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Abstract

Classically, model-based segmentation procedures match magnetic resonance imaging (MRI) 

volumes to an expertly labeled atlas using nonlinear registration. The accuracy of these techniques 

are limited due to atlas biases, misregistration, and resampling error. Multi-atlas-based approaches 

are used as a remedy and involve matching each subject to a number of manually labeled 

templates. This approach yields numerous independent segmentations that are fused using a voxel-

by-voxel label-voting procedure. In this article, we demonstrate how the multi-atlas approach can 

be extended to work with input atlases that are unique and extremely time consuming to construct 

by generating a library of multiple automatically generated templates of different brains (MAGeT 

Brain). We demonstrate the efficacy of our method for the mouse and human using two different 

nonlinear registration algorithms (ANIMAL and ANTs). The input atlases consist a high-

resolution mouse brain atlas and an atlas of the human basal ganglia and thalamus derived from 

serial histological data. MAGeT Brain segmentation improves the identification of the mouse 

anterior commissure (mean Dice Kappa values (κ = 0.801), but may be encountering a ceiling 

effect for hippocampal segmentations. Applying MAGeT Brain to human subcortical structures 

improves segmentation accuracy for all structures compared to regular model-based techniques (κ 

= 0.845, 0.752, and 0.861 for the striatum, globus pallidus, and thalamus, respectively). 

Experiments performed with three manually derived input templates suggest that MAGeT Brain 
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can approach or exceed the accuracy of multi-atlas label-fusion segmentation (κ = 0.894, 0.815, 

and 0.895 for the striatum, globus pallidus, and thalamus, respectively).
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INTRODUCTION

Manually derived delineations of human neuroanatomical structures are often considered the 

“gold-standard” for the segmentation of magnetic resonance images [Burk et al., 2004; 
Schulz et al., 1999; Seeck et al., 2005]. Similarly, many semi-automated techniques exist for 

neuroanatomical phenotyping of wild-type and transgenic murine brain anatomy using 

magnetic resonance images (MRI) [Bock et al., 2006; Ma et al., 2005]. However, several 

factors create a need for accurate and robust segmentation methods that are fully automated. 

These include the advent of high-throughput phenotyping of mouse models of human 

disease and behavior accompanied by advances in imaging methodology [Lerch et al., 

2011a; Nieman et al., 2007]. Likewise, in human imaging there is a vast and ever-increasing 

amount of structural MRI data [Mazziotta et al., 1995, 2001a,b; Pausova et al., 2007], which 

make manual segmentation increasingly problematic. On a practical level, manual or 

semiautomated methods are too time consuming to properly deal with such extensive 

quantities of data and are fraught with issues of inter- and intra-rater variability and observer 

subjectivity [Chakravarty et al., 2008, 2009a,b; Shattuck et al., 2008].

One of the earliest methods devised for overcoming the limitations of manual or 

semiautomated procedures was model-based segmentation. Classically, these algorithms 

have relied on using a well-defined template derived from the manual segmentations of a 

single rater or multiple raters. The automated segmentation can then be accomplished 

through the estimation of a subject-to-template nonlinear transformation, and then applying 

the inverse transformation to the labels defined on the template [Bajcsy et al., 1983; Collins 

et al., 1995; Miller et al., 1997]. Many of these methods have since been adapted to the 

animal imaging literature [Ali et al., 2005; Bae et al., 2009; Dorr et al., 2008; Frey et al., 

2011]. While this methodology provides a reasonable strategy for customizing these 

predefined labels onto the anatomy of individual subjects, it is constrained by a number of 

limitations:

• Errors in the estimation of the nonlinear subject-to-template transformation will 

cause errors in the final labeling of the subject.

• The neuroanatomy of the template may not be representative of the underlying 

neuroanatomy of the subjects being analyzed.

• Resampling errors are often present after applying the transformation to the labels 

defined on the template.

There are several studies which have evaluated the choice of registration procedure 

[Chakravarty et al., 2008, 2009a,b; Hellier et al., 2003; Klein et al., 2009] and the parameters 
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of a registration algorithm [Avants et al., 2011; Robbins et al., 2004] in the context of 

segmentation accuracy. Most of these evaluations estimate how well nonlinear registration 

algorithms are able to recover anatomical differences between subjects and between a 

subject and a neuroanatomical template [Grabner et al., 2006; Holmes et al., 1998; 
Mazziotta et al., 2001a], but do little in the way of accounting for other sources of error.

The use of probabilistic methods has become increasingly popular for segmentation 

procedures to account for differences in the underlying neuroanatomy. Instead of a single 

template, several templates are manually labeled to account for the variability of any given 

population. This type of methodology has been popular in the segmentation of sulci in the 

human cortex (given their inherent variability). One of the earliest uses of this technique was 

presented by Fischl et al. [2002], where the prior probability of the occurrence of each 

structure at a specific voxel is used to determine the a priori spatial arrangement of 

neuroanatomical structures. This arrangement is then refined using a Markov random field. 

These ideas have also been extended for the segmentation of mouse brain MRI data. In Ali 

et al. [2005], probabilistic information is obtained about the location and the spatial 

relationships between structures using multispectral (T1, T2, proton density, and diffusion 

weighted) MRI acquisitions and then refined using Markov random field theory. This 

segmentation technique has recently been improved further by introducing a support vector 

machine into the Markovian random field classification stage [Bae et al., 2009].

Recently, a new class of segmentation technique has emerged which has been referred to as 

multi-atlas or label fusion based segmentation. In principal, this methodology is well suited 

for dealing with the limitations of regular model-based segmentation procedures. In this 

methodology, a library of numerous manually defined templates is generated by a single or 

multiple manual raters, and each subject undergoes the subject-to-template nonlinear 

registration procedure numerous times (where the subject is matched to all of or some of the 

templates in the library). Once all of the nonlinear transformations have been estimated, the 

labels are warped back onto the subject's anatomy. This is often referred to as the multi-atlas 

or template library step. However, once this stage is complete a label fusion step must be 

employed to combine labels in an optimal fashion that can boost the labeling accuracy. Here, 

many strategies have been employed such as the STAPLE algorithm that computes a 

probabilistic segmentation based on an ensemble of competing segmentations; others where 

a subset of templates are selected from the library based on some sort of similarity criteria 

that attempts to evaluate the homology between the regions of interest to be segmented using 

metrics such as the sum of squared-differences [Coupe et al., 2011b] or normalized mutual 

information [Collins and Pruessner, 2010]; or an optimized combination of weights based on 

the covariance of region of interest intensities [Wang et al., 2011].

One of the first implementations of this was proposed by Rolf Heckemann et al. [2006] 

where each brain is matched to 30 manually prelabeled templates using a spline-based 

nonlinear registration technique [Rueckert et al., 1999]. The final segmentation is then 

implemented using label fusion rules [Rohlfing et al., 2004a,b]. These techniques have since 

been improved to reduce the computational complexity by preselecting the best N templates 

which are most similar to the subject's input MRI data based on the normalized mutual 

information metric [Aljabar et al., 2007, 2009]. Similarly, Collins and Pruessner [2010] 
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implemented a multi-atlas based segmentation strategy for the automatic identification of the 

human hippocampus and amygdala by determining the N most similar labels based on the 

estimation of the normalized mutual information [Studholme et al., 2001] in a region-of-

interest defined in the temporal lobe. Others have also chosen to use a similarity criterion to 

select the “best” template from a library [Barnes et al., 2008], thereby reducing the label 

fusion problem to a template selection problem followed by a traditional atlas-based 

segmentation procedure.

An open topic in label-fusion based segmentation is how to best generate a template library. 

To do so manually requires trained personal and a manual segmentation strategy that does 

not suffer from inter- and intra-rater subjectivity [Pruessner et al., 2002]. A strategy that 

generates some or all of the templates in a library is far more desirable if it is able to 

successfully mimic the work of a manual rater. One method that generates a template library 

from a limited set of manually derived segmentations is the LEAP algorithm [Wolz et al., 

2010]. In their method, the pair-wise similarity between all images in a dataset is first 

estimated and used to define the edge-weights is a graph representation. The segmentation 

procedure is then implemented as a three-step process. First, the initial atlases are used to 

segment a predefined number of images from the dataset. The choice of images to be 

segmented is defined by their proximity in the graph representation. In the second step, these 

newly segmented images become atlases as well, where they are then used for the 

segmentation of the other unlabeled images within the dataset. This can lead to a number of 

segmentations for each subject; thus, the final segmentation is defined using a decision rule 

at each voxel.

The Wolz technique [2010] is the closest to the work that we have presented here. Unlike 

Wolz et al, we demonstrate that segmentations can be improved in the special case where 

there can only be a single or very few input atlases. While the label fusion techniques 

described above are robust, they are difficult to implement in cases where the initial atlas is 

derived from a unique dataset. For example, atlases based on the reconstruction of manually 

segmented serial histological data [Chakravarty et al., 2006; Yelnik et al., 2007] are difficult 

to generate due to the availability of donated histological data, limitations concerning 

processing the brain for different histological and immunohistochemical techniques, and 

time required to manually identify structures on such a high-resolution datasets. Despite the 

other improved techniques available for the visualization of subcortical structures [Behrens 

et al., 2003; Deoni et al., 2005], these atlases provide great utility in defining discrete hard-

to-visualize structures. In the mouse imaging community, there is no shortage of possible 

mice with which to create a population-based atlas. However given the resolution of such an 

atlas and the number of structures which can be resolved with high-fidelity, comprehensive 

and accurate manual segmentation would typically take months per atlas, making the 

creation of multiple such segmentations prohibitive. In this manuscript we extend the multi-

atlas based segmentation techniques through the development of multiple automatically 

generated templates from a single labeled brain (MAGeT Brain). We hypothesized that a 

template library could be automatically generated directly within the dataset being analyzed; 

specifically in structures (or brains) where anatomical mislabeling should arise from 

misregistration or resampling errors. To this end, we validate this technique on human brain 

structures (the striatum, the globus pallidus, and the thalamus) and mouse brains (which are 
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lissencephallic). In other words, we focus on structures and brains where the morphological 

homology should be maximal in comparison to anatomical structures in the human cerebral 

cortex. Segmentations were performed using two different registration algorithms to 

demonstrate that our technique can work using different validated nonlinear warping 

methods. The segmentation results are validated against manually derived gold-standards 

using two different “goodness-of-fit” metrics. The results demonstrate that the MAGeT 

Brain technique improves segmentation over standard model-based segmentation and group-

wise segmentation/registration procedures and may be equivalent to multi-atlas label-fusion 

segmentation techniques in cases where three input templates can be used for the 

segmentation. We also verify if weighting the votes using local similarity constraints in the 

template library selection process can further improve segmentation.

METHODS

MAGeT Brain

The MAGeT Brain procedure is a three-step process. Consider any input dataset consisting 

of n structural MRIs. A template library can be generated through the segmentation of each 

or a subset of the n subjects in the input dataset using a regular model-based segmentation 

procedure. Similarly, an input atlas can be created a priori from existing MRI data 

independent of the dataset being analyzed. The goal is to distribute possible registration and 

resampling errors (and therefore segmentation errors) across the input data.

The next step is to generate multiple segmentations for each subject from the newly derived 

template library. This is accomplished through pair-wise registration of each subject to all 

the templates in the automatically generated template library. For each subject, this process 

yields as many possible segmentations as there are templates and allows for the averaging of 

some of the errors present in the initial segmentations used to create the template library. 

This will serve to filter any spurious errors that arise out of the initial segmentation process.

The final step consists of a voxel voting procedure, where the most frequently occurring 

label at each voxel is retained for the final segmentation [as in Collins and Pruessner, 2010]. 

While other voxel voting procedures exist [Heckemann et al., 2006], the evaluation of the 

best voxel-decision method is outside of the scope of this manuscript. A schematic view of 

this procedure is given in Figure 1.

Nonlinear Registration Algorithms

In the remainder of this manuscript we evaluate the performance of two different algorithms 

in the context of MAGeT Brain and all other techniques that are tested (these techniques will 

be described later in the Methods section):

• Automatic nonlinear image matching and anatomical labeling (ANIMAL) [Collins 

and Evans, 1997; Collins et al., 1995]. The ANIMAL algorithm is an iterative 

procedure that estimates a 3D deformation field that matches a source volume to a 

target volume. The algorithm is divided into two steps. The first is the outer loop, 

where large deformations are estimated using blurred versions of the input data. 

These larger deformations are then input to subsequent steps where the fit is refined 
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by estimating smaller deformations on data blurred with a Gaussian kernel with a 

smaller full-width at half maximum. The final transformation is a set of local 

translations defined on a bed of equally spaced nodes that were estimated through 

the optimization of the correlation coefficient (Robbins et al., 2004). The ANIMAL 

algorithm is part of the mni_autoreg package and is freely available (http://

www.bic.mni.mcgill.ca/ServicesSoftware/HomePage).

• Automatic normalization tools (ANTs) [Avants et al., 2011; Avants et al., 2008]. 

ANTs is a diffeomorphic registration algorithm which provides great flexibility 

over the choice of transformation model, objective function, and the consistency of 

the final transformation. The transformation is estimated in a hierarchical fashion 

where the MRI data is subsampled, allowing large deformations to be estimated and 

successively refined at later hierarchical stages (where the data is subsampled to a 

finer grid). The deformation field and the objective function are regularized with a 

Gaussian kernel at each level of the hierarchy. The ANTs algorithm is also freely 

available (http://www.picsl.upenn.edu/ANTS/).

For both choices the parameter setting will be crucial to the accuracy of the transformations 

estimated. These parameter choices will be further explained below.

Experiments

The experiments were performed using MRI data from both mouse and human brains to 

demonstrate the general reliability of MAGeT Brain on diverse datasets. The input 

templates, validation datasets, manually derived gold-standards, and registration parameters 

are described for the three different validation experiments performed.

MAGeT Brain for the mouse

Input template: We use a template previously derived from the nonlinear average of 40 T2-

weighted MRI volumes of the C57Bl/6 mouse brain as described in Dorr et al., [2008]. The 

final average image volume contains 32 lm isotropic voxels. The atlas contains 62 different 

structures that were manually defined by a trained rater. This atlas has been previously used 

for model-based segmentation in several studies from our group to obtain structure-wise 

volume values [Ellegood et al., 2010; Lerch et al., 2008, 2011b]. See Figure 2a for an 

example of this template.

Dataset evaluated: MAGeT Brain was evaluated on a dataset of T2-weighted MRI data 

from 25 C57Bl/6 fixed mice brains. Images were gadolinium-enhanced to increase the 

contrast within the image. The specimen preparation for postmortem sample preparation has 

been described elsewhere [Dorr et al., 2008; Lerch et al., 2011b]. Briefly, a multichannel 7.0 

T MRI scanner (Varian, Palo Alto, CA) with a 6-cm inner bore diameter insert gradient set 

was used to acquire anatomical images of brains within skulls. Prior to imaging, the samples 

were placed into 13-mm-diameter plastic tubes filled with a proton-free susceptibility-

matching fluid (Fluorinert FC-77, 3M Corp., St. Paul, MN). Three custom-built, 14-mm-

diameter solenoid coils with a length of 18.3 mm and over wound ends were used to image 

three brains in parallel. Parameters used in the scans were optimized for gray/white matter 

contrast: a T2-weighted, 3D fast spin-echo sequence, with TR/TE = 325/32 ms, four 
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averages, field-of-view 14 × 14 × 25 mm3 and matrix size = 432 × 432 × 780 giving an 

image with 32 μm isotropic voxels. Total imaging time was 11.3 h. Geometric distortion due 

to position of the three coils inside the magnet was corrected using an MR phantom.

Nonlinear registration parameters for murine data: Nonlinear transformations estimated 

with ANIMAL used parameters previously employed for model-based segmentation and by 

our group. The transformations draw on a combination of intensity and gradient features for 

the estimation of the final output transformation. The final nonlinear transformation has a 

step size of 100 μm and is estimated in the hierarchical iterative fashion described above. 

The parameters used are summarized in Table I.

ANTs registration algorithm parameters were determined empirically on a separate dataset 

by one of the authors (MvE). The optimization performed is beyond the scope of the current 

manuscript. A cross-correlation objective function was used for all transformations 

estimated with a symmetric normalization transformation model. Both intensity and gradient 

information (derived using convolution with a 120 μm Gaussian kernel) were used as input 

features. The parameters used are summarized in Table II.

Gold-standard for evaluation and segmentation methods evaluated: Manually derived 

gold standards were generated by one of the authors of this manuscript (VG) for both the left 

hippocampus and the entire anterior commissure for 10 of the 25 MRI volumes used in this 

experiment. In addition, five of the mice were relabeled to determine the intra-rater 

reliability.

MAGeT Brain segmentations were derived using both nonlinear registration algorithms were 

compared to the ground truth provided by the manual gold-standards. For the MAGeT Brain 

segmentations, the template library was created from all 25 of the input MRI volumes. These 

segmentations were compared to two other segmentation methods. The first is the standard 

template-based registration procedure, where the labels previously defined on a template are 

warped based on a template-to-subject nonlinear transformation. Because the purpose of 

MAGeT Brain is to filter out nonlinear registration and possible resampling errors, we use 

segmentations derived by first creating a model of the mean neuroanatomy as previously 

described in several articles from our group [Lerch et al., 2011a,b; Spring et al., 2007]. For 

both nonlinear registration algorithms, the MRI volumes are first rigidly registered to a 

common space [Dorr et al., 2008] followed by the estimation of all pairwise 12 parameter 

registrations (three scales, shears, rotations, and translations) and an average transformation 

for each mouse. After these average transformations have been applied, all MRI volumes 

were effectively normalized to the population average of the group and can be represented 

using a voxel-by-voxel average. An iterative multi-generation nonlinear alignment procedure 

is then initialized where all subjects are registered to the population average. Subsequently 

each subject is registered toward the voxel-by-voxel average of the previous generation. The 

registration schedules for both the ANIMAL and ANTs based group-wise averaging are 

given in Tables III and IV. The final segmentation for each subject was obtained by first 

concatenating the transformation mapping the original atlas to the new group-wise average 

and the inverse of the transformation mapping each subject to the final group-wise average 

and then applying it to the atlas labels.
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All segmentations derived from model-based, group-wise, and MAGeT Brain techniques 

(derived for both nonlinear registration algorithms) were compared to the ground truth 

provided by the manual gold-standards. For the MAGeT Brain segmentations, the template 

library was created from all 25 of the input MRI volumes. In tables and figures, model-based 

segmentation using ANIMAL and ANTs will be referred to as Model ANIMAL and Model 

ANTs, respectively. Segmentations derived from the group-wise model building using the 

ANIMAL and ANTs algorithms will be referred to as Group-wise ANIMAL and Group-

wise ANTs respectively. Similarly, MAGeT Brain segmentation using ANIMAL and ANTs 

will be referred to as MAGeT ANIMAL and MAGeT ANTs, respectively.

MAGeT Brain for subcortical labeling in the human

Input template: The input template used for segmentation of subcortical structures is an 

atlas of the basal ganglia and thalamus derived from a set of 84 serial histological slices 

[Chakravarty et al., 2006] where 108 different anatomical regions were defined. These 

regions include the Hirai and Jones [1989] and the Hassler [Schaltenbrand and Wahren, 

1977] subdivisions for the thalamus and other subcortical nuclei and the Gloor [1997] 

definitions for temporal lobe structures. As in previous work [Chakravarty et al., 2008, 

2009a,b], we collapse sublabels into three different anatomical structures for the striatum, 

globus pallidus, and thalamus. In previous work, the histology was reconstructed to 

minimize inconsistencies in slice-to-slice morphology and intensity inhomogeneities. All 

voxels within the reconstructed volume were assigned a unique voxel label. These voxel 

labels were then modified to match the intensity and contrast of the colin27 [Holmes et al., 

1998] template to create a “pseudo-mri.” Using this pseudo-mri, a nonlinear atlas-to-

template nonlinear transformation was estimated to match the atlas to the template. The 

template, and as a result the atlas labels, can be customized to the anatomy of a new subject 

using standard model based segmentation procedures. See Figure 2b for an example of the 

input data used.

Dataset evaluated: Twenty MRI volumes acquired from human adolescents aged 5–17 (10 

male and 10 female) were used for this experiment. Half of the subjects suffer from attention 

deficit hyperactivity disorder (ADHD) while the other half are healthy normal controls 

[Shaw et al., 2007, 2011]. Because there are known thalamic abnormalities in subcortical 

structures in subjects that suffer from ADHD [Ivanov et al., 2010], the heterogeneity of the 

subjects used serves to add some anatomical variance to this study and has been used in 

other segmentation procedures [Fischl et al., 2002]. All images were acquired from a GE 

Signa 1.5T MR system (General Electric, Milwaukee, WI) using a coronal three-dimension 

spoiled gradient recalled sequence (TR/TE = 14/3 ms, 256 × 192 acquisition matrix, 124-

mm slices; voxel size: 0.94 × 0.94 × 1.5 mm3).

Nonlinear registration parameters for human data: For segmentation with the ANIMAL 

algorithm we use the nonlinear registration parameters previously validated [Chakravarty, 

2009a,b] and evaluated against other nonlinear registration methods [Chakravarty, 2009b]. 

Briefly, this method involves a linear registration followed by a nonlinear registration 

focused on a region-of-interest limited predominantly to the subcortical structures and other 

noncortical anatomical structures (such as the corpus callosum and lateral ventricles) to help 
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guide the nonlinear transformation estimation process. See Tables V and VI for a summary 

of the parameters used in the nonlinear transformation process for ANIMAL and ANTs 

respectively. As in the mouse segmentation experiments, we also checked to see if we could 

improve segmentations by mapping the template to a group-wise average created from the 

population under study [Borghammer et al., 2010; Grabner et al., 2006]. The nonlinear 

registration parameters for each generation are given in Tables VII and VIII for ANIMAL 

and ANTs, respectively.

Parameters for the ANTs algorithm were determined by one of the authors of this 

manuscript (PS) and are similar to those previously reported by the group who developed the 

algorithm [Avants et al., 2008]. Unlike the mouse brain registration using only intensity 

features was shown to produce acceptable segmentation results. The probabilistic 

registration objective function was a symmetric normalization transformation model.

Gold-standard for evaluation: Gold standards of the striatum, globus pallidus, and 

thalamus were manually derived, for both hemispheres, by one of the authors of this 

manuscript (RDC) for all 20 subjects using the manual segmentation rules previously 

described in [Chakravarty, 2009b]. In addition, the subcortical structures from the left 

hemisphere were relabeled on five randomly chosen subjects to verify intra-rater reliability. 

Model-based segmentation and the MAGeT Brain procedure were compared to the gold 

standards. As in the murine experiment, MRI data from all 20 of the input subjects were 

used in the creation of the automatically generated template library. The same convention 

will be used as those defined in the murine experiments for reporting results in the figures 

and tables (i.e., Model ANIMAL, Model ANTs, MAGeT ANIMAL, and MAGeT ANTs).

Using more than one input template—In certain cases, there may be a possibility for 

the development of more than a single “hard-to-define” atlas. Similarly, one may be 

confronted with the analysis of a subject population with highly atrophic or enlarged brain 

structures. In these scenarios, it may be possible to devote resources to the manual 

segmentation of certain structures in multiple MRI volumes. We used the manual 

segmentations described above for the validation of the subcortical segmentations. Unlike 

the MAGeT Brain method, we randomly chose three subjects from the 20 manually labeled 

subjects as input templates. In this way, three segmentations are available for each subject in 

the template library. As a result the voxel voting now occurs with 3 × (n - 1) possible 

segmentations. We chose three unique atlases three times to verify the impact of the atlas 

choice on the quality of the final segmentations. MAGeT Brain and traditional “multi-atlas” 

label fusion based segmentation results were compared to the gold-standard. We consider 

the traditional multi-atlas based segmentation result as the upper bound on segmentation 

quality as other publications have demonstrated its increased accuracy over traditional 

model-based segmentation procedures [Aljabar et al., 2007, 2009; Collins and Pruessner, 

2010]. We also evaluate multi-atlas segmentation in the case where there are only three 

templates in the library (instead of a larger template library) to evaluate the level of 

improvement that MAGeT Brain provides. Here we use the same templates as in the 

MAGeT Brain experiments. In the figures and tables mutliatlas segmentation with using a 

template library of three templates will be referred to as 3 Template Multi-Atlas; MAGeT 
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Brain results using three input templates will be referred to as 3 Template MAGeT Brain; 

and finally multi-atlas label fusion using all 20 templates in the library will simply be 

referred to as Multi-Atlas.

Checking for optimal templates from the template library—To determine if there is 

some optimal subset of templates from the automatically generated template library that can 

yield more accurate segmentation we employed a strategy similar to the work in [Collins and 

Pruessner, 2010]. In their work on hippocampal and amygdala segmentation using a 

template library and label fusion, each subject is linearly transformed to match all templates 

in a template library of 80 manually segmented subjects. The labels that are then chosen for 

label fusion based on a rank order of the normalized mutual information estimated in a 

region of interest around the medial temporal lobe. Similarly, others have demonstrated that 

a label-fusion strategy weighted towards an optimal combination of subjects in the template 

library will improve segmentation [Aljabar et al., 2007, 2009; Heckemann et al., 2006; 
Rohlfing et al., 2004a,b]. We have previously demonstrated that nonlinear registration 

focused on an ROI that define the extents of the structures to be segmented can improve 

accuracy [Chakravarty, 2009b], and have chosen to combine these two ideas here.

In our implementation, we estimated the cross-correlation between an input subject and each 

of the subjects within the automatically generated template library. All cross-correlations 

were estimated using only those voxel intensities in the region of interest as defined after 

linear registration of the input subject to each of the templates in the template library. For 

each subject, the templates are rank-ordered by their cross-correlation value and only the top 

“n” subjects are retained. The labels are then fused via majority vote (i.e., the mode label at 

each voxel location) using only these top “n” subjects.

Our aim was to determine if there is an optimal number of subjects that should be retained 

from the template library and if this number differed for different structures. Optimality was 

determined using the mean kappa and Jaccard values for the group after varying “n” from 3 

to 19.

Goodness-of-Fit Metrics

Segmentations were evaluated against the manual gold standards using two different 

goodness-of-fit metrics.

• The Dice Kappa (κ) metric was used to measure the quality of the overlap with the 

manually derived gold-standard:

Where a is common to the automatic segmentation and the gold-standard, and b + c 
is the sum of the voxels uniquely identified by the segmentation and the gold 

standard. The κ metric can take on values between 0 and 1.0, where 1.0 indicates 

perfect agreement [see Chakravarty et al., 2008] for a demonstration of the 

sensitivity of the κ metric.

Chakravarty et al. Page 10

Hum Brain Mapp. Author manuscript; available in PMC 2016 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



• The Jaccard similarity (J) was also used as another overlap measure:

Where a, b, and c are defined the same as above. l are always lower (and perhaps 

more sensitive) than κ values and range from 0 to 1.0 (where 1.0) represents perfect 

overlap.

Both of the methods described above have been previously used to evaluate the quality of 

automated segmentation procedures [Chakravarty, 2009b; Collins and Pruessner, 2010; 
Klein et al., 2009].

RESULTS

Intra-rater Reliability

Before using the manually derived segmentations to evaluate the quality of the automated 

segmentation procedures, we verified the intra-rater reliability to determine if the rater was 

able to recreate the initial segmentations with a high level of accuracy. The results for both 

metrics for both the mouse and the human datasets are given in Table IX. For the mouse 

segmentations the manual rater showed high labeling consistency for both the hippocampus 

(mean Kappa (κ) and Jaccard [J] = 0.883) and the anterior commissure (mean κ = 0.904, J = 

0.826) and all values were within a very small range.

The intra-rater reliability results for the human subcortical structures were consistent as well. 

The rater's most consistent performance was in the labeling of the striatum (mean κ = 0.910, 

J = 0.834). The rater also achieved good consistency in the labeling of the thalamus (mean κ 

= 0.861, J = 0.758). The labeling of the globus pallidus was more variable than the other 

structures (range κ = 0.658–0.839, J = 0.500–0.723). Nonetheless, the mean overlap values 

for the pallidal segmentations were acceptable (mean κ = 0.793, J = 0.662).

Mouse Brain Experiment Results

Hippocampal and anterior commissure model-based segmentations using both the ANIMAL 

and ANTs algorithms demonstrate good overlap with manually derived gold-standards see 

(Table X). Qualitatively, both ANIMAL and ANTs-based segmentations demonstrate 

labeling that is consistent with manual segmentations (see Fig. 3). In addition, some 

mislabeling caused by either resampling or registration error is accounted for when using the 

MAGeT Brain technique. However, the ANTs-based segmentations appear to be prone to 

systematic segmentation errors that cannot be accounted for. In the case of the hippocampus, 

very little improvement in overlap is gained through the use of the MAGeT Brain technique 

(see Table X) for either the ANIMAL (model-based mean κ = 0.863, J = 0.768; MAGeT 

Brain mean κ = 0.869, J = 0.768) or the ANTs (model-based mean κ = 0.847, J = 0.735; 

MAGeT Brain mean κ = 0.850, J = 0.740) nonlinear registration algorithms. However, 

MAGeT Brain does provide significant improvement (P < 0.001) over the group-wise 

segmentation method tested for both the ANIMAL and ANTs algorithms. ANIMAL 

MAGeT Brain segmentations furthermore show increased segmentation accuracy over 
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model-based segmentations of the anterior commissure (P < 0.001; model-based mean κ = 

0.752, J = 0.603; MAGeT Brain mean κ = 0.801, J = 0.661). Like in the segmentation of the 

hippocampus, the ANTs MAGeT Brain does not greatly improve the overall accuracy of the 

segmentations (model-based mean κ = 0.751, J = 0.601; MAGeT Brain mean κ = 0.759, J = 

0.611); although a tighter confidence interval is observed for the MAGeT Brain case in 

comparison to the model-based segmentation (model-based κ confidence interval: 0.732–

0.772; MAGeT Brain κ confidence interval: 0.742–0.775) suggesting an improvement in the 

precision of the MAGeT Brain procedure. Similar to the hippocampal results, both and 

ANIMAL and ANTs based MAGeT Brain results perform significantly better (P < 0.001) 

than the homologous Group-wise segmentation procedures). All ANIMAL-based techniques 

provide greater segmentation accuracy for the mouse brain experiments.

Segmentation Results for Subcortical Labeling in the Human

The use of MAGeT Brain with both the ANIMAL and ANTs registration algorithms 

improves segmentations when using the atlas derived from serial histological data as the 

input template (Table X and Fig. 4). Segmentations of the striatum and thalamus show 

greater increases in accuracy through the use of the MAGeT Brain technique. ANTs-based 

MAGeT Brain shows the greatest improvement in striatal segmentation accuracy (P < 0.001) 

over the model-based segmentation technique (model-based mean κ = 0.816, J = 0.690; 

MAGeT Brain mean κ = 0.845, J = 0.740); however ANIMAL-based MAGeT Brain results 

provide comparable levels of improvement (P < 0.01) in segmentation accuracy (model-

based mean κ = 0.818, J = 0.692; MAGeT Brain mean κ = 0.833, J = 0.710). ANTs-based 

MAGeT also improves the confidence interval of the mean (e.g., model-based κ confidence 

interval: 0.809–0.823; MAGeT Brain κ confidence interval: 0.833–0.843). Both ANIMAL- 

and ANTs-based MAGeT Brain provide significant improvement over their group-wise 

counter-parts (P < 0.001 in both cases).

ANIMAL-based MAGeT shows the greatest improvement in thalamic segmentation 

accuracy (model-based mean κ = 0.850, J = 0.735; MAGeT Brain mean κ = 0.861, J = 

0.751; see Table X). Although this method is not significantly better than the ANIMAL 

model-based segmentation, it did demonstrate improvement at a trend level (P = 0.11). 

ANTs-based segmentations also provide reasonable increases in accuracy (model-based 

mean κ = 0.848, J = 0.738; MAGeT Brain mean κ = 0.856, J = 0.740). Trend levels of 

significant improvement were also observed in comparison to the ANTs template-based 

segmentation. Only ANIMAL-based MAGeT Brain shows a significant improvement over 

its group-wise counterpart (P < 0.05).

Mean pallidal overlap values both for ANIMAL (model-based mean κ = 0.735, J = 0.581; 

MAGeT Brain mean κ = 0.743, J = 0.581; and ANTs-based (model-based mean κ = 0.740, J 
= 0.591; MAGeT Brain mean κ = 0.752, J = 0.610) MAGeT Brain techniques demonstrate 

improvement However, MAGeT Brain does little to improve the confidence intervals of 

overlap values irrespective of the algorithm used.

Chakravarty et al. Page 12

Hum Brain Mapp. Author manuscript; available in PMC 2016 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Segmentation Results for Subcortical Labeling Using More Than One Input Template

Using MAGeT Brain with three templates improved segmentation for all structures in 

comparison to multi-atlas label fusion with three templates (see Table XI and Fig. 5). For the 

ANIMAL-based results of the striatum, MAGeT Brain improves (P < 0.05) the overlap with 

the gold standard (3 template multi-atlas mean κ = 0.885, J = 0.784; 3 template MAGeT 

Brain mean κ = 0.891, J = 0.810). These results also hold for the ANTs-based segmentations 

(P < 0.05; 3 template multi-atlas mean κ = 0.888, J = 0.795; 3 template MAGeT Brain mean 

κ = 0.894, J = 0.806).

Similar to the single template case (from the previous section), using three manually 

generated input templates in the MAGeT Brain technique also improves the thalamic 

segmentation for both the ANIMAL (3 template multi-atlas mean κ = 0.883, J = 0.794; 3 

template MAGeT Brain mean κ = 0.895, J = 0.806) and ANTs-based (3 template multi-atlas 

mean κ = 0.887, J = 0.794; 3 template MAGeT Brain mean κ = 0.895, J = 0.807) techniques. 

Also as in the single template case, these results showed improvement at trend levels (P = 

0.12 and P = 0.09 for the ANIMAL and ANTs algorithms, respectively). ANIMAL-based 

MAGeT Brain with three input templates may be approaching or even exceeding the 

segmentation accuracy of true multi-atlas segmentation (multi-atlas mean κ = 0.891, J = 

0.804). However, the best segmentation results are achieved using ANTs multi-atlas 

segmentation (multi-atlas mean κ = 0.902, J = 0.821).

Mean overlap values for the segmentation of the globus pallidus improve via the use of the 

MAGeT Brain with three templates in comparison to the three-template multi-atlas for both 

the ANIMAL (P < 0.05; 3 template multi-atlas mean κ = 0.790, J = 0.645; 3 template 

MAGeT Brain mean κ = 0.815, J = 0.687) and ANTs-based (3 template multi-atlas mean κ 

= 0.797, J = 0.662; 3 template MAGeT Brain mean κ = 0.805, J = 0.676) techniques. The 

ANIMAL-based MAGeT Brain results demonstrate equivalent accuracy to the regular multi-

atlas segmentations (multi-atlas mean κ = 0.811, J = 0.684); however the ANTs-based multi-

atlas segmentation show the greatest mean overlap with the manually derived gold standards 

(multi-atlas mean κ = 0.819, J = 0.696).

Results From Cross-Correlation Based Weighting and Label Fusion

The result from the weighted voting technique demonstrate that at least 15 templates must be 

selected for registration to achieve optimal results when using ANIMAL-based MAGeT 

with a single input template for the globus pallidus, striatum, and thalamus. Small decreases 

in accuracy are observed when more than 15 templates are selected (see Fig. 6). Similarly, 

optimal accuracy is shown when 15 templates are selected using the ANTs algorithm for the 

both the striatum and thalamus. However, for the globus pallidus shows very little 

improvement regardless of the number of templates/labels that are included in the label 

fusion step.

DISCUSSION

In this manuscript we have presented a methodology that addresses the need for a multi-atlas 

based segmentation approach that can be used with a single input template; particularly in 
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cases when the input template is an atlas which may be difficult and time-consuming to 

create [Chakravarty et al., 2006; Dorr et al., 2008]. The MAGeT Brain technique begins by 

creating a template library from a subset or all of the input data through model-based 

segmentation techniques. The multi-atlas procedure is then used to minimize the effects of 

spurious nonlinear registration and resampling errors. In this case all of the data to be 

segmented is matched to each template in the library using a nonlinear transformation. This 

then yields as many different segmentations as there are unique templates. The final 

segmentation is achieved through a voxel voting procedure where the most frequently 

occurring label at each voxel is retained. Two different nonlinear registration algorithms, 

ANIMAL [Collins et al., 1995] and ANTs [Avants et al., 2008], were tested against 

manually derived gold standards using two different overlap metrics. The technique was 

tested using a variety of data types. First, the quality of the MAGeT Brain technique was 

evaluated on high-resolution mouse brain MRI data (for segmentations of the hippocampus 

and the anterior commissure). In the second experiment, MAGeT Brain was tested against 

model-based segmentation of the striatum, globus pallidus, and the thalamus in a dataset of 

20 human adolescent MRI volumes. Finally, the possibility of using three input templates 

was tested against regular multi-atlas label fusion based segmentation and multi-atlas 

segmentation using a template library of three templates.

In most cases the results demonstrated improvement in the segmentation by using the 

MAGeT Brain technique. One of the exceptions to this was the result for the segmentation of 

the mouse hippocampus. Because very little improvement was gained through the MAGeT 

Brain procedure, we suspect that segmentations were running into a ceiling effect for this 

particular structure. The mouse hippocampus is morphologically noncomplex, takes up a 

large proportion of the entire mouse brain, and is well defined by high contrast borders 

which identify changes in tissue type (particularly through the use of the techniques 

previously described by our group [Lerch et al., 2011a; Nieman et al., 2007]). In addition, 

the ANTs algorithm, in our implemented, may not be well suited for the nonlinear 

registration of the mouse brain (see below in the Discussion section). This is further 

supported by the mild improvement derived from the ANTs-based MAGeT Brain 

segmentation of the anterior commissure—especially given the remarkable improvement in 

segmentation quality in the ANIMAL-based MAGeT Brain segmentations. Although it is 

difficult to compare segmentation results across studies, gold-standards and algorithms, the 

technique of Ali and colleagues [Ali et al., 2005] demonstrate a voxel overlap percentage of 

about 85 and 57% for the mouse hippocampus and anterior commissure, respectively (based 

on Fig. 7 in [Ali et al., 2005]). Extending their technique through the use of a support vector 

machine to represent probabilistic information improves the accuracy of their segmentations 

for the hippocampus, but not the anterior commissure (86.2 and 50.76%, respectively, from 

Table II in [Bae et al., 2009]). Because the Jaccard metric is comparable to the percentage 

voxel overlap metric that they used for the evaluation of segmentation quality, we surmise 

that MAGeT Brain may be providing improved segmentation quality.

All other results show that MAGeT Brain improves the quality of the overlap of model-

based segmentations and multi-atlas segmentations using three templates. This is 

particularly evident when considering previous work [Chakravarty et al., 2008, 2009a,b] 

presented using the sub-cortical atlas [Chakravarty et al., 2006] used here. Previous 
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comparisons of different model-based segmentation procedures demonstrated maximum 

Kappa values of 0.573, 0.754, and 0.818 for striatum, globus pallidus, and thalamus, 

respectively. One should make note that these previous experiments were performed using 

MRI used for presurgical planning that had lower signal- and contrast-to-noise ratios than 

the data presented here. Our results when using three input templates for MAGeT Brain are 

also comparable to those demonstrated in the recent release of the FIRST algorithm 

[Patenaude et al., 2011] which reports Kappas of ~0.898, 0.871, 0.821, and 0.894 for the 

caudate, putamen, globus pallidus, and thalamus respectively (see Table 3 of their paper; 

dependent on number of modes of variation used). Similarly, our results match or exceed the 

overlap values presented in other subcortical segmentation techniques [Babalola et al., 2008; 
Fischl et al., 2002].

In some instances we have reported results that exceed the intra-rater reliability. Specifically, 

this was observed in the accuracy of the thalamic segmentations when using MAGeT Brain 

with a single template (see Table XI). Using MAGeT Brain with three input templates also 

exceeds the intra-rater reliability for both the globus pallidus and the thalamus despite the 

nonlinear registration algorithm used (see Table XI). These results underscore the necessity 

of having a reliable segmentation technique that is robust and consistent. It also underscores 

the limitation inherent to the evaluation of all segmentation algorithms. Specifically, how 

does one best evaluate the correspondence in neuroanatomy as estimated through a nonlinear 

transformation? The lack of an actual gold standard is one of the primary limitations in these 

studies.

Unlike some of the other segmentation procedures primary advantages of using MAGeT 

Brain would be the flexibility of implementation. Many other label-fusion techniques require 

more than just the sharing of scripts and computer code, but also the sharing of a template 

library. This can be cumbersome, especially as some groups report the usage of 30 

[Heckemann et al., 2010], 80 [Collins and Pruessner, 2010], or even 160 [Eskildsen et al., 

2011] subjects within a single template library. One of the main advantages of our work is 

that it can be easily shared given it requires only a single input template. Although two 

different nonlinear registration algorithms were presented in this article, our technique could 

be implemented using any well-validated nonlinear registration algorithm [Klein et al., 

2009] or input template [Yelnik et al., 2007]. One possible implementation would be using 

an input atlas of the hippocampal subfields derived from high-field, high-resolution MRI 

imaging of postmortem specimens [Van Leemput et al., 2008; Yushkevich et al., 2008, 

2009]. However, our results from the mouse brain experiment demonstrate the importance of 

the choice of the nonlinear registration algorithm used. While this is fairly intuitive, it 

demonstrates how multi-atlas techniques are incapable of overcoming consistent errors in 

the registration algorithm. Our choice of nonlinear registration algorithms, in the case of 

ANIMAL, was based on our familiarity and depth of knowledge of the technique. In 

addition, ANIMAL has previously been extensively validated in experiments for 

segmentation of the mouse brain and subcortical structures [Chakravarty et al., 2009a,b; Lau 

et al., 2008]. ANTs was used based on the quality of the nonlinear registration previously 

reported [Avants et al., 2011; Klein et al., 2009]. To the best of our knowledge, ANTs has 

yet to be used extensively in the mouse imaging literature, but we felt that it would be 

appropriate to attempt to use it in the segmentation experiments reported here. ANTs’ 
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performance on the mouse brain experiments may be caused by the interplay between the 

morphometry of the mouse brain and the considerable elastic constraints placed on the 

nonlinear transformation estimation process [Avants et al., 2008, 2011]. These constraints 

may be ideal to account for the considerable variable morphometry in the human, but may 

be overconstraining the nonlinear transformation estimation process in the mouse. 

Nonetheless, ANTs does perform favorably in the segmentation of subcortical structures. It 

should be noted here, however, that the goal of the paper was not to explicitly evaluate the 

accuracy of nonlinear registration algorithms, but rather to demonstrate the improvement in 

segmentation gained by implementing MAGeT Brain.

Because our technique effectively increases accuracy through distributing the randomly 

distributed error (due to anatomical differences, registration error, and resampling error) 

across a template library, we also compared MAGeT Brain to the group-wise averaging 

paradigms that our groups have used in studies of both humans [Borghammer et al., 2010] 

and mice [Lau et al., 2008; Lerch et al., 2008]. We were surprised to find that this 

methodology did not even improve segmentation accuracy over the template-based 

procedures that we tested in this manuscript. This lack of accuracy can probably be 

attributed to the step in which the initial input atlas is matched to the population average. 

There may be errors present in this stage that cannot easily be accounted for, and thus these 

errors get propagated when following the transformation chain back to each individual 

subject.

Our technique also presents an interesting design choice. While many multi-atlas 

segmentation techniques rely on the use of an extensive manually defined template library 

and weighted label-fusion techniques [Aljabar et al., 2007, 2009; Collins and Pruessner, 

2010] our results demonstrates that some of these issues can be dealt with by using our 

multiple registration strategy. This, in effect provides, a trade-off between finding and 

investing time and resources in a trained manual-rater who can create an extensive template 

library versus increasing the computational complexity of the segmentation procedure. 

However, given the availability of modern high-performance computing technology most 

segmentations can be estimated in parallel, thereby reducing the quantity of time required to 

perform the final labeling. However, our experiment using the weighted voxel-voting 

demonstrates that marginal gains in accuracy can be achieved by constraining the label-

fusion step to only those templates in the library that are most like the subject to be 

segmented. This is useful computationally as it can effectively reduce the number of 

nonlinear registrations required between the subject and template library. In the 

hippocamapal segmentation presented in [Collins and Pruessner, 2010], they demonstrate 

that there are diminishing returns in accuracy after 11 templates are chosen from their 

manually labeled template library. Although it is difficult to compare segmentation 

techniques across methods and different neuroanatomical structures there is an interesting 

comparison to be made here. One of the goals of the work presented here is to minimize and 

potentially obviate the need for an exhaustive manually labeled template library. As such we 

demonstrate that through the creation of an automatically generated template library that we 

can reach a ceiling using almost the same number subject-to-template library segmentations. 

It bears mentioning that results could possibly be improved further in the template library 

creation stage, where a similar selection strategy could be used. This is a future line of 
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investigation of our group. It is also reasonable to assume that our results could further 

benefit from a more sophisticated voxel-voting strategy [Aljabar et al., 2007, 2009; Coupe et 

al., 2011a,b; Eskildsen et al., 2011].

A question that was raised was whether the improvement that we are observing by using the 

MAGeT Brain technique may simply be a product of smoothing. We tested this hypothesis 

using both the mice and human data as input. For the mice data we blurred each of the 

hippocampal and anterior commissure labels using 60, 90, and 120 lm kernels. The human 

data were blurred with 2, 4, and 6 mm kernels. A threshold was then applied to each of the 

blurred structures (from 0.1 to 0.9 in steps of 0.1). Overlap with the gold standards was then 

evaluated using the Dice Kappa. Graphs for the overlaps over all structures and both 

nonlinear registration algorithms are given below in Supporting Information Figs. S1 and S2 

(for mouse and human data, respectively). The results demonstrate that the improvement in 

accuracy is not simply a function of smoothing. In both experiments similar trends are 

observed: namely that there is some combination of blurring and thresholding that yields a 

high overlap. However, this combination is not the same for all combination of structures 

and blurring kernels. Further, the accuracy is heavily dependent on the blurring threshold 

and therefore it would be extremely difficult to ensure accurate segmentation if this were to 

be used with in any technique.

We chose to validate our results using two measures of overlap with manually derived gold 

standards. Using these metrics, our raters showed consistency in labeling of all structures 

tested. Although there are other metrics which can be used to evaluate quality (Chakravarty 

et al., 2009a,b; Hellier et al., 2003; Klein et al., 2009; Robbins et al., 2004) we chose to 

focus on the general applicability of the MAGeT Brain method. One segmentation that may 

have benefited from a more probabilistic evaluation was the segmentation the globus 

pallidus. It is unclear whether the larger uncertainty in the results was due to the variability 

of the manual rater or as a result of the segmentation techniques. Work by Warfield et al. 

[2004] has addressed this issue by developing an expectation maximization algorithm that 

estimates an optimal segmentation from the different methods being evaluated. Using this 

technique (referred to as STAPLE), each method can then be weighted depending upon its 

estimated performance level with respect to the other methods being tested. The specificity 

and sensitivity parameters used in STAPLE could add valuable information to the evaluation 

of the data presented in this article. Furthermore, the probabilistic ground truth of the 

manual rater data generated by STAPLE could also be used for evaluation instead of the 

gold-standard generated through consensus used in the work presented here.

In conclusion, we have presented a multi-atlas technique that can be implemented for the 

segmentation of structures where morphological homology exists. This can be used to 

improve segmentation when using hard to define atlases or when segmenting populations 

with unique anatomical properties. Further, the work demonstrated here may allow for 

improved segmentation accuracy instead of creating extensive manually defined template 

libraries [Collins and Pruessner, 2010; Shattuck et al., 2008]. The trade-off in using this 

technique is the increased computational burden of the technique that should be mitigated by 

modern super computing infrastructure.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Illustration of the MAGeT Brain Method. Step 1: A template library can be created 

automatically using the data that one has on one hand. This requires the estimation of a 

nonlinear transformation matching an input template to each subject in the dataset (A) and 

then applying that transformation to the label set so that each subject is now labeled (B). 

Step 2: Multi-atlas segmentation is then performed by estimating all pairwise inter- subject 

nonlinear transformations (i.e., using the newly labeled subjects as a template library; (2A). 

This creates a set of different labels for each subject for each of the anatomical structures. 

Step 3. A label voting technique is applied at each voxel where the most frequently 

occurring label is retained for the final segmentation output.
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Figure 2. 
Input atlases used. (A) MRI mouse brain atlas derived from the nonlinear average of 40 

different mouse brain MRIs and contains 62 structures [Dorr et al., 2008]. (B) Atlas of the 

human basal ganglia and thalamus derived from the reconstruction of 82 serial histological 

sections which has been warped to a template brain. The final atlas contains 108 subcortical 

structures [Chakravarty et al., 2006].
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Figure 3. 
Results from segmentations for the (A) hippocampus and (B) anterior commissure of the 

mouse brain. Black arrows indicate areas where the MAGET Brain method is able to 

provide an improvement in segmentation accuracy. Note how the tail of the hippocampus 

has improved definition in the MAGeT Brain results.
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Figure 4. 
Subcortical segmentation results for regular model-based segmentation, group-wise 

segmentation and MAGeT Brain (using ANIMAL and ANTs). Black arrows demonstrate 

improvement of segmentation accuracy using MAGeT Brain at the posterior end of the 

globus pallidus and in the medial edge of the thalamus and improvement in identification of 

the medial edge of globus pallidus and the lateral edge of the thalamus.
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Figure 5. 
Using multiple templates for segmentation. Results for multi-atlas and MAGeT Brain 

segmentations using three input templates. Black arrows pointing to region of visible 

improvement. In the ANIMAL case, the MAGeT Brain technique corrects the inaccurate 

segmentation on the medial wall of the globus pallidus. In the ANTs case, label ambiguity at 

the striatal-pallidal edge is corrected. For both ANIMAL and ANTs, the full multi-atlas-

based segmentation yields results most similar to the gold-standard segmentation.
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Figure 6. 
Cross-correlation-based label fusion with the subcortical ROI. Kappa and Jaccard statistics 

are given for voting based on the rank order of correlations between the subcortical ROI in 

the subject to be segmented and each of the templates in the template library. A majority of 

voxels are kept for the top “n” hits, where “n” was varied from 3 to 19. Results are shown 

for both ANIMAL- and ANTs-based MAGeT Brain for the globus pallidus, striatum, and 

thalamus. Except for the case of the pallidum segmentations using ANTs-based MAGeT 

Brain, an optimal segmentation is reached when using the top 15 templates based on the 

cross-correlation metric.
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TABLE I

Parameters used for the ANIMAL algorithm for mouse brain nonlinear transformation estimation

Step size (mm) Iterations Gaussian blur (mm) Feature type

1 60 0.25 Intensity

0.5 60 0.25 Intensity

0.5 60 0.25 Gradient

0.2 10 0.25 Intensity

0.2 10 0.25 Gradient

0.1 4 None Intensity

All values for lattice diameter were set to 1.5 × Step_size. Regularization parameters of stiffness, weight, and similarity were set to 0.98, 0.8, and 
0.8, respectively.
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TABLE II

Parameters used for the ANTs algorithm for mouse brain registration

Parameters Values

Step size (intensity and gradient features) 4

Gaussian normalization (objective function) 3

Gaussian normalization (deformation field) 3

Symmetric normalization 0.5

Iterations 100 × 100 × 100 × 40
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TABLE III

Parameters used for the ANIMAL algorithm for mouse brain group-wise nonlinear transformation estimation

Generation Step size (mm) Iterations Gaussian blur (mm)

1 0.7 20 0.3

2 0.6 8 0.2

3 0.5 8 0.2

4 0.24 8 0.2

5 0.12 8 0.1

6 0.06 8 0.06

All values for lattice diameter were set to 1.5 × Step_size. Regularization parameters of stiffness, weight, and similarity were set to 0.98, 0.8, and 
0.8, respectively. In all cases both intensity and gradient features extracted from the blur were used.
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TABLE IV

Parameters used for the ANTs algorithm for mouse brain group-wise nonlinear transformation estimation

Generation Iterations Gaussian normalization (gradient fields) Gaussian normalization (deformation field)

1 100 × 100 × 100 × 0 5 1

2 100 × 100 × 100 × 20 5 1

3 100 × 100 × 100 × 50 5 1

In all cases both the cross correlation object function was used in conjunction with a symmetric normalization transformation model SyN=0.4, 
weight = 1, radius = 3.
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TABLE V

Parameters used for the ANIMAL algorithm for human nonlinear transformations estimated for subcortical 

segmentation

Step size (mm) Iterations Gaussian blur (mm) Feature type

4 20 None Intensity

2 20 None Intensity

1 15 None Intensity

All values for lattice diameter were set to 3 × Step_size. Regularization parameters of stiffness, weight, and similarity were set to 1, 1, and 0.3, 
respectively as per the optimization of (Robbins et al., 2004).
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TABLE VI

Parameters used for the ANTs algorithm for registration of human subcortical structures

Parameters Values

Step size (Intensity and gradient features) 5

Gaussian normalization (objective function) 5

Gaussian normalization (deformation field) 0

Symmetric normalization 0.5

Iterations 20 × 20 × 20
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TABLE VII

Parameters used for the ANIMAL algorithm for human subcortical group-wise nonlinear transformation 

estimation

Generation Step size (mm) Iterations Gaussian blur (mm)

1 8 50 16

2 8 20 8

3 4 20 8

4 4 20 4

5 2 20 4

6 2 20 2

All values for lattice diameter were set to 1.5 × Step_size. Regularization parameters of stiffness, weight, and similarity were set to 1, 1, and 0.3, 
respectively (as per {Robbins et al., 2004, Med Image Anal, 8, 311-23}). In all cases intensity features extracted from the blur were used.
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TABLE VIII

Parameters used for the ANTs algorithm for mouse brain group-wise nonlinear transformation estimation

Generation Iterations Gaussian normalization (gradient fields) Gaussian normalization (deformation field)

1 60 × 5 × 0 3 0

2 60 × 30 × 0 3 0

3 60 × 30 × 10 3 0

In all cases both the cross correlation object function was used in conjunction with a symmetric normalization transformation model SyN = 0.5, 
weight = 1, radius = 4.
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TABLE IX

Intra-rater reliability given as the mean (range)

Structure Kappa Jaccard

Mouse

    Hippocampus 0.938 (0.924–0.956) 0.883 (0.858–0.915)

    Anterior Commissure 0.904 (0.883–0.928) 0.826 (0.790–0.865)

Human

    Striatum 0.910 (0.892–0.92) 0.834 (0.805–0.852)

    Globus Pallidus 0.793 (0.658–0.839) 0.662 (0.500–0.723)

    Thalamus 0.861 (0.829–0.910) 0.758 (0.707–0.834)
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TABLE X

Results for model-based, group-wise and MAGeT Brain segmentations using atlases given as mean 

(confidence interval)

Model-based Group-wise MAGeT Brain

Structure ANIMAL ANTs ANIMAL ANTs ANIMAL ANTs

Kappa

Mouse

    Hippocampus 0.863 (0.850–0.881) 0.847 (0.829–0.864) 0.816 (0.797–0.836) 0.833 (0.813–0.849)
0.869

##
 (0.853–0.884) 0.850

###
 (0.832–0.867)

    Anterior commissure 0.752 (0.732–0.772) 0.751 (0.734–0.766) 0.692 (0.672–0.710) 0.728 (0.708–0.750)
0.801

***,###
 (0.790–0.811) 0.759

###
 (0.742–0.775)

Human

    Striatum 0.818 (0.808–0.827) 0.816 (0.809–0.823) 0.796 (0.787–0.804) 0.807 (0.799–0.815)
0.833

**,###
 (0.825–0.837) 0.845

***,###
 (0.833–0.843)

    Globus pallidus 0.735 (0.712–0.752) 0.740 (0.722–0.759) 0.722 (0.697–0.746) 0.728 (0.702–0.753) 0.743 (0.723–0.762)
0.752

#
 (0.733–0.771)

    Thalamus 0.850 (0.838–0.856) 0.848 (0.840–0.856) 0.843 (0.833–0.854) 0.849 (0.837–0.860)
0.861

#
 (0.881–0.900)

0.856 (0.850–0.864)

Jaccard

Mouse

    Hippocampus 0.768 (0.740–0.789) 0.735 (0.708–0.762) 0.691 (0.671–0.710) 0.712 (0.686–0.738)
0.768

##
 (0.745–0.792) 0.740

###
 (0.713–0.767)

    Anterior commissure 0.603 (0.578–0.629) 0.601 (0.581–0.623) 0.529 (0.507–0.550) 0.574 (0.546–0.599)
0.661

***,###
 (0.653–0.683) 0.611

###
 (0.591–0.632)

Human

    Striatum 0.692 (0.683–0.702) 0.690 (0.680–0.700) 0.661 (0.649–0.673) 0.740 (0.732–0.748)
0.710

**,###
 (0.702–0.719) 0.740

***,###
 (0.732–0.748)

    Globus pallidus 0.581 (0.557–0.606) 0.591 (0.569–0.614) 0.568 (0.538–0.597) 0.610 (0.582–0.631) 0.585 (0.570–0.620)
0.610

#
 (0.582–0.631)

    Thalamus 0.735 (0.723–0.749) 0.738 (0.725–0.748) 0.730 (0.714–0.745) 0.731 (0.718–0.740)
0.751

#
 (0.740–0.766)

0.741 (0.738–0.760)

* represent significance levels of P < 0.05, P < 0.01, and P < 0.001 for MAGeT Brain as compared to its Model-based counterpart.

Only segmentations using the same nonlinear registration algorithms were compared to one another (e.g., only the model-based segmentation using 
ANIMAL) was compared to the MAGeT Brain segmentation using ANIMAL.

**
represent significance levels of P < 0.05, P < 0.01, and P < 0.001 for MAGeT Brain as compared to its Model-based counterpart.

***
represent significance levels of P < 0.05, P < 0.01, and P < 0.001 for MAGeT Brain as compared to its Model-based counterpart.

#
represent significance levels of P < 0.05, P < 0.01, and P < 0.001 for MAGeT Brain as compared to its group-wise counterpart.

##
represent significance levels of P < 0.05, P < 0.01, and P < 0.001 for MAGeT Brain as compared to its group-wise counterpart.

###
represent significance levels of P < 0.05, P < 0.01, and P < 0.001 for MAGeT Brain as compared to its group-wise counterpart.
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TABLE XI

Results for model-based and MAGeT Brain segmentations using manually generated template library using 

atlases given as mean (confidence interval)

3 Template Multi-Atlas 3 Template MAGeT Multi-Atlas

Structure ANIMAL ANTs ANIMAL ANTs ANIMAL ANTs

Kappa

    Striatum 0.885 (0.880–0.889) 0.888 (0.882–0.891)
0.891

*
 (0.887–0.896) 0.894

*
 (0.890–0.898)

0.892 (0.887–0.895)
0.900

#
 (0.896–0.904)

    Globus pallidus 0.790 (0.772–0.808) 0.797 (0.781–0.812)
0.815

*
 (0.800–0.827)

0.805 (0.789–0.820) 0.811 (0.797–0.824) 0.819 (0.804–0.834)

    Thalamus 0.883 (0.874–0.891) 0.887 (0.878–0.895) 0.895 (0.883–0.901) 0.895 (0.884–0.902) 0.891 (0.882–0.900) 0.902 (0.893–0.911)

Jaccard

    Striatum 0.784 (0.774–0.793) 0.795 (0.790–0.803)
0.810

*
 (0.797–0.812) 0.806

*
 (0.799–0.813)

0.803 (0.797–0.811)
0.820

#
 (0.814–0.826)

    Globus pallidus 0.645 (0.622–0.670) 0.662 (0.643–0.685)
0.687

*
 (0.667–0.707)

0.676 (0.654–0.697) 0.684 (0.664–0.703) 0.696 (0.675–0.717)

    Thalamus 0.794 (0.781–0.811) 0.794 (0.784–0.811) 0.806 (0.792–0.822) 0.807 (0.792–0.821) 0.804 (0.790–0.819) 0.821 (0.809–0.837)

Results are given for multi-atlas and MAGeT Brain segmentation with 3 templates (3 Template Multi-Atlas and 3 Template MAGeT, respectively) 
and full multi-atlas segmentation.

Only segmentations using the same nonlinear registration algorithms were compared to one another (e.g., only the model-based segmentation using 
ANIMAL was compared to the MAGeT Brain segmentation using ANIMAL).

*
Represents significance levels of P < 0.05 for 3 Template MAGeT Brain as compared to its 3 Template Multi-Atlas counterpart.

#
Represents significance levels of P < 0.05 for Multi-Atlas segmentation compared to 3 Template Multi-Atlas counterpart.
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