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Abstract

As the most common cancer in women, one in eight will develop invasive breast cancer over their 

lifetime making it the second most common cause of cancer-related death among women. Of the 

many known risk factors for developing breast cancer, obesity stands out as prominent and 

modifiable. Interestingly, elevated cholesterol is highly associated with obesity, and has emerged 

as an independent risk factor for breast cancer onset and recurrence. This indicates that cholesterol 

also contributes to the breast cancer-pathogenicity of obesity. This review highlights our current 

understanding of the mechanisms by which cholesterol impacts breast cancer. Key preclinical 

studies have been highlighted, including discussion of homeostatic control of cholesterol levels, 

signaling by cholesterol metabolites through the estrogen receptors, cholesterol formation of lipid 

rafts and subsequent signaling, and the potential roles of cholesterol in creating a pro-

inflammatory tumor microenvironment. Future directions and avenues for therapeutic exploitation 

are also considered.
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 Introduction

Breast cancer is the most prevalent form of cancer in women, and remains the second most 

common cause of cancer related mortality, with an estimated 40,000 deaths every year [99]. 

Therefore, there is a pressing need for new therapeutic or lifestyle strategies to complement 

currently available approaches. Using histological markers, breast cancer is subdivided 

based on the presence of the estrogen receptor (ER), progesterone receptor (PR), human 

epidermal growth factor receptor 2 (HER2), or those that lack the expression of any of these 
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receptors, termed triple negative. Hormone receptor positive classes respond to mitogenic 

signaling from hormone stimulation. Therefore, there has been large success in the targeting 

of their respective endocrine axes either at the level of hormone synthesis, as in the case of 

aromatase inhibitors, or receptor inhibition using small molecule antagonists such as 

tamoxifen against the ER, or lapatinib and monoclonal antibody therapy such as trastuzumab 

against HER2 signaling. Of the different histological subtypes of breast cancers, the 

treatment of triple negative breast cancer is the most challenging, as there are currently no 

targeted therapies available. Regardless of the type of cancer, the overwhelming majority of 

deaths due to breast cancer (greater than 90%) are attributed to metastatic relapse. Although 

targeted therapies in receptor positive disease are initially very successful, many patients 

relapse with endocrine-therapy resistant disease. Currently there are no targeted therapy 

options for this stage of breast cancer, forcing patients and clinicians to rely on cytotoxic 

chemotherapy and/or radiation. Thus, there remains an urgent clinical need for a greater 

understanding of the underlying mechanisms that govern tumor progression, coupled with 

novel therapies targeting these processes.

The risks of developing breast cancer include genetics [47, 18], age of menarche, age of 

menopause, parity, age of first child, previous occurrence of cancer, and lifestyle [87, 26, 69, 

100, 65, 25, 34]. Since the identification of mutations within BRCA1 and BRCA2 genes as 

potent predictors of breast cancer development, other genes have been identified as being 

linked to breast cancer, such as ATM, CHEK2, and PALB2 [70]. While the identification of 

the genes associated with heritable breast cancer was critical to the understanding of breast 

cancer and invaluable for providing women with the choice of preventative resection-

surgery, these genetic mutations only account for a relatively small percentage (5–10%) of 

breast cancers [97]. On the other hand, lifestyle is proving to be an increasingly important 

component in the etiology of breast cancer. For example, obesity, the metabolic syndrome, 

diabetes type II and hypercholesterolemia have all been established as risk factors, while 

regular exercise appears to be protective [49, 94, 45, 56, 12, 19, 53, 71]. Additionally, these 

disorders have also been shown to be prognostic indicators for breast cancer [84, 10, 35, 63], 

thus further emphasizing the importance of investigating the mechanisms underlying the 

contribution of obesity and hypercholesterolemia to breast cancer development and 

progression. Below, we discuss evidence implicating elevated cholesterol as a mediator of 

the effects of obesity on breast cancer risk and prognosis, and highlight currently proposed 

mechanisms by which cholesterol influences breast cancer pathophysiology.

 Obesity and Breast Cancer

The percentage of the obese population has doubled since 1980. In the US, >68% of adults 

were either overweight or obese in 2012, and the prevalence of obesity in women over the 

age of 60 has also increased since 2004 [82]. Importantly, several epidemiological studies 

have implicated obesity as a risk factor for the onset of breast cancer [12]. A recent analysis 

of the Women’s Health Initiative clinical trial sampling 67,142 postmenopausal women 

between the ages of 50 and 79 concluded that women who were overweight or obese (body 

mass index of ≥25 or ≥30 kg/m2 respectively) were at greater risk for developing invasive 

breast cancer compared to women who were not overweight [77, 30, 5]. In addition to onset, 

obesity, as defined by body mass index of greater than >30 kg/m2, has also been associated 
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with a decreased recurrence-free survival among breast cancer patients [52]. Interestingly, 

the risk of onset is most clearly defined in women who present post-menopause, or those 

cases that are predominantly ER-positive. It is unclear whether the obesity-driven risk of 

recurrence is subtype specific or not. Although the effects of obesity on breast cancer risk or 

prognosis are likely multifactorial, several likely mechanisms have been proposed and are 

supported by preclinical evidence. These include obesity-induced hyperinsulinemia, 

increased insulin-like growth factors, adipokines, infiltration of inflammatory immune cells 

and increased inflammatory cytokines [60, 92]. In the case of ER-positive breast cancers, 

adipose tissue is known to express aromatase, potentially providing a local source of 

estrogens [112]. Intriguingly, recent evidence indicates that elevated cholesterol, a common 

comorbidity of obesity, is also a risk factor for breast cancer onset and recurrence. Due to 

recent advancements in our understanding the mechanisms by which cholesterol impacts 

breast cancer progression, the remainder of this paper will review our current understanding 

of how cholesterol contributes to breast cancer pathophysiology.

 Cholesterol Metabolism

In terms of cellular physiology, cholesterol is involved in maintaining cell membrane fluidity 

and the formation of cellular microdomains such as caveolae and lipid rafts, which are 

important for the signaling and function of integral membrane proteins [68]. Dysregulated 

cholesterol homeostasis is a characteristic of many diseases, including atherosclerosis [72], 

metabolic disorders, and as increasing evidence shows, numerous cancer types [76, 85, 3].

Circulating cholesterol levels are regulated by biosynthesis within hepatic cells, by dietary 

absorption, and a highly orchestrated set of cholesterol transport molecules that absorb and 

release cholesterol. Indeed, statin-class drugs, which inhibit 3-hydroxy-3methyl-glutaryl-

coenzyme A (HMGCoA reductase), the rate-limiting step in cholesterol biosynthesis, have 

proven very effective in lowering plasma cholesterol and preventing cardiovascular events 

[16, 41]. Although circulating cholesterol levels may change under normal physiological 

conditions, intracellular cholesterol levels remain tightly controlled in the majority of cells.

Intracellular cholesterol homeostasis is maintained by intricate and highly regulated 

pathways that rely on both short-negative feedback loops and longer-loop, feed-forward 

mechanisms [102, 48]. Although the majority of studies have been carried out in hepatic 

cells, it is generally understood that both homeostatic mechanisms are present to some 

degree in all cell types. Short-loop negative feedback is governed by sterol regulatory 

element-binding proteins (SREBPs), which are part of the basic-helix-loop-helix leucine 

zipper family of transcription factors. SREBP transcription factors are expressed as three 

main isoforms, SREBP 1a, SREBP 1c, and SREBP 2, with SREBP 2 being the major 

regulator of cholesterol homeostasis. In a normo-cholesterol state they remain bound to the 

endoplasmic reticulum, in a complex promoted by the presence of sterols. Under conditions 

of low cholesterol, all three isoforms dissociate and are escorted to the Golgi apparatus by 

SREBP cleavage activation protein (SCAP), where they undergo proteolytic processing, 

leading to their activation and nuclear translocation of the amino terminal domain of SREBP. 

Once translocated, they act as transcription factors inducing cholesterol synthesis-promoting 

genes such as HMG-CoA reductase, fatty acid synthase and squalene synthase, and genes 
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associated with cholesterol import such as low density lipoprotein receptor (LDLR), thus 

resulting in the restoration of intracellular cholesterol [4, 8, 50].

Longer loop regulation is mediated by the liver X receptors (LXRs) which are intracellular 

receptors of the nuclear receptor superfamily, and which work to eliminate cholesterol 

through a feed-forward mechanism [74]. Specifically, certain precursors and metabolites of 

cholesterol such as oxysterols bind to and activate the LXRs, ultimately leading to decreased 

cellular uptake and increased efflux of cholesterol. LXR receptors have two isoforms, LXRα 

and LXRβ. LXRα is predominately expressed in hepatocytes, whereas the expression of 

LXRβ is more ubiquitous. Both isoforms are basally inactive, primarily bound with their 

heterodimeric partners the retinoid X receptors (RXRs) along with co-repressor proteins. 

Endogenous LXR agonists include the cholesterol precursor desmosterol, and metabolites 

24S-, 25-, and 27-hydroxycholesterol [39]. On the other hand, certain unsaturated fatty acids 

such as arachidonate have been identified as endogenous antagonists of the LXR [83]. 

Synthetic LXR ligands include the pan-LXR activating compounds GW3965 and T0901217, 

and the intestinal tissue-specific ligand GW6340 [48]. Conversely, inverse agonists such as 

the recently described SR9243 inhibit LXR-mediated gene expression [37]. Such inverse 

agonists reduce receptor function by inducing co-repressor interaction. In the presence of 

LXR agonists, the heterodimeric complex changes conformation such that co-activators are 

able to bind and drive the transcription of sterol regulatory genes in a ligand-dependent 

manner. These include apolipoprotein E (ApoE), an apolipoprotein that serves as a ligand for 

LDL receptor and mediates cholesterol reuptake by the liver [58, 11, 86], ATP binding 

cassette transporters A1 and G1 (ABCA1 and ABCG1) which both mediate cholesterol 

efflux [11], and IDOL, an E3 ligase responsible for the degradation of LDLR [118, 120]. 

The net effects of LXR activation are decreased cholesterol uptake and increased efflux.

 Cholesterol as a breast cancer risk and prognostic factor

Elevated cholesterol is a strongly associated comorbidity of obesity, indirectly implicating 

cholesterol as a mediator of the risk associated with obesity and breast cancer [73, 22, 42, 

78, 88]. In terms of breast cancer onset, epidemiological studies investigating the links 

between circulating cholesterol and risk have yielded conflicting results [reviewed in 27]. 

Likewise, pre-diagnostic use of statins have been associated with lowered risk of breast 

cancer onset, while other studies report an increased risk or no significant associations with 

statin use [20, 29, 7, 14, 15, 21, 38, 43, 55]. The conflicting nature of these reports was 

supported by a large meta-analyses of retrospective data which found no significant 

relationship with statin therapy and onset [109]. Some of this variability may be due to 

access to primary care, potential confounding effects of BMI, whether total, LDL or HDL 

cholesterol was investigated, or the possibility that different breast cancer subtypes have 

differing susceptibilities to cholesterol. Indeed, a recent study found that when adjusted for 

BMI, elevated cholesterol in the diet was a significant risk factor for breast cancer onset in 

postmenopausal but not in premenopausal women [49]. Dietary cholesterol was also found 

to be a risk factor in a separate and distinct cohort of women [94]. Furthermore, prospective 

trials in a Korean cohort have also implicated circulating cholesterol as a risk factor for 

breast cancer onset [45, 56].
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On the other hand, cholesterol may not be tumorigenic in and of itself, but may promote 

tumor progression. In support of this notion are data indicating that circulating cholesterol 

levels correlate with recurrence [6]. Furthermore, large studies have now shown that patients 

taking statins demonstrate a significantly increased time to breast cancer recurrence [1, 57, 

81], as has been supported by a recent meta-analysis [122]. Thus, the most recent 

epidemiologic evidence is strongly suggestive of a distinct role for cholesterol in breast 

cancer progression.

 Cholesterol and Breast Cancer Pathophysiology

A relationship between choelsterol and tumors has long been known. In 1909, White et. al. 

first described waxy crystals within tumor, a substance that turned out to be choleserol 

[114]. In 1953, Waxler et al. reported that tumor incidence in murine models is increased 

with obesity and elevated cholesterol [113]. Since then, several preclinical studies have 

found that standard ‘Western’ diets (those high in both fat and cholesterol) decrease tumor 

latency, and increase the growth and metastasis of mammary cancers in preclinical models 

[63, 2, 62]. It is important to note, that all of these studies used a combination of a high fat 

and high cholesterol diet, and that two studies utilized mice on a transgenic background 

(ApoE−/− or adiponectin deficient mice), making it difficult to ascribe specific dietary effects 

to cholesterol. However, a recent study investigated the specific effects of elevating dietary 

cholesterol on tumor growth in the MMTV-PyMT mouse model. As expected, cholesterol 

decreased latency, and increased both tumor multiplicity and growth rate [76]. On the other 

hand, inhibiting de novo cholesterol synthesis by oral treatment with a statin inhibited the 

increased tumor growth rate observed in mice on a high fat (normal cholesterol) diet [76]. It 

is important to note that these studies utilized transgenic mice where the murine Apoe gene 

had been replaced with the human APOE3 allele, generating mice that better mimic human 

cholesterol biology [105]. Furthermore, blocking cholesterol uptake with Ezetimibe was 

sufficient to attenuate the effects of a Western diet on the growth of breast cancer xenografts 

[85]. Therefore, preclinical studies strongly indicate that cholesterol can impact tumor 

pathophysiology, and is a significant mediator of the effects of obesity.

However, what is less clear are the mechanisms by which cholesterol influences breast 

cancer progression, especially given the fact that intracellular cholesterol concentration is 

tightly regulated (see section above on cholesterol metabolism). As with obesity, the effects 

of cholesterol elevation are likely to be multifactorial. We explore the most accepted 

paradigms below (Figure 1).

 Cholesterol Metabolites as Active Signaling Molecules in Breast Cancer

In addition to the potential direct effects of cholesterol on tumor progression described 

below, recent work has identified that certain oxysterols can behave as Selective Estrogen 

Receptor Modulators (SERMs). The most abundant circulating oxysterol, 27-

hydroxycholesterol (27HC), is a primary metabolite of cholesterol, being synthesized by the 

cytochrome P450 oxidase, sterol 27-hydroxylase (CYP27A1). 27HC can bind to and 

modulate the activity of both ERα and β. In models of the cardiovascular system, 27HC 

behaves as an ER antagonist, while in models of osteoblasts and ER-positive breast cancers 
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it behaves as an ER partial-agonist [32, 33, 76, 107, 115, 108"]. 25-hydroxycholesterol has 

also been shown to activate the ER in breast cancer cells, although this oxysterol circulates 

at levels far lower than its EC50 for ER [59]. However, it is important to consider that local 

concentrations of less-abundant oxysterols might reach levels that can contribute to 

pathophysiology.

Importantly, by activating the ERs, 27HC can increase breast cancer cellular proliferation 

and tumor growth [33, 76, 115]. CYP27A1 is highly expressed in myeloid cells such as 

macrophages, potentially providing another mechanism by which myeloid cells contribute to 

tumor pathogenesis. Furthermore, it was shown that CYP27A1 can be expressed in cancer 

cells themselves, the extent to which is correlated with tumor grade [76]. Interestingly in this 

regard, 27HC was found to be at higher concentrations in breast tumors compared to 

adjacent tissue or tissue from normal volunteers, indicating that in addition to systemic 

27HC from the blood, tumors can provide important local sources of 27HC [115].

Key experiments using the MMTV-PyMT model found that the effects of a high cholesterol 

diet were dependent on the expression of CYP27A1 [76]. Thus, the majority of cholesterol’s 

pro-tumorigenic properties are mediated by the actions of 27HC. Furthermore, the effects of 

a high fat diet on ER-positive tumor growth were attenuated by treatment with a small 

molecule inhibitor of CYP27A1, indicating that some of the effects of obesity are mediated 

by 27HC [76].

As mentioned above, oxysterols such as 27HC also activate the LXRs to promote cholesterol 

efflux thereby inhibiting cellular proliferation [76, 110]. It appears that the ER and LXR 

activities of 27HC are at opposition to one another. Indeed, in both breast cancer and 

osteoblast cells, siRNA knockdown of LXRs increases the ER activity of 27HC and visa 
versa [75, 76]. Thus the relative abundance of these receptors and or respective co-factor 

milieu may be important determining factors in the pro-tumorigenic properties of 27HC. 

Intriguing however, were observations that 27HC can also promote breast cancer metastasis. 

In contrast to its proliferative properties, these effects were in part mediated by the LXRs 

[76]. Mechanistically, LXR activation could induce properties of the epithelial to 

mesenchymal transition (EMT). However, the effects of LXR activation are unlikely to fully 

explain the robust metastases observed in 27HC treated mice. In this regard, oxysterols 

including 27HC have been demonstrated to promote the migration of myeloid cells in a 

CXCR2 dependent manner [91], indicating that in addition to its effects on cancer cells, 

27HC may also exert its influences on the host to promote metastasis.

 Cholesterol and Membrane Signaling

In addition to merely being a membrane component required for fluidity, cholesterol is also 

an integral component of lipid rafts and subsequent membrane associated signaling events. 

Thus, it is possible that excess cholesterol might increase signaling events thereby promoting 

breast cancer progression. In this regard, tumors grown in hyperlipidemic (ApoE−/−) mice on 

a high fat, high cholesterol diet displayed increased PI3K activation and downstream AKT 

phosphorylation [2]. Importantly, treatment of these mice with a small molecule inhibitor of 

PI3K decreased mammary tumor growth, indicating that this pathway is active in the 

presence of elevated cholesterol. It is, however, important to note that the mice in this study 
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had circulating cholesterol levels far exceeding those that would be observed in 

hypercholesterolemic humans. Thus, although excess cholesterol has the capacity to promote 

lipid-raft signaling, it remains to be determined whether this pathway is active under 

clinically relevant conditions.

 Cholesterol as a Limiting Factor in Membrane Biogenesis

A rapidly dividing population of cells such as cancerous tumors requires large amounts of 

cholesterol for membrane synthesis. Thus, it would be logical to hypothesize that cholesterol 

is a limiting factor and exogenous cholesterol would be consumed rapidly. However, as 

detailed above, intracellular cholesterol levels are tightly controlled [28]. Hence, it is unclear 

whether increased extracellular cholesterol could be utilized by the cancer cells.

Interestingly, upon antigen stimulation, T cells begin to divide rapidly, placing an increased 

demand on available cholesterol, required in order to complete membrane biogenesis. To 

meet this demand upon activation, T cells increase the expression of SULT2B1, an enzyme 

that adds an inactivating sulfating moiety on the oxysterol ligands of the LXRs, ultimately 

leading to decreased LXR activity and increased intracellular cholesterol [9]. It remains 

unclear whether cancer cells employ similar strategies to accommodate the increased need 

for cholesterol as they proliferate.

Regardless of whether excess cholesterol can promote cellular proliferation of cancer cells, 

inhibiting the cellular capacity to synthesize cholesterol decreases proliferation. For 

example, several in vitro studies have shown that statin-mediated inhibition of HMG-CoA 

reductase or inhibition of oxidosqualene cyclase can limit proliferation [17, 67]. The 

interpretation of these results is difficult as HMGCoA reductase not only produces the 

precursors for cholesterol synthesis, but also those required for protein prenylation and 

farnesylation. In support of the role of cholesterol, synthetic LXR agonists have been found 

to inhibit proliferation of several cancer models including breast, prostate and melanoma, 

due to their ability to inhibit cholesterol synthesis and promote cholesterol efflux [79, 89, 61, 

86]. Interestingly, the anti-proliferative effects of LXR agonists on breast cancer appear to be 

isolated to ER-positive models [76, 110]. However, chronic treatment of LXR agonists 

results in hepatic steatosis and elevated circulating triglycerides, tempering enthusiasm for 

their development as cancer therapeutics [96]. A recently reported inverse agonist of LXR 

continues to exhibit significant anti-tumor growth effects but has no apparent effects on 

circulating triglycerides [37]. This unique class of LXR modulators may help circumvent the 

historic problems with this class of drugs.

 Cholesterol and Inflammation

It is well established that inflammation plays a strong role in tumor promotion across many 

different types of cancer [44]. For most solid tumors, infiltration by myeloid cells such as 

macrophages, myeloid derived suppressor cells or polymorphoneutrophils is associated with 

poor prognosis [117, 40, 31, 90, 24, 121, 51, 98]. Tumor associated macrophages (TAMs) 

respond to tumor-derived factors such as VCAM1 and CSF1, and are alternatively activated, 

representing an M2-like polarization state [23, 93]. They have many pro-tumorigenic 

properties including release of cytokines, thus stimulating angiogenesis, suppressing 
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acquired immunity, and aiding in the invasion and intravasation of cancer cells [66, 104, 

101, 46].

Cholesterol itself is known to have a strong stimulating effect on innate and adaptive 

immunity across many pathophysiological conditions [reviewed by 36]. Elevated serum 

cholesterol strongly activates macrophages and promotes the formation of arterial plaques 

and the sub-endothelial accumulation of foam cells in the development of atherosclerosis. 

Specifically, high levels of LDL-cholesterol activate macrophages through Toll-like receptor 

(TLR) activation [103]. TLR activation, in turn, increases the release of pro-inflammatory 

cytokines, thereby promoting further inflammation. TLR activation further exacerbates 

inflammation by suppressing LXR signaling [64]. Although not formally tested in breast 

cancer, many aspects of this inflammatory circuit such as cytokines have been shown to 

exacerbate tumor progression. On the other hand, perturbed cholesterol homeostasis itself 

can also support the growth of tumors by modulating the activity of tumor-associated 

leukocytes. For example when ABCG1, a transporter responsible for regulating macrophage 

intracellular cholesterol is ablated, the growth of bladder and melanoma cancers is 

suppressed. This is presumably due to the altered cholesterol homeostasis promoting the 

polarization of macrophages into the anti-tumorigenic M1 state [95].

Disordered cholesterol metabolism also affects the function of adaptive immunity. 

Importantly, it has been shown that sterol metabolism and LXR signaling are able to 

modulate T cell responses. Activation of LXR was able to suppress T cell proliferation, 

whereas genetic ablation of LXRβ restored proliferative function of T cells. The suppressive 

effect of LXR signaling was mediated in part by ABCG1 expression [9]. LXR activation has 

also been reported to inhibit CCR7 expression on dendritic cells and thus limit their 

chemotactic capacity to migrate to the lymphoid organs. Since dendritic cells are critical for 

antigen presentation to T and B cells, their impairment can result in the escape of tumors 

from immune-attack [111].

 Cholesterol and Response to Endocrine Therapy

Standard of care for women with ER-positive breast cancer includes long-term use of either 

tamoxifen or an aromatase inhibitor. Both of these therapies work very well and have 

significantly extended the long-term survival of patients. However, many patients eventually 

develop recurrent disease which is endocrine-therapy resistant. Interestingly, obesity has 

been associated with an increased likelihood for the development of tamoxifen resistance 

[116]. Furthermore, tumors from tamoxifen-resistant patients had an increased infiltrate of 

tumor-associated macrophages, cells known to highly express the enzyme responsible for 

27HC synthesis (CYP27A1). In terms of resistance to aromatase inhibitors, a recent report 

has found that the expression of many genes involved in cholesterol metabolism are altered 

due to epigenetic reprogramming [80]. These studies modeled aromatase inhibitor resistance 

by long-term deprivation of MCF7 cells from estrogens. Importantly, one of the transcripts 

that were upregulated in this model was CYP27A1. Thus, altered cholesterol homeostasis, 

especially elevations in 27HC, may promote resistance to endocrine-therapies, an important 

clinical problem.

Baek and Nelson Page 8

Horm Cancer. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



 Concluding Remarks and Future Perspectives

There is strong epidemiological evidence supporting obesity as a risk factor for breast 

cancer, and in particular, ER-positive breast cancer. This is particularly concerning given the 

current obesity rates. While cholesterol can exert direct effects on the immune system and 

thus the tumor microenvironment, certain cholesterol metabolites such as 27HC can 

modulate the activity of the ERs and LXRs directly impacting tumor growth and metastasis.

Fortunately, cholesterol is a highly amenable risk factor, either by lifestyle, dietary or 

pharmacological interventions. For example, statin therapy is fairly well tolerated and has 

proven to be very effective at managing cholesterol levels. Other cholesterol-lowering 

therapies include PCSK9 inhibitors and niacin. Importantly, circulating 27HC levels are 

correlated to those of cholesterol, and men taking pravastatin exhibit both decreased 

cholesterol and 27HC levels [106, 54]. Retrospective trials suggest that statin therapy 

increases recurrence-free survival. This provides rationale for prospective trials evaluating 

the efficacy of statins in combination with standard of care therapy in preventing and 

treating metastatic disease.

The development of specific CYP27A1 inhibitors for the treatment of breast cancer should 

also be considered. This is especially relevant in light of a recent ‘window of opportunity’ 

trial indicating that the tumoral expression of HMGCoA reductase is increased post-statin 

therapy [13]. Similar observations have been observed in macrophages, which exhibit 

elevated cholesterol even when serum cholesterol is lowered [119]. Due to the limited 

systemic exposure of oral statins, this induction likely represents a mechanism by which 

cancer cells can escape cholesterol-limiting strategies. Thus, a more targeted approach that 

can be systemically delivered such as CYP27A1 inhibitors may prove to have clinical utility.
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Figure 1. Proposed mechanisms by which cholesterol influences breast cancer pathophysiology
Cholesterol may have direct actions on the cancer cells by being a limiting factor in 

membrane synthesis or an integral part of lipid raft formation and subsequent PI3K/AKT 

signaling. It may also act on macrophages to enhance the inflammatory tumor-favoring 

microenvironment. On the other hand, loss of ABCG1 and subsequent increased 

intracellular cholesterol can polarize macrophages into an anti-cancer M1 phenotype such as 

in the case of bladder cancer and melanoma. Furthermore, metabolites of cholesterol such as 

oxysterols like 27HC can act as ligands for the ERs and LXRs. ER activation induces 

cellular proliferation of cancer cells. While LXR activation decreases cellular proliferation, 

it induces epithelial to mesenchymal transition (EMT) and subsequent metastasis. 

Furthermore, in dendritic cells LXR activation decreases CCR7, reducing their migration 

and subsequent antigen presentation to T cells. LXR activation also inhibits T cell 

proliferation, further creating an immune-suppressive environment for tumors.
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