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Abstract

Dynamic contrast-enhanced MRI (DCE-MRI) has been widely used in tumor detection and 

therapy response evaluation. Pharmacokinetic analysis of DCE-MRI time-course data allows 

estimation of quantitative imaging biomarkers such as Ktrans(rate constant for plasma/interstitium 

contrast reagent (CR) transfer) and ve (extravascular and extracellular volume fraction). However, 

the use of quantitative DCE-MRI in clinical prostate imaging islimited, with uncertainty in arterial 

input function (AIF, i.e., the time rate of change of the concentration of CR in the blood plasma) 

determination being one of the primary reasons. In this multicenter data analysis challenge to 

assess the effects of variations in AIF quantification on estimation of DCE-MRI parameters, 

prostate DCE-MRI data acquired at one center from 11 prostate cancer patients were shared 

among nine centers. Each center used its site-specific method to determine the individual AIF 

from each data set and submitted the results to the managing center. Along with a literature 

population averaged AIF, these AIFs and their reference-tissue-adjusted variants were used by the 

managing center to perform pharmacokinetic analysis of the DCE-MRI data sets using the Tofts 

model (TM). All other variables including tumor region of interest (ROI) definition and pre-

contrast T1 were kept the same to evaluate parameter variations caused by AIF variations only. 

Considerable pharmacokinetic parameter variations were observed with the within-subject 
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coefficient of variation (wCV) of Ktrans obtained with unadjusted AIFs as high as 0.74. AIF-

caused variations were larger in Ktrans than ve and both were reduced when reference-tissue-

adjusted AIFs were used. The parameter variations were largely systematic, resulting in nearly 

unchanged parametric map patterns. The CR intravasation rate constant, kep (= Ktrans/ve), was less 

sensitive to AIF variation than Ktrans (wCV for unadjusted AIFs: 0.45 for kep vs. 0.74 for Ktrans), 

suggesting that it might be a more robust imaging biomarker of prostate microvasculature than 

Ktrans.

Introduction

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is widely used in 

studies of cancer and other pathologies. Often included as one component of aprostate 

multiparametric MRI protocol (1), DCE-MRI is routinely used in clinical MRI examination 

of the prostate. Nevertheless, its use as a quantitative diagnostic imaging modality remains 

limited. In clinical practice, only qualitative estimations of contrast reagent (CR) wash-in 

and wash-out are generally used in interpreting prostate DCE-MRI data. Though 

pharmacokinetic modeling approaches have been under extensive investigation for more 

than a decade (2-10), pharmacokinetic analysis of prostate DCE time-course data is not 

currently recommended for routine use under the Prostate Imaging-Reporting and 

DataSystem (PI-RADS) version 2 guidelines (11,12). Improved reproducibility and 

standardization in pharmacokinetic analysis of prostate DCE-MRI data is needed for the 

translation of this quantitative data analysis method into clinical settings.

Quantitative DCE-MRI data analysis using pharmacokinetic models allows extraction and 

mapping of quantitative parameters of tissue biology in vivo. The most commonly estimated 

parameters are usually variants of Ktrans, a rate constant for passive CR molecule plasma/

interstitium transfer, and ve, the volume fraction of interstitial space (extravascular 

extracellular space, the putative CR distribution volume). The CR intravasation rate constant, 

kep, can be calculated as Ktrans/ve. Unlike qualitative or semi-quantitative analysis, the 

parameters derived from pharmacokinetic modeling of DCE-MRI time-course data are in 

principle independent of MRI scanner platform (vendor and field strength), data acquisition 

details (pulse sequence and parameters), CR dose and/or injection protocol, personnel skills, 

etc. This makes them promising imaging biomarkers in multicenter clinical trials as imaging 

endpoints for results standardization and comparison. However, the accuracy and precision 

of these parameters can be affected by a plethora of factors contributing to the process of 

pharmacokinetic modeling, including errors in quantification of pre-contrast T1 (13) and 

determination of arterial input function (AIF) (14-20), inadequate temporal resolution (21), 

selection of pharmacokinetic models to fit the data (22,23), and differences in DCE-MRI 

acquisition time duration (24,25).

As a requirement in quantitative estimation of DCE-MRI pharmacokinetic parameters, the 

time-dependences of the plasma and tissue CR concentrations, Cp(t) and Ct(t), respectively, 

need to be determined from the DCE-MRI images. The former is the AIF and its direct 

quantification from an imaged blood vessel is not straight forward due to, for example, 

partial volume effect (signal from a selected image voxel, ideally from 100% blood, is 
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contaminated with signal from non-blood tissues) and in-flow effect (the measured blood 

signal is affected by signal from the “fresh” blood outside the imaging volume that flows 

into the imaging volume during data acquisition). Nonetheless, as the driving force that 

causes in vivo DCE-MRI signal changes in the tissue, accurate AIF determination is 

fundamental for accurate estimation of pharmacokinetic parameters, especially for in vivo 
systems like the prostate where CR extravasation is substantial (9). Significant research 

effort has been devoted to the development of AIF quantification methods. The most 

commonly used method is to measure AIF directly from a feeding artery if it is clearly 

detected within the image field of view (FOV). Other methods include blinded AIF 

estimation (14,15), reference tissue and double reference tissue approaches (16,26), direct 

blood sampling (23,27), empirically derived population averaged AIF (28), and automated 

vessel region identification (27). However, given these various methods for AIF 

quantification, there is a lack of studies investigating the impact of variations in AIF 

determination on pharmacokinetic analysis of DCE-MRI data, which may potentially lead to 

best-practice guidelines for analysis of DCE-MRI data acquired from different organs.

The National Cancer Institute (NCI) has recently founded the Quantitative Imaging Network 

(QIN) for the development and validation of quantitative imaging methods for evaluation of 

cancer therapy response. The main mission of the QIN Image Analysis and Performance 

Metrics Working Group is to provide guidance and reach consensus on quantitative image 

analysis methods through comparison and validation of analysis algorithms. For quantitative 

DCE-MRI data analysis, it is important to understand the variations of DCE-MRI 

pharmacokinetic parameters caused by specific error-prone steps encountered during data 

analysis. Arecent QIN multicenter study demonstrated the effects of variations in 

pharmacokinetic models and software tools on assessment of breast cancer response to 

neoadjuvant chemotherapy (23). Here we report the results and experience from a DCE-MRI 

AIF challenge project, in which nine QIN centers performed AIF quantifications 

independently from the same prostate DCE-MRI data sets and submitted the AIFs to one 

managing center for central pharmacokinetic analysis of the shared data. The goal of this 

study is to assess variations in estimated prostate Ktrans, ve, and kep parameters resulted from 

various AIF extraction approaches.

Materials and Methods

AIF Challenge Participating QIN Centers

The QIN centers that participated in this DCE-MRI AIF challenge project were Oregon 

Health and Science University (OHSU)- managing center, Brigham and Women's Hospital 

(BWH) in collaboration with General Electric Research and Development, Medical College 

of Wisconsin (MCW), Icahn School of Medicine at Mount Sinai (MS), University of 

Michigan center #1 (UM1), University of Michigan center #3 (UM3), University of 

Pittsburgh (UPitt), Vanderbilt University (VU), and University of Washington (UW). 

Hereafter, except for where is explicitly indicated, these nine institutions are denoted as, not 

necessarily in the order listed above, QIN1 to QIN9.

Although some centers may have used more than one method for AIF determination from 

the shared data, only one AIF method from each participating center was included in this 
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study. In addition, we also included a population averaged AIF published by Geoff Parker 

(GP) et al. (28) for comparison. This AIF was selected because it is extensively cited. The 

analytical expression of GP AIF was implemented at the managing center and temporally 

resampled to match the temporal features of the shared prostate DCE-MRI data.

Human Prostate DCE-MRI Data Acquisition and Sharing

As part of the IRB-approved BWH quantitative imaging studies, multiparametric MR 

images were collected for the purposes of detection and/or staging of prostate cancer. The 

images were obtained with a GE SignaHDx 3.0 T system (GE Healthcare, Waukesha, WI) 

using a combination of 8-channel abdominal array and endorectal coil (Medrad, Pittsburgh, 

PA). The MRI sequences included T1- and T2-weighted imaging, diffusion weighted 

imaging, and DCE-MRI as described in (29). The axial DCE-MRI acquisition with full 

prostate gland coverage utilized a 3DSPoiled Gradient Recalled (SPGR) sequence with 

TR/TE/α = 3.6 ms/1.3 ms/15°, FOV = (26 cm)2, 6 mm slice thickness, and reconstructed 

image voxel size of 1×1×6 mm. DCE-MRI frames were acquired at approximately 5 s 

intervals (the number of slices per frame varied between 12 and 16, resulting in time 

resolution between 4.4 and 5.3 seconds) to achieve a clinically appropriate compromise 

between spatial and temporal resolutions. Gadopentetatedimeglumine (Magnevist, Berlex 

Laboratories, Wayne, New Jersey) was injected intravenously (0.15 mmol/kg) using a 

syringe pump at a rate of 3 mL/s followed by 20 mL saline flush at the same rate. The DCE 

protocol included approximately 5 baseline frames prior to contrast injection.

A subset of the imaging data from the BWH prostate DCE-MRI database were uploaded to 

the TCIA (The Cancer Imaging Archive) server for data sharing (10). From these, 11 data 

sets (from 11 patients) with known prostate cancer diagnosis, tumor region of interest (ROI), 

and relatively consistent acquisition time length (4.5 – 6 min) were downloaded by 

participating QIN centers for this AIF challenge project.

AIF Determination by QIN Centers

Although the AIF challenge participants were informed of the single image slice in each 

data set where the tumor ROI had been drawn and the ROI time-course data would be 

subjected to pharmacokinetic analysis by the managing center, there was no restriction on 

which image slice(s) to be used for the AIF quantification. Participating centers were 

required to extract an AIF time-course using their own methodology for each DCE data set. 

For example, when measuring AIF directly from a femoral artery within the image FOV, the 

actual number of voxels used to derive the final AIF time-course varied substantially among 

all centers. Generally, the following results were saved and submitted to the managing 

center: 1) extracted AIF signal intensity time-course saved as a single column text (‘.txt’ 

file), 2) converted blood plasma CR concentration time-course (see Eq. 1 below), and 3) 

screen-captured images showing the ROI/voxel locations for AIF measurement. Item 2) was 

optional and both items 2) (if submitted) and 3) served as quality control references for the 

managing center when performing final pharmacokinetic data analyses with the AIFs from 

different centers. Details of the AIF determination methods (including references) used by 

the participating centers are summarized in Table 1.
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Prior to performing pharmacokinetic analysis of the shared DCE-MRI data, the managing 

center first converted the AIF signal intensity time-course to blood R1 (≡ 1/T1) time-course, 

R1,b(t), using the SPGR steady-state signal intensity equation (30) and a fixed pre-contrast 

blood R1 of 0.61 s−1 (31), and then to plasma CR concentration time-course, Cp(t), using the 

following equation:

[1]

where r1 is the CR relaxivity at 3T, set at 3.8 mM−1s−1 ; and h is the hematocrit, set at 0.45.

Pharmacokinetic Analysis of Human Prostate DCE-MRI Data

Using a single in-house Matlab-based software package the managing center performed 

pharmacokinetic analysis of the shared 11 sets of prostate DCE-MRI data using the AIFs 

determined by the 9 QIN centers as well as the literature based GP AIF. All AIF arrival 

times were manually aligned with the uptake phase of the tissue response curves. The most 

commonly used pharmacokinetic model, the Tofts model (TM) (32), was applied to data 

analysis and its basic formulation is shown in Equation [2]:

[2]

where Ct(t) represents tissue CR concentration at time t; Cp(t’) is the AIF obtained from Eq. 

[1]. The fast-exchange-limit (FXL) condition intrinsic to the TM (23) implies a linear 

relationship between R1(t) and Ct(t):

[3]

where R1(t) is tissue R1 measured at time t, and R10 is the pre-contrast tissue R1 (assumed to 

be 0.63 s−1 (10)).

For each DCE-MRI data set, the voxel intensity time-courses within the pre-defined prostate 

tumor ROI on a single image slice, drawn by the center (BWH) that acquired the data, were 

subjected to the TM pharmacokinetic analysis. The mean values of the tumor ROI 

pharmacokinetic parameters (Ktrans, ve, and kep) were obtained by averaging the 

corresponding voxel parameter values.

Because of different approaches (Table 1) used by participating centers in direct 

measurement of the AIF, large variations in AIF amplitude were observed due to differences 

in measurement locations, number of voxels used, inflow effects, etc. As an alternative 

approach for pharmacokinetic analysis, an ROI (Figure 1 inset) in the adjacent obturator 

muscle area on the same image slice as the tumor ROI was used as a reference tissue for AIF 

amplitude adjustment (9,33). The AIF (including the literature GP AIF) amplitude was 

adjusted until the TM fitting of the muscle ROI DCE-MRI data returned a ve value of 0.1, 

which is within the range of literature-reported values (34). Therefore, in total twenty AIFs 

representing unadjusted and reference-tissue-adjusted AIFs from the 9 centers and the GP 

population AIF were applied for pharmacokinetic modeling of each prostate DCE-MRI data 
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set using the TM, resulting in 20 sets of Ktrans, ve, and kep parameters that were then 

separated into two groups of results obtained with adjusted and unadjusted AIFs.

All voxel fitting results were included in calculating the mean tumor ROI pharmacokinetic 

parameter values since it was difficult to set optimal criteria for excluding voxel fittings 

obtained with AIFs determined by a diverse array of methods. Using the prior knowledge 

that a physically meaningful veis between 0.0 and 1.0, the lower and upper boundaries for ve 

fitting were set accordingly for each voxel. When the reference-tissue-adjusted-AIFs (from 

all participating centers) were used, all fitted voxel ve values for all DCE-MRI data sets were 

within the limits (none returned boundary values). When the unadjusted AIFs were used, on 

average there were < 3% voxels (ranging from 0 - 6.6% by site for all the AIF and data set 

combinations) where the returned ve values reached the upper boundary of 1.0. In these 

limited number of voxels, the ve value of 1.0 and the returned Ktrans values were taken as the 

fitted parameter values.

Statistical Analysis

The original parameter values returned from all fittings were used for statistical analysis. 

Descriptive statistical analysis was conducted to summarize the pharmacokinetic parameter 

values returned by different AIFs, with the distribution graphically assessed by boxplots. 

Intraclass correlation coefficients (ICC), within-subject coefficient of variation (wCV), and 

concordance correlation coefficients (CCC) were calculated, and reported with the 

corresponding 95% confidence intervals (CIs). While all three were computed to assess the 

reproducibility of the pharmacokinetic parameter values from different AIFs, each has 

different focus. The ICCs measure the proportion of total variation contributed by between-

subject differences, with high ICCs indicating good agreement. The wCV is the ratio of 

within-subject standard deviation to the mean of the corresponding parameter. A smaller 

wCV suggests good reproducibility. The CCCs are closely related to ICCs. They were 

estimated to represent the level of pairwise linear agreement to a 45 degree line of which the 

intercept is forced to be zero. A larger CCC (close to 1) suggests good reproducibility. 

Bland-Altman plots were used to graphically demonstrate pairwise agreements of different 

AIF measures. SAS 9.4 (Cary, NY) was used for all statistical analysis. SAS macro %ICC9 

and %mccc were used for the estimations of ICC, wCV and CCC.

Results

Pharmacokinetic Parameter Variations due to AIF Differences

Figure 1a plots the AIFs extracted from the DCE-MRI data of one subject by the nine 

participating QIN centers. The inset shows a post-CR DCE image slice zoomed to the 

prostate area. The smaller circular ROI indicates a common location – the femoral artery - 

where blood signals were measured for AIF determination, while the larger elliptical ROI 

indicates the general location of the reference tissue ROI in the obturator muscle. Noticeable 

variations are evident in both the shape and the amplitude among the Cp time-courses, 

converted from the measured signal intensity time-course using Eq. [1]. Figure 1b shows 

the reference-tissue-adjusted AIFs of those shown in Fig. 1a. The agreement among the 

individually measured AIFs is clearly improved following the adjustment. The standard 
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deviation of the nine measured AIFs over the DCE time course is significantly smaller for 

the reference-tissue-adjusted AIFs compared to the unadjusted ones (Wilcoxon signed rank 

test, p < 0.0001). Similar findings are observed for AIFs from the other 10 subjects.

In the center of Figure 2, a zoomed post-CR image slice of the prostate of another subject is 

shown. The cyan-colored ROI demarks the lesion area used for subsequent TM modeling 

and parameter comparisons. Ktrans color maps generated by TM analysis of the DCE-MRI 

data using unadjusted AIFs from the nine centers are shown on the left panels and those with 

reference-tissue-adjusted AIFs are shown on the right. Under the same color scale, 

substantial variations, mostly in the magnitude of Ktrans value, can be seen among the Ktrans 

maps obtained with different unadjusted AIFs (Figure 2, left). These differences are lessened 

when the Ktrans parameter was derived with reference-tissue-adjusted AIFs (Figure 2, right). 

It is interesting to observe that despite considerable variations in Ktrans value caused by AIF 

differences, the pattern of voxel Ktrans distribution largely remains the same.

Illustrating the variations seen in Fig. 2 for one parameter from a single DCE-MRI data set, 

Figure 3 displays the boxplots for Ktrans, ve and kep parameters obtained from the eleven 

subject data sets with adjusted and unadjusted AIFs (including those from the GP AIF). For 

most measurements, the mean is greater than the median, which is commonly seen when 

distributions are skewed towards the right (the larger parameter values). The dispersions of 

the estimated metrics vary substantially across institutions (or AIFs). Examining the results 

from the same institution (or from one set of unadjusted and adjusted AIFs), it can be 

observed that the agreement in parameter dispersion between the unadjusted and adjusted 

AIFs is better for kep than Ktrans. In fact, kep dispersion is hardly affected by the difference 

in AIF scaling.

Figure 4 shows the column graphs of wCV for Ktrans, ve and kep obtained with the 

unadjusted (shaded light gray) and adjusted (dark gray) AIFs. The error bars are the 95% 

CIs. A smaller wCV value indicates less variation in measurements on the same subject by 

different approaches. In this study, the wCV values range from 0.15 for ve with adjusted 

AIFs to 0.74 for Ktrans with unadjusted AIFs. The wCV of ve is the smallest, while that of 

Ktrans is the largest among the three pharmacokinetic parameters with either unadjusted or 

adjusted AIFs. From unadjusted to adjusted AIFs, the parameter variations decrease for 

Ktrans and ve (wCV values decrease from 0.74 to 0.60 and from 0.33 to 0.15, respectively) 

while increase slightly for kep (wCV value increases from 0.45 to 0.54).

Figure 5 shows the column graphs of ICC values for Ktrans, ve and kep obtained with 

unadjusted (light gray) and adjusted (dark gray) AIFs. The respective 95% CIs are shown as 

error bars. Consistent with the results shown in Fig. 4, Ktrans has the smallest ICC value 

compared to kep and ve with either unadjusted or adjusted AIF, indicating its high 

dependence on AIF quantification for prostate DCE-MRI. From unadjusted to adjusted 

AIFs, the ICC value increases from 0.30 to 0.38 and from 0.62 to 0.88 for Ktrans and ve, 

respectively, while decreases from 0.52 to 0.46 for kep.
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Concordance Analysis

Concordance correlation analysis was conducted to assess parameter agreement between any 

two AIFs within the same group (adjusted or unadjusted). The Ktrans CCC values are 

tabulated in Table 2a. CCC values for the unadjusted AIFs are listed above the dashed 

diagonal line, and those for the adjusted AIFs are listed below the diagonal line. Tables 2b 
and 2c show the 2a equivalents for the ve and kep parameters, respectively. The CCC ranges 

are 0.031 – 0.944, 0.334 – 0.986, and 0.145 – 0.957 for Ktrans, ve, and kep, respectively, 

obtained with unadjusted AIFs; and 0.082 – 0.965, 0.554 – 0.993, and 0.129 – 0.965 for 

Ktrans, ve, and kep, respectively, obtained with adjusted AIFs. In general, the CCC values 

increase from unadjusted to adjusted AIFs for the Ktrans and ve parameters, though little 

changes are observed for the kep parameter. In addition, the CCC value resulted from pairing 

of the GP AIF with any other AIF (unadjusted or adjusted) is usually among the smallest in 

the above described CCC ranges.

Bland-Altman plots are shown in Figure 6 to demonstrate examples of the agreement in 

Ktrans for AIF pairs with the largest (Figs. 6A and 6B) and smallest (Figs. 6C and 6D) CCC 

values within the unadjusted (Figs. 6A and 6C) and adjusted (Figs. 6B and 6D) AIF groups. 

While the differences between measurements are mostly within the 95% confidence limits 

for all plots, it is rather visually clear (with all four plots having the same vertical axis scale) 

that the width of confidence bands differs substantially between AIF pairs with greater CCC 

values (Figs. 6A and 6B) and those with smaller CCC values (Figs. 6C and 6D): narrower 

for the former; wider for the latter. For the AIF pairs with the largest CCCs (Figs. 6A and 

6B), or the best agreements in the estimated Ktrans values, the means of Ktrans differences 

between the two AIFs represented by the dotted lines are close to zero at 0.076 and 0.009 

min−1, respectively, for unadjusted and adjusted AIFs. For the AIF pairs with the smallest 

CCCs (Figs. 6C and 6D), or the worst agreements in the estimated Ktrans values, the means 

of Ktrans differences are 0.529 and −1.085 min−1, respectively, for unadjusted and adjusted 

AIFs, considerably different from zero. In addition, in cases of poor Ktrans agreement (Figs. 

6C and 6D), there seems to be a pattern of correlation between the difference in Ktrans and 

the mean of Ktrans with larger differences corresponding to larger mean values.

Discussion

The main goal of this multicenter AIF data analysis challenge was to evaluate variations of 

estimated pharmacokinetic parameters in prostate cancer due to differences in AIF 

determination. Individually measured AIFs were obtained for each DCE-MRI data set with 

different QIN center-specific methods which include manual AIF-voxel selection, semi-

automatic AIF-voxel identification, automated AIF region identification, and AIF 

determination using commercial software packages. Quality control measures such as fixed 

tumor ROI definition, fixed tumor T10, and central data analysis with a commonly used 

pharmacokinetic model were adopted to ensure that DCE-MRI parameter variations are 

mainly due to AIF differences only. Although the software package used by the managing 

center for central pharmacokinetic data analysis was an in-house developed version of the 

TM (32), its mathematical formulation was validated using DRO (digital reference object) 

phantom data in a previous DCE-MRI data analysis challenge (23).
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The results from this multicenter study clearly show that variations in AIF quantification 

result in variations in the estimated pharmacokinetic parameter values for prostate DCE-

MRI data. Among the Ktrans, kep, and ve parameters, K trans has the largest while ve has the 

smallest AIF uncertainty-caused variations. The wCV values ranged from as low as 0.33 for 

ve to as high as 0.74 for Ktrans with unadjusted AIFs while the ICC ranged from 0.30 for 

Ktrans to 0.62 for ve. Similar results of ve being the most “robust” parameter to AIF variation 

have been reported in a simulation study (35) previously and its “robustness” may be the 

direct consequence that ve is the most influential parameter within the Ktrans range (33) seen 

in prostate cancer. That is, when comparing the effects of the same percentage change in a 

single parameter on the DCE-MRI time-course, ve change causes the most noticeable DCE-

MRI time-course deviation than the other parameters (33), suggesting that the ve parameter 

is shaped more by the tissue DCE time-course during modeling fitting. Another probable 

reason that Ktrans is more susceptible to AIF variation than ve is that quantification of Ktrans 

strongly depends on the initial AIF spike while ve quantification relies more on the entire 

AIF time-course. This work complements a recent study comparing AIF determinations with 

fully-automated and semi-automated approaches for prostate DCE-MRI data analysis (10). 

Both efforts show that Ktrans variation due to AIF uncertainty is the most prominent 

compared to variations of other parameters in pharmacokinetic analysis of prostate cancer 

DCE-MRI data.

It is important to point out that AIF influence on Ktrans estimation is CR extravasation (Ktrans 

magnitude) dependent (33), underscoring the importance of accurate AIF measurement in 

Ktrans modeling when CR extravasation is extensive. This CR-extravasation-dependent 

characteristic is more clearly illustrated in the extreme cases such as normal brain tissue 

where Gadolinium based CR acts as intravascular agent during the short period after CR 

injection. Under this condition of no CR extravasation, the AIF has no effect on Ktrans 

(which is undetectable). For organs with extensive CR extravasation, like the prostate (10), 

the initial AIF curve shape strongly influences the estimation of Ktrans. This is possibly the 

reason that the Ktrans values obtained with a fixed, population based GP AIF shows the least 

agreement (lowest CCC values) with those obtained with individually measured AIFs. After 

all, the individually measured AIFs (mostly from the femoral artery voxels) more or less 

captured similar initial AIF curve shapes from the actual DCE-MRI data despite the use of 

different quantification methods and potential errors from partial volume and inflow effects. 

The data-acquisition specific details may not be well characterized by the GP AIF, which is 

modeled based on data from the aorta or iliac arteries, acquired with different pulse 

sequence parameters and generated at different field strength. Thus, in cases of substantial 

CR extravasation pharmacokinetic parameters should be estimated with individually 

determined AIFs whenever possible instead of a generic population averaged AIF unrelated 

to a specific acquisition protocol.

As shown by this study, there are, however, steps one can take to lessen the effects of AIF 

variations on estimation of pharmacokinetic parameters. The agreement in the Ktrans and ve 

parameters obtained with muscle-reference-tissue-adjusted AIFs is improved compared to 

that with unadjusted AIFs. This is a direct result of better agreement in AIF amplitude 

among the individually measured AIFs following the muscle reference tissue adjustment. 

However, the reference tissue approach is far from a perfect solution to AIF-uncertainty 
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caused parameter variations. High wCV, low ICC, and low CCC values are still prevalent 

after the reference tissue method was used, especially for Ktrans, of which the estimated 

value is strongly influenced by both the magnitude and the initial curve shape of the AIF.

The results from this multicenter challenge project are supported by findings from a recent 

simulation study (unpublished results), which aims to identify pharmacokinetic parameters 

that are relatively insensitive to AIF variations. In fact, the simulations demonstrate 

complete kep insensitivity to AIF magnitude errors (unpublished results). The current study 

shows that for TM analysis, kep is less sensitive to AIF uncertainty compared to Ktrans. kep is 

the CR intravasation rate constant and is predominantly characterized by the washout phase 

of the DCE time-course. Since kep is often calculated as Ktrans/ve and not as an independent 

variable in model fitting of the DCE time-course data, it is sometimes under used in clinical 

DCE-MRI studies. Results from this work, however, suggest that, taking into consideration 

of uncertainties in AIF determination, kep may be a more reproducible DCE-MRI parameter 

than the Ktrans parameter and thus a more robust imaging biomarker of perfusion and 

permeability. For prostate DCE-MRI, kep can offer a different perspective of prostate 

microvasculature, especially when the Ktrans ranges of benign and cancerous tissue overlap 

(5).

It is important to note that DCE-MRI parameter variations caused by AIF variations are 

mostly systematic. As an example shown in Fig. 2, the differences among the prostate tumor 

Ktrans maps obtained with different AIFs are mostly in voxel Ktrans values. The pattern of 

voxel Ktrans distribution largely remains similar for all the maps. This suggests that 

assessment of tumor heterogeneity through texture analysis of DCE-MRI parametric maps 

may not be affected greatly by variations in AIF determination. Additionally, for 

longitudinal DCE-MRI studies to assess cancer therapy response, the systematic errors 

caused by AIF quantification variations may be largely cancelled in the calculation of 

percent changes of DCE-MRI parameters before and after therapy. In a multicenter breast 

DCE-MRI data analysis challenge study (23), we demonstrated that DCE-MRI parameter 

percent changes before and after first cycle of neoadjuvant chemotherapy were substantially 

less sensitive to variations in pharmacokinetic model and software package used for data 

analysis, compared to absolute parameter values.

Due to its unique temporal signatures and often superior image contrast, DCE-MRI is 

widely used in prostate imaging as part of a multi parametric prostate MRI protocol. DCE-

MRI data analysis with qualitative and/or semi-quantitative assessment is favored in current 

clinical practice largely due to their relative simplicity. However, the rich information 

embedded in the DCE-MRI data is likely underutilized. Pharmacokinetic data analysis for 

estimation of tissue biology specific parameters has the potential to provide more consistent 

results for broad cross-vendor and cross-scanner platform applications. Robust and reliable 

AIF determination remains a real challenge for adoption of pharmacokinetic modeling of 

prostate DCE-MRI data in clinical settings. The results from this study provide useful 

information on how to minimize errors in estimation of prostate DCE-MRI parameters 

caused by uncertainties in AIF determination and which parameters are less sensitive to AIF 

variations.

Huang et al. Page 10

Tomography. Author manuscript; available in PMC 2016 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



There are limitations in this multicenter effort. The study cohort size was small (11 patients) 

and the AIF determination methods were mostly constrained to the approach of direct 

measurement from an artery. Additionally, no longitudinal data were available and, as a 

result, the effects of AIF variation on DCE-MRI assessment of prostate cancer progression 

and/or response to treatment were not investigated. The current study only summarizes the 

results of AIF variations for a single pharmacokinetic model (TM) and thus parameter 

reproducibility from different models and relevant model comparisons with AIF variations 

are beyond the scope of this work. Finally, voxel DCE-MRI parameter distribution patterns 

were assessed visually without the use of a quantitative texture analysis method.

Conclusion

In conclusion, this multicenter data analysis study highlights one (not all) significant 

challenge in quantitative pharmacokinetic analysis of DCE-MRI data: considerable 

variations in DCE-MRI parameter values were observed as a result of variations in AIF 

determination. The AIF-caused parameter variations are higher in Ktrans than ve. One 

solution that can be used to reduce parameter variation is to adjust AIF amplitude following 

its measurement using a reference tissue method. kep is less sensitive to AIF uncertainty than 

Ktrans, suggesting that kep might be a more robust pharmacokinetic parameter for 

characterization of prostate microvasculature. The variations in parameter estimates caused 

by differences in the AIF are systematic and thus the patterns of voxel-based DCE-MRI 

parametric maps were largely unaffected. In multicenter clinical trials involving quantitative 

DCE-MRI, central data analysis with a fixed AIF determination method should be adopted 

for a single time-point study to minimize the undesirable effects due to uncertainty in AIF 

determination. This approach may introduce systematic errors in estimated pharmacokinetic 

parameters, but avoids random errors resulted from data analysis by individual centers with 

different AIF determination methods, which could be detrimental in addressing biological 

questions. In a longitudinal multicenter study, percent changes of pharmacokinetic 

parameters instead of their absolute values should be used as imaging endpoints to more 

accurately evaluate biological changes.
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Ktrans rate constant for plasma/interstitium contrast reagent transfer

kep rate constant for contrast reagent intravasation

R10 = 1/T10, pre-contrast tissue longitudinal relaxation rate constant

ROI region of interest

TM Tofts model

ve extravascular, extracellular volume fraction

wCV within-subject coefficient of variation
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Figure 1. 
a.Individual AIFs extracted from one subject's DCE-MRI data by nine participating QIN 

(Quantitative Imaging Network) centers. The smaller circular ROI in the zoomed image 

inset (with the prostate in the center of the view) indicates the general location where blood 

signals are most frequently measured for the final AIF time-courses, and the larger elliptical 

ROI indicates the general location for the obturator muscle reference tissue ROI. Noticeable 

variations are evident for both the shape and magnitude of the AIF curves. 1b The reference-

tissue-adjusted AIFs of the same subject. The agreement among the individually measured 

AIFs is clearly improved following the adjustment.
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Figure 2. 
Grey-scale image at the center shows a zoomed DCE-MRI slice of another subject. The 

cyan-colored ROI demarks the lesion area used for subsequent TM modeling and parameter 

comparisons. Ktrans color maps generated by TM analysis of the DCE-MRI data using 

unadjusted (unadj.) AIFs from the 9 centers are shown on the left panels and those with 

reference-tissue-adjusted (adj.) AIFs are shown on the right. All 18 panels used the same 

color scale.
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Figure 3. 
Boxplots of the tumor mean Ktrans, ve, and kep parameters for the 11 subjects obtained with 

unadjusted (unadj.) and adjusted (adj.) AIFs from the 9 centers and the population averaged 

GP AIF from the literature (28). The diamond and bar symbols represent the mean and 

median values, respectively. The body of the box is bounded by the upper 25% and lower 

25% quartiles, representing the interquartile range of the middle 50% of the measurements. 

The upper and lower whiskers define the range of non-outliers. The outliers are plotted as 

dots beyond the whiskers.
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Figure 4. 
Column graphs of wCV for the Ktrans, ve and kep parameters obtained with the unadjusted 

(unadj., shaded light grey) and adjusted (adj., dark grey) AIFs. The respective 95% 

confidence intervals (CI) are shown as error bars.
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Figure 5. 
Column graphs of ICC for the Ktrans, ve and kep parameters obtained with the unadjusted 

(unadj., shaded light grey) and adjusted (adj., dark grey) AIFs. The respective 95% CIs are 

shown as error bars.
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Figure 6. 
Bland-Altman plots are shown to demonstrate agreement in Ktrans for AIF pairs with the 

largest (A and B) and smallest (C and D) CCC values within the unadjusted (A and C) and 

adjusted (B and D) AIF groups. The two solid horizontal lines represent the upper and lower 

limits of the 95% confidence interval, while the dotted horizontal line represents the mean 

value of Ktrans differences between the two measurements.
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Table 1

Arterial Input function (AIF) quantification methods by participating QIN centers

Center Method

OHSU A single fixed-size ROI was manually placed inside the femoral artery within the field of view (FOV). Averaged blood intensity 
time-course was extracted from the ROI, which is further converted to Cp(t) using the parameter values provided in the Materials and 
Methods section.

BWH GE's OncoQuant prototype tool was used, which includes: 1) AIF Search Region Slice Localization; 2) AIF Search Mask 
Localization; 3) AIF Detection Using Shape Based Statistics; and 4) AIF Signal to Concentration Conversion. See (27) for more 
details.

MCW Motion corrected DCE series were processed using probabilistic independent component analysis implemented in the FSL(FMRIB's 
Software Library, www.fmrib.ox.ac.uk/fsl). These were further whitened and projected into a 20-dimensional subspace using 
Principal Component Analysis. The AIFs were manually chosen from the results (4, 36-38).

MS ROIs were manually placed inside the iliac arteries within the FOV using Osirix (v5.8; Pixmeo, Switzerland). For each AIF 
determination, one ROI was drawn on one DCE frame, and its position was adjusted when necessary to account for inter-frame 
subjection motion. Blood intensity time-course was extracted from the ROIs.

UM1 ROIs of 5 × 5 voxels were manually placed in two to four slices showing the highest artery conspicuity on maximum intensity 
projection (MIP) displays of the baseline-subtracted DCE images. Voxel time-courses within the ROI were individually displayed on 
a 5 × 5 panel. Voxels with time-courses demonstrating an AIF curve shape were then individually selected and their locations and 
time-courses automatically saved.

UM3 ROIs were manually drawn on both left and right femoral arteries on the central four slices. To minimize the in-flow effect, the 
inferior and superior slices were excluded. Twenty voxels within the ROIs with the highest signal increases were determined by 
thresholding the histogram of intensity changes. The average signal intensity time curve of the 20 voxels yielded the final AIF signal 
intensity time-course.

UPitt Images were loaded into PMOD 3.505 (PMOD Technologies Ltd), a commercial software package. Images were examined to search 
for an artery near the lesion. A region including the identified artery was surveyed using the voxel browser of PMOD to identify an 
area with high signal intensity change, followed by AIF ROI delineation.

UW An adapted version of a PET AIF extraction scheme (39)which does not require user-specified AIF ROI was used. The approach was 
implemented in R (open-source). The extracted input function was then scaled so that the Apparent Extraction of Gd CR based on 
the analysis of the entire tissue volume signal is 2.5%.

VU A seed point was placed manually inside an artery and then a region growing method was applied to select the AIF voxels 
automatically. The intensity range for the region growing method was set as 80% to 120% of that of the seed point, and the voxel 
distance from the seed was <10 voxels. Mean signal intensity time course of the selected voxels was obtained.
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