells also exhibited extra suppressive lobes in their simulated Δs-Δτ maps,
because the second-order map was similar to the autocorrelation of individual frames of the
first-order map.

The lack of space-time slant may be a consequence of additive noise in the simple-to-complex
cell projection. As mentioned above, such noise could increase the TDIs of actual cells but
would be absent from the simulated maps, which are noiseless. Of course, the discrepancy
could also be attributable to a selective projection from the minority of simple cells that show
substantial slant to direction-selective complex cells.

Predictions based on the full kernels
For each cell in the V1 and MT population (with the exception of nine simple cells), we had a
corresponding direction-tuning curve, measured with dots or bars. As a first pass at determining
the predictive power of the kernels, we simulated the responses of the first- and second-order
kernels to the stimuli used to generate the direction-tuning curves. The simulated tuning curves
were then compared with the actual time-averaged direction-tuning curves. Note that we are
not describing results for individual spike trains, which the kernels generally did not predict
well (data not shown).

Figure 15 shows the results for a V1 simple cell (the same as the one in Fig. 13), a V1 complex
cell, and an MT cell (the same as the one in Fig. 1). The first column shows the individual
predictions for the first-order (solid line) and second-order (dotted line) kernels. The middle
column shows the prediction for the two kernels combined, and the last column shows the
measured tuning curve. A few trends are evident in the data. First, many simple cells had
second-order responses that were direction tuned, with preferences that were similar to those
of the first-order kernel. (Baker, 2001). These second-order kernels, although generally low in
amplitude, often improved the correlation between the prediction and the data, as in the first
row of Figure 15. For this cell, the correlation between the first-order kernel and the data was
R2 = 0.71, which improved to R2 = 0.86 with the addition of the second-order kernel. Second,
the first-order kernels of V1 complex cells, although often high in amplitude, were generally
not direction selective and tended to worsen the correlation between the prediction and the
data. For the cell in the second row of Figure 15, the correlation between the response of the
second-order kernel and the data was R2 = 0.87, which decreased to R2 = 0.82 with the addition
of the first-order kernel. Third, the first-order kernels of MT neurons were always negligible
in amplitude and nondirectional (Fig. 15, third row).

The fourth column of Figure 15 compares the predictive power of the primary kernels (first-
order for simple cells, second-order for complex cells and MT cells) with that of the combined
kernels for each cell type. For the primary kernel, the median R2 values were 0.56, 0.72, and
0.80 in simple, complex, and MT cells. For the combined kernels, these values were 0.66, 0.69,
and 0.78. For the secondary kernels, the values were 0.59, 0.08, and 0.05. This suggests that,
although the first-order responses in complex and MT cells do not carry information about
motion, the second-order responses of simple cells do contribute to the observed direction
tuning. This was confirmed in 17 of 45 (38%) simple cells, for which the prediction of the
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combined kernel was significantly better than that of the first-order kernel (partial correlation,
p < 0.05). In contrast, the combined kernel only outperformed the primary kernel in 8 of 113
(7%) of the complex cells and 2 of 145 (1%) of the MT cells.

Discussion
Using sparse noise stimuli, we have mapped the subunit structure of direction-selective
receptive fields in V1 and MT. For MT cells and for V1 complex cells, we examined the second-
order subunits, which represent selectivity for stimulus displacement in space and time. For
V1 simple cells, we studied the first-order subunits, which capture the selectivity for the
contrast polarity of individual stimuli. In both V1 and MT, the results show that direction
selectivity is computed on a very fine spatial scale, with the maximal spatial displacement
being <1° for most neurons. These spatial displacements scale in a predictable way with retinal
eccentricity but are essentially unrelated to the temporal aspects of the stimulus, with the
exception that nearly all of the neurons studied prefer short (<17 ms) interstimulus intervals.
Some basic characteristics of the spatial structure of the second-order subunits can be explained
by the first-order characteristics of simple cells in V1, although, as a population, the second-
order subunits exhibit greater space-time slant than would be predicted from motion energy
models.

These results bear on two important questions in visual neurophysiology. First, how is
information about a given stimulus transmitted through the various stages of the visual cortical
hierarchy? Second, to what extent can the responses of visual cortical neurons be predicted
from first- and second-order descriptions of the stimulus? We address these issues in the
following sections.

Hierarchical processing in the visual cortex
Along the primate visual pathway, selectivity for motion direction is first observed in V1 simple
cells, which also exhibit some superposition in their responses to first-order (luminance) signals
(Hubel and Wiesel, 1962). Most direction-selective simple cells exhibit space-time slant,
meaning that the temporal and spatial properties of the receptive fields covary in such a way
as to provide limited velocity selectivity (Reid et al., 1987; McLean and Palmer, 1989;
DeAngelis et al., 1993b; Conway and Livingstone, 2003). Given that simple cells project to
complex cells (Martinez and Alonso, 2001), this type of direction selectivity could account for
the subunit structure found in complex cells, assuming a motion energy or Reichardt-style
motion model (Adelson and Bergen, 1985; van Santen and Sperling, 1985). Data in support of
this idea are shown in Figures 13 and 14.

Our population of MT neurons exhibited second-order spatial structure that was strikingly
similar to that of the V1 complex cell population. Both populations showed modestly oriented
subunits (Fig. 7), a preference for short spatiotemporal stimulus displacements (Figs. 5, 6), and
separability in space and time (Figs. 8-12). This high degree of similarity suggests that MT
receptive fields are derived primarily by summing the outputs of V1 complex cells sharing a
common preferred direction. Consistent with this idea is the observation that the subunits
become coarser at greater eccentricities, whether the measurements are made across the
receptive fields of many different V1 neurons or within the receptive field of a single MT
neuron (Figs. 3, 4).

Predictive power of the subunits
Our results suggest that the subunit structure of receptive fields in MT can be traced back to
the response properties of V1 simple cells. We have shown that these subunits accurately
predict certain features of the responses to conventional stimuli such as dots and bars (Fig. 15).
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In particular, the preferred direction and retinal disparity appear to be computed by simple cells
and preserved through several synapses to the level of MT (Pack et al., 2003a).

In contrast to predictions of motion direction, the second-order kernels do not accurately predict
the preferred speed of the MT neurons, which is often underestimated (Fig. 5b). This is also
consistent with the idea that the MT subunits are derived from simple cell outputs, because
simple cells prefer slower speeds than complex cells (Movshon, 1975), and complex cells
prefer slower speeds than MT cells (Mikami et al., 1986;Churchland et al., 2005). Part of this
transformation is manifested in the subunits: we observed lower space-time slant (preferred
velocity) in simple cells than in complex cells or MT cells (Fig. 14, bottom right). However,
previous work suggests that the transformation to greater preferred speeds in MT requires more
than two successive stimulus presentations and may require as many as 10 (Mikami et al.,
1986). Such higher-order interactions would not be present in our second-order kernels, and
we and others have not found fourth-order interactions in our data (Emerson et al.,
1987;Livingstone et al., 2001). Similarly, our technique does not to reveal the selectivity for
“non-Fourier” motion that is known to exist in both V1 and MT (Albright, 1992;O’Keefe and
Movshon, 1998).

Another shortcoming in our subunit measurements is the use of small spot stimuli to map spatial
structure. Although useful for obtaining high spatial resolution, this method minimizes the
influence of spatial nonlinearities, such as surround suppression, which play an important role
in the processing of more complicated stimuli (Hubel and Wiesel, 1965; Sillito et al., 1995;
Levitt and Lund, 1997; Kapadia et al., 1999; Sceniak et al., 1999; Pack et al., 2003b). For a
few MT neurons, we attempted to measure purely spatial nonlinearities by calculating kernels
for Δτ = 0 and found little structure in these simultaneous interactions (data not shown). As
with speed computations, these contextual effects appear to depend on the total contrast in the
stimulus (Levitt and Lund, 1997; Polat et al., 1998; Kapadia et al., 1999; Sceniak et al.,
1999; Pack et al., 2005), which is low for our sparse noise stimuli.

Previous experiments have found substantial differences between responses in V1 and MT to
complex stimuli. For instance, selectivity for non-Fourier motion (Albright, 1992; O’Keefe
and Movshon, 1998), for transparent motion (Qian and Andersen, 1994), and for two-
dimensional motion signals (Movshon and Newsome, 1996) appear to be more prevalent in
MT than in V1. The latter finding was hypothesized to be the result of the construction of a
velocity space in the projection from V1 to MT (Heeger et al., 1996). Such a transformation
would manifest itself at the single-cell level as velocity-tuning in the spatiotemporal responses
of MT neurons but not V1 neurons. Contrary to this hypothesis, our results suggest that there
is very little velocity tuning in either area (Figs. 9-11). Previous work using sinusoidal gratings
in anesthetized animals has reached a similar conclusion (Foster et al., 1985; Lisberger et al.,
2003; Priebe et al., 2003), although velocity tuning in these studies was somewhat more
common.

The finding that MT neurons are more selective than V1 neurons to transparent motion suggests
a role for MT in suppressing motion noise (Qian and Andersen, 1994). Indeed, our finding
(Fig. 15) that the predictive power of the kernels increases from simple cells to complex cells
to MT cells suggests that each stage sums over larger numbers of antecedent neurons with
similar response properties. This would be useful for suppressing locally conflicting motion
directions, uncorrelated noise, or temporal flicker at the level of MT. Also, the progression
from simple to complex to MT cells appears to achieve a limited sort of form invariance: MT
cells, in contrast to V1 cells, are almost completely insensitive to contrast polarity, as
manifested in the absence of first-order kernels in these cells.
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Relation to perception and behavior
Psychophysical experiments on humans have examined the perception of motion from
sequences of discrete stimuli (apparent motion). As in our physiological data, apparent motion
is usually perceived for spatial displacements (Δs) of <1° and temporal displacements (Δτ) of
<100 ms (Baker and Braddick, 1985). The spatial limits of this type of perception depend on
retinal eccentricity in a manner that is at least qualitatively consistent with our results (Baker
and Braddick, 1985). These spatial limits can be extended if multiple stimulus displacements
are presented (Nakayama and Silverman, 1984), suggesting that our two-flash apparent motion
stimuli may underestimate Dmax for the neuronal populations. Consistent with our second-
order kernels is the finding that human observers perceive a reversal of motion direction for
stimulus sequences that reverse contrast (Anstis and Rogers, 1975; Livingstone et al., 2001).

Psychophysical observers are less sensitive to the magnitudes of temporal displacements than
to spatial displacements, and they are relatively insensitive to velocity (Smith and Edgar,
1990; Priebe and Lisberger, 2004). That is, humans tend to confound the spatial composition
of an object with its speed, suggesting that they do not possess a cue-invariant measure of
velocity. Similar behavior was seen in our V1 and MT cells, which exhibited separable
selectivities to spatial and temporal displacement rather than invariant velocity selectivity.

Conclusions
We have shown how an elementary visual computation, direction selectivity, is transmitted
through the earliest stages of cortical processing to extrastriate area MT. Our results suggest
that the elementary aspects of the computation of motion are performed by the simple cells,
with subsequent areas performing a summation over larger regions of visual space. This simple
model is derived from correlations between the spike trains and the statistics of the sparse noise
input and thus does not include important higher-order aspects of visual processing. Whether
or not the resulting mathematical kernels are predictive of responses to more complicated
stimuli is an entirely empirical question, which will be the subject of additional research.
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Figure 1.
a, Example interaction function I(Δx, Δy, Δτ, τ2). Each square contains a displacement map,
which codes the response as a function of the spatial separation between two stimuli (Δx,
Δy). The position of the second stimulus in any two-spot sequence is the origin of each map.
Positive (facilitatory) responses are coded in orange, and negative (suppressive) responses are
coded in blue. The response of the cell in the figure was therefore facilitated by a rightward
apparent motion sequence and suppressed by a leftward sequence. Each row indicates a
different temporal separation between stimuli (Δτ), and each column indicates a different
correlation delay (τ2). The displacement map outlined in thick black is the peak map, which is
defined as the map that has the highest variance. Pixels that differ from baseline by ± 3 SDs
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(see Materials and Methods) are outlined by the dotted contour. b, Variance as a function of
time for the neuron depicted in a. The solid curve indicates the variance in each displacement
map as a function of delay (τ2), when Δτ =17 ms (1 monitor refresh). The dashed curve shows
the same time course for the case in which Δτ = 33 ms (2 refreshes), and the dotted curve
corresponds to Δτ = 50 ms (3 refreshes). The vertical dashed line indicates the peak response,
which corresponds to the highlighted map in a. The horizontal dashed line is the threshold
above which a response is considered significantly above the baseline noise. The vertical arrow
indicates the interval over which the baseline noise is measured.
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Figure 2.
a, The peak displacement map from the neuron in Figure 1a. The dashed line connects the peak
of the facilitatory region to the origin of the map and is used to determine the spatial profile of
the response in b. The dashed circle delineates the region over which profiles are measured.
The dashed ovals show elliptical Gaussian fits to the facilitatory and suppressive response
regions. b, The spatial profile of the map shown in a. Each dot corresponds to the response at
one point along the profile. The solid blue curve is the Gabor fit to these points. The dashed
vertical line indicates the point at which the spatial displacement (Δs) is 0. Different features
of the Gabor fit are shown as dotted vertical lines, which indicate, from left to right, the zero-
crossing for facilitation, the peak for facilitation, the peak for suppressive, and the zero-crossing
for suppression.
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Figure 3.
Correlations between aspects of the best-fitting Gabor functions and the retinal eccentricities
of the neurons. Open circles indicate V1 neurons, and filled circles indicate MT neurons. The
dashed lines show the regression lines. a, Correlation between retinal eccentricity and Gabor
frequency. b, Correlation between retinal eccentricity and Gabor envelope width.
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Figure 4.
a, Displacement maps computed at different eccentricities within the same MT receptive field.
The dashed squares show the sizes and positions of random-dot patches used to measure speed
tuning at the corresponding receptive field locations. b, Spatial profiles for the foveal (red) and
peripheral (blue) displacement maps shown in a. Each dot corresponds to the response at a
point along a line through the peak of each map. The solid curves are the best-fitting Gabor
functions. c, Speed-tuning curves collected with random-dot fields centered on the foveal (red)
and peripheral (blue) receptive field locations. Error bars indicate SD of the mean. d, Shift in
frequency of the best-fitting Gabor as a function of change in retinal eccentricity for 37
displacement maps computed within the receptive fields of 17 MT neurons. Each dot
corresponds to the difference in frequency for a given change in retinal eccentricity, and the
dashed line is the result of a linear regression.
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Figure 5.
a, Measurements of Dopt, which is the spatial displacement yielding the maximal facilitatory
or suppressive response for each neuron. The maximum is defined from the peak (or trough)
of the Gabor fit to the spatial profile, as shown in Figure2b. The population of V1 cells is shown
on the left, and MT cells are on the right. Facilitation is on top, and suppression is on the bottom.
b, The x-axis shows, for 94 MT neurons, the peak of a log-Gaussian fit to speed-tuning curves
like those shown in Figure 4c. The y-axis shows Dopt for facilitation (filled circles) and
suppression (open circles).
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Figure 6.
Measurements of Dmax, which is the maximal spatial displacement to which a neuron is
sensitive. This is defined as the zero-crossing of the Gabor fit to the spatial profile shown in
Figure 2b. Population histograms for Dmax are shown for V1 (left) and MT (right), for
facilitation (top) and suppression (bottom).
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Figure 7.
Measurements of the subunit aspect ratio. Aspect ratio was defined as the ratio of length to
width of the best-fitting elliptical Gaussian for facilitatory (top) and suppressive (bottom) fields
in V1 (left) and MT (right).
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Figure 8.
Examples of maps showing the spatial profile as a function of the temporal separation (Δτ)
between stimuli for three MT cells (top) and three V1 cells (bottom). For each map, the rows
are color-coded spatial profiles, with orange indicating facilitation and blue indicating
suppression. The columns correspond to different values of Δτ, and the vertical dashed lines
correspond to zero spatial displacement.
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Figure 9.
Measures of separability in V1 (left) and MT (right). The top row shows population histograms
of the separability index, calculated from a singular value decomposition of maps like those
shown in Figure 8. The bottom row shows the tilt direction index, calculated from the discrete
Fourier transform of the maps (see Materials and Methods).
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Figure 10.
A simple model of velocity tuning (Levitt et al., 1994). a, The leftmost map corresponds to the
example shown in Figure 8 (bottom left). The horizontal and vertical dotted lines intersect at
the point of peak facilitation, and the curves shown in the horizontal and vertical boxes
correspond to response profiles taken along these lines. The middle map indicates the
“separable” prediction, defined as the outer product of the horizontal and vertical curves shown
next to leftmost map. The rightmost map shows the “velocity-tuned” prediction, obtained by
shifting the peak spatial profile by an appropriate amount to maintain the preferred velocity
(Δs/Δτ). b, Same as a but for the example neuron shown in the bottom right of Figure 8.
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Figure 11.
Distributions of correlation values for the separable and inseparable predictions for V1 (top
left) and MT (top right). Each dot corresponds to a neuron, and the solid gray lines show
thresholds for significance at the level of p < 0.05. Neurons that fall between the two lines
cannot be categorized as being consistent with either prediction. The bottom row shows a
comparison of the correlation values for 30 MT neurons for which displacements maps were
computed using long bars (left) and small spots (right). b, Normalized response strength as a
function of the temporal separation between stimuli (Δτ) for the population of neurons in V1
(black) and MT (gray).

Pack et al. Page 34

J Neurosci. Author manuscript; available in PMC 2006 March 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 12.
The effect of correlation delay (τ2) on spatial response profiles. The top row shows maps in
which the rows indicate response as a function of spatial displacement. The columns show how
the responses change as a function of correlation delay. Beneath each map is the impulse
response, taken through the peak of each facilitatory (red) or suppressive (blue) response. b,
Population histograms of the biphasic index (see Materials and Methods) for V1 (left) and MT
(right). Neurons with a biphasic index near 0 maintained their preferred direction throughout
the duration of their response, whereas neurons with a biphasic index near 1 showed a reversal
in preferred direction at long correlation delays.
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Figure 13.
a, The first-order response of a V1 simple cell. Here, each map shows the response of a neuron
as a function of spatial position (x,y) at a different correlation delay (τ). The solid lines connect
pairs of maps that were cross-correlated to obtain simulated second-order maps. b, Simulated
displacement maps showing predicted responses as a function of spatial displacement (Δx,
Δy), with correlation delay τ2 increasing from left to right. The maps were calculated from the
simple cell responses shown in a. On the right is shown the direction-tuning curve for the same
neuron in response to a long bar moving in a direction perpendicular to its orientation. c, Space-
time map computed from the maps shown in a (left), along with a simulated Δs-Δτ map
computed from the displacement maps shown in b (right).
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Figure 14.
Population histograms for second-order kernels derived from first-order responses of V1
simple cells. The histograms show subunit aspect ratio (top left), Dopt for facilitation (top right),
Gabor frequency (bottom left), and tilt direction index (bottom right) for the simulated
interaction kernels. The same values for MT (solid lines) and V1 (dashed lines) are
superimposed on each histogram.
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Figure 15.
Predictions of full first- and second-order kernels. The first row shows an example V1 simple
cell, along with its predicted first-order (solid line) and second-order (dotted line) direction-
tuning curves. The combined tuning curve is shown in the second column, and the tuning curve
measured with drifting random-dot fields is shown in the third column. The extent to which
the primary kernel (first-order) and combined first- and second-order kernels capture the
measured tuning curve are shown as correlation coefficients in the fourth column. Rows 2 and
3 show similar data for V1 complex cells and MT cells.
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