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Abstract

The two etiologic agents of cryptococcal meningoencephalitis, Cryptococcus neoformans and C. 
gattii, have been commonly designated as either an opportunistic pathogen for the first species or 

as a primary pathogen for the second species. Such a distinction has been based on 

epidemiological findings that the majority of patients presenting meningoencephalitis caused by C. 
neoformans are immunocompromised while C. gattii infection has been reported more often in 

immunocompetent patients. A recent report, however, showed that GM-CSF (granulocyte-

macrophage colony-stimulating factor) neutralizing antibodies were prevalent in the plasma of 

“apparently immunocompetent” C. gattii patients with meningoencephalitis. Because GM-CSF is 

essential for differentiation of monocytes to macrophages and modulating the immune response, it 

is not surprising that the lack of GM-CSF function predisposes otherwise healthy individuals to 

infection via inhalation of environmental pathogens such as C. gattii. Since the test for anti-GM-

CSF autoantibodies is not included in routine immunological profiling at most hospitals, healthy 

patients with GM-CSF neutralizing antibodies are usually categorized as immunocompetent. It is 

likely that a comprehensive immunological evaluation of patients with C. gattii 
meningoencephalitis, who had been diagnosed as immunocompetent, would reveal a majority of 

them had hidden immune dysfunction. This paper reviews the relationship between GM-CSF 

neutralizing antibodies and the risk for C. gattii infection with CNS involvement.
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1. Introduction

The etiologic agents of cryptococcosis, Cryptococcus neoformans and C. gattii are sibling 

species (85%–90% genomic identity) [1] that cause cryptococcosis in humans and a wide 

range of mammals. The disease in humans proceeds by inhalation of airborne cryptococci, 

which disseminate to the central nervous system (CNS) and cause menigoencephalitis. 

Unless treated, cryptococcal CNS infection is fatal and the fatality rate is high in spite of the 

most advanced therapeutic measures [2,3] Epidemiological studies have clearly shown that 

cryptococcosis due to C. neoformans is worldwide in distribution and though it can cause 

disease in otherwise healthy individuals, a majority of the reported cases have been from 

patients whose immune system have been compromised by various causes such as HIV 

infection, corticosteroid treatment and other immunosuppressive underlying conditions 

[3,4]. This is why C. neoformans has been widely known as an opportunistic pathogen. 

Epidemiological deviancy in C. neoformans infection, however, has been reported among 

patients in the Far East countries: China, Korea and Japan. In these countries, most of the 

cryptococcosis patients were caused by C. neoformans and were HIV sero-negative with or 

without any apparent predisposing underlying condition [5–7]. Cryptococcosis caused by C. 
gattii in HIV+ patients have been reported mostly in tropical and subtropical regions of the 

world such as Africa [8], South America [9] and Southern California [10].

Several studies have confirmed that C. gattii infects apparently healthy hosts with no known 

predisposing risk factor more frequently than immunocompromised individuals regardless of 

geographic regions and is therefore widely regarded as a primary pathogen [9,11–16]. While 

individuals with depleted CD4+ T cells resulting from HIV infection are highly susceptible 

to cryptococcal CNS infection due to C. neoformans [17,18], C. gattii infrequently infects 

such patients compared to C. neoformans even in the C. gattii endemic regions of the world 

[8,9,13,16]. Difference in host selection is not surprising considering their biological 

differences. The two species are readily distinguishable by the antigenic specificity of their 

polysaccharide capsule and their ability to utilize certain amino acids as carbon or nitrogen 

sources. C. neoformans includes strains of serotype A, D and AD which are generally unable 

to assimilate D-proline as a nitrogen source and glycine as a carbon source. C. gattii on the 

other hand can utilize D-proline as a nitrogen source and glycine as a source for both carbon 

and nitrogen [19,20]. These biochemical differences allow separation of the two species by 

using CGB agar media [19], which is commercially available (Hardy Diagnostics, Santa 

Maria, CA, USA; Thermo Fisher Scientific Remel Products, Lenexa, KS, USA). Recent 

studies have revealed further differences between the two species with regards to the 

utilization of D-amino acids as a nitrogen source in general [21] and the major target organs 

in mice [22].

It has been speculated that C. gattii infection in apparently healthy individuals is the result of 

increased environmental exposure to the fungus. Such speculation has been based on the 

over-representation of C. gattii infection among the Australian Aboriginal people living in 

rural areas [15,23] where daily exposure to the natural reservoir of C. gattii such as 

Eucalyptus and other trees, organic debris and soil is likely higher than the population living 

in urban areas. Analysis of the risk factors for C. gattii infection among patients in British 

Columbia, Canada showed that, in addition to environmental exposure, certain underlying 
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medical conditions to be of significant risk [16]. These underlying medical conditions which 

carry a significant risk for C. gattii infection include preexisting oral steroid use, 

emphysema, chronic bronchitis, chronic obstructive pulmonary disease, sarcoidosis and 

pneumonia [16]. Environmental exposure risks included cutting/chopping wood, pruning 

and cleaning up branches [16].

The host specific mechanisms explaining the increased incidence of C. gattii infection in 

individuals with these risk factors have not been evaluated. Countless numbers of tourists 

and inhabitants are exposed to the environment of C. gattii endemic regions such as 

Vancouver, Canada, Southeast Asia and South America each year but the number of patients 

afflicted by C. gattii has only been a fraction of the exposed populations: less than one case 

per million per year in Australia [13] and Colombia [9] to 5.8 cases/million/year even in the 

highest case clusters reported in Vancouver Island, British Columbia during 1999–2007 [24]. 

This suggests that although the onset of C. gattii disease may be triggered by exposure, 

inhaled C. gattii cells in healthy individuals are readily eliminated by the host defense 

systems unless certain predisposing risk factors are present in these patients. Such 

endogenous risk factors may also contribute to increased persistence of dormant C. gattii or 

be required to trigger reactivation of dormant C. gattii to cause infection. GM-CSF 

neutralizing antibody appears to be one such host-dependent risk factor. Defining C. gattii as 

a primary pathogen may become obsolete as more subtle immune dysfunctions are 

recognized in otherwise healthy patients with C. gattii meningoencephalitis.

2. How Were GM-CSF Neutralizing Antibodies Identified as a Risk Factor for 

C. gattii Infection?

In 2013, Rosen et al., detected anti-GM-CSF autoantibodies which inhibited GM-CSF 

signaling in the plasma of four previously healthy HIV-negative patients suffering from 

cryptococcal meningoencephalitis [25]. This finding prompted them to screen archived 

plasma samples of 103 patients with culture proven cryptococcosis who had been treated at 

the National Institutes of Health between 1955 and 1984. Of the 103 archived plasma 

samples, 67 were from patients without any evidence of immunodeficiency and 36 were 

from patients with either a history of iatrogenic immunosuppression or an underlying 

medical condition that is known to predispose patients to cryptococcosis such as 

hematological malignancy or diabetes prior to their diagnosis of cryptococcosis. Of the 67 

archived samples from patients without any recognized immunodeficiency, three were 

positive for the presence of anti-GM-CSF antibodies compared with none of the healthy 

controls (n = 64), diseased controls (n = 43, adult patients with undiagnosed 

immunodeficiency) or cryptococcosis patients with recognized immunodeficiency (n = 36). 

These results suggested that GM-CSF neutralizing antibodies could be a previously hidden 

risk factor for cryptococcal meningoencephalitis in HIV negative and otherwise healthy 

individuals. Of the seven cryptococcal strains (four from current and three from the archived 

cases) isolated from GM-CSF autoantibody positive patients, three had been reported as C. 
neoformans, one as C. gattii and three as Cryptococcus without identification at species 

level. The three Cryptococcus unspeciated strains had been isolated from the 
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immunocompetent patients whose plasma samples had been archived and the strains had 

been maintained as lyophilized cultures.

Since the majority of cryptococcosis cases reported from Far East Asia are from HIV sero-

negative patients with or without any apparent risk factors, we hypothesized that anti-GM-

CSF autoantibodies could explain many of the cryptococcosis cases in otherwise healthy 

patients in Far East Asia [5–7]. As reported in 2014 [26], we screened 20 plasma samples 

from normal healthy volunteers and 21 otherwise healthy cryptococcosis patients from 

China with meningoencephalitis for the presence of functional anti-GM-CSF autoantibodies. 

To our surprise, GM-CSF neutralizing antibodies were detected in the plasma of only one 

patient who had been infected by C. gattii and one healthy volunteer, but none of the 20 

patients infected by C. neoformans (Table 1) [26].

The C. gattii strain infected the GM-CSF autoantibody positive patients was of the VGI 

molecular type, which is the major C. gattii molecular type found in Southeast Asia [27]. 

The plasma from the C. gattii infected patient with GM-CSF autoantibodies inhibited 

phosphorylation of STAT5 (Figure 1) in normal PBMC when reacted with exogenous GM-

CSF [26]. This indicated that the anti-GM-CSF autoantibodies in this C. gattii infected 

patient were biologically active. The GM-CSF autoantibody titer in the plasma of one 

healthy volunteer was significantly higher than the base level found in other healthy 

volunteers but lower than that of the C. gattii infected patient. Not surprisingly, the plasma of 

GM-CSF autoantibody positive healthy volunteer caused only partial inhibition of STAT5 

phosphorylation compared to the plasma of the C. gattii patient with GM-CSF autoantibody 

[26].

This finding associating the GM-CSF autoantibodies with C. gattii infection but not with C. 
neoformans infection among Chinese patients (Table 1) prompted us to determine the 

species status of the three strains listed as Cryptococcus without species identification shown 

in Table 2.

We found all three strains to be C. gattii strains of either VGlll or VGl molecular type [26]. 

This suggested that among the 67 apparently immunocompetent patients whose plasma had 

been archived, only three had been GM-CSF autoantibody positive and all had been infected 

by C. gattii while the antibodies were lacking in the plasma of the remaining 64 patients who 

had been infected by C. neoformans. The three strains originally reported as C. neoformans 
by Rosen et al. [25] but were not available to confirm their identification were most likely C. 
gattii instead of C. neoformans. They had originated either from Thailand or Southern 

California, regions endemic for C. gattii [28,29]. Most clinical laboratories designate the 

etiologic agents of cryptococcosis as C. neoformans without distinguishing between the two 

species. This is due to the application of the same therapy for both pathogens [30] and thus 

separation between the two species has not been widely practiced.

In order to confirm anti-GM-CSF autoantibodies as a higher risk factor for C. gattii CNS 

infection than for C. neoformans infection, we turned our attention to otherwise healthy C. 
gattii infected patients in Australia for two reasons. Australia is known for the high 

incidence of C. gattii infection in healthy host [13,15,23] and unlike the Chinese patients, 
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Australian patients comprise multiple ethnic groups, which would eliminate any particular 

ethnicity-associated trait in the analysis. Nine plasma samples, eight from C. gattii infected 

and one from C. neoformans infected otherwise healthy Australian patients with 

meningoencephalitis were obtained and screened for GM-CSF autoantibodies. As shown in 

Table 3, six of eight (75%) otherwise healthy C. gattii patients had anti-GM-CSF 

autoantibodies in their plasma while the antibody was not detected from the 

immunocompetent patient with C. neoformans infection. These results clearly demonstrated 

that the GM-CSF neutralizing antibodies predispose healthy hosts to C. gattii infection.

Does this imply that GM-CSF neutralizing antibodies are a risk factor exclusively for 

infection due to C. gattii but not C. neoformans? Not likely since autoantibodies against 

GM-CSF have been known as a risk factor for other fungal infections, which are initiated by 

inhalation. Moreover, we have identified one C. neoformans VNl strain that had been 

isolated from a GM-CSF autoantibody positive, otherwise healthy cryptococcosis patient 

(unpublished data). The reason for higher association of GM-CSF autoantibodies with C. 
gattii infection than with C. neoformans infection is not clear. However, the higher 

prevalence of C. gattii than C. neoformans infection among patients with anti-GM-CSF 

autoantibodies could offer some clues to address the major differences in host’s immune 

responses to these two etiologic agents of cryptococcosis.

3. GM-CSF Neutralizing Antibody and Susceptibility to Cryptococcal 

Infection

Granulocyte-macrophage colony stimulating factor (GM-CSF) is one of the family of 

glycoprotein cytokines that mediates the survival, proliferation, differentiation and function 

of hematopoietic cells [31–33]. In human and mice, GM-CSF is involved in terminal 

differentiation of monocytes to alveolar macrophages [34,35], regulation of neutrophil 

functions [36], differentiation of dendritic cells [37] and augments innate immunity mostly 

through PU.1 [38,39] (Figure 1). The importance of GM-CSF in host defense against C. 
neoformnans has been recognized since the early 1990s when GM-CSF neutralizing 

antibody increased mortality of C. neoformans infected mice with rapid progression of 

meningoencephalitis [40]. Corroborating this observation, GM-CSF knockout mice 

(GM−/−mice) failed to clear the fungus, which led to higher cryptococcal burdens in 

pulmonary cryptococcosis because GM-CSF was required for early influx of macrophages, 

CD4 and CD8 cells into the lung [41]. Additionally, GM-CSF enhanced the anticryptococcal 

activity of human monocytes, neutrophils and macrophages and showed a synergistic effect 

with azoles suggesting a therapeutic implication for cryptococcosis [42,43].

Furthermore, cryptococcosis is reported more frequently than other fungal disease in 

patients with acquired pulmonary alveolar proteinosis (PAP) [44]. When autoantibodies 

block the GM-CSF pathway, differentiation and function of alveolar macrophages are 

impaired and the ability to clear surfactants is diminished [44–46] (Figure 1). As a result, 

pulmonary alveoli eventually accumulate periodic acid-Schiff (PAS)-positive proteinaceous 

surfactant components [44,47,48]. This feature is characteristic of acquired pulmonary 

alveolar proteinosis (PAP) originally termed by Rosen et al., as “idiopathic PAP” [49]. This 
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differentiates the acquired PAP from the primary PAP, which results from mutations in the 

genes encoding the GM-CSF receptor [50], surfactant protein B or C, and from the 

secondary PAP. Secondary PAP develops in association with functional impairment or 

reduced number of alveolar macrophages such as due to some hematologic cancers, 

inhalation of inorganic dusts or toxic fumes and pharmacologic immunosuppression [51]. 

While idiopathic PAP was eventually identified as an autoimmune disease caused by GM-

CSF autoantibodies [51–53], the primary stimulus leading to the production of GM-CSF 

autoantibodies remains unknown [54,55]. To advance the understanding of PAP 

pathogenesis, exogenous GM-CSF was administered to patients with acquired PAP, which 

appeared to benefit patients with therapeutic efficacy [56,57].

Since autoantibodies to GM-CSF cause defects in chemotaxis, adhesion, phagocytosis, 

microbicidal activity and phagolysosome fusion of alveolar macrophages [51], patients with 

PAP are at risk for infections from a variety of respiratory microorganisms including fungal 

species [25,44,58,59]. Among the 27 acquired PAP patients first reported by Rosen in 1958, 

one (patient 24) had been infected by Cryptococcus. The etiologic agent of cryptococcosis in 

this patient could have been C. gattii rather than C. neoformans. The patient was working in 

a lumberyard in Massachusetts when he was diagnosed with cryptococcosis [49]. The 

patients were likely exposed to high concentrations of wood dust. Massachusetts is not 

known as a region endemic to C. gattii but the lumberyard could have been handling trees 

imported from regions where C. gattii is endemic. This case is reminiscent of the first 

autochthonous case of C. gattii infection in Germany in an apparently immunocompetent 

healthy male who had been working in sawmills and woodworking factories and exposed to 

high levels of wood dust, including that of imported tropical trees [60]. This case report had 

appeared at least five years prior to the first discovery of Eucalyptus trees as the 

environmental source of C. gattii in Australia [61].

Although less frequently reported than cryptococcosis [25,26,49,62–65], a literature survey 

revealed five other fungal pathogens that caused infection in patients with acquired PAP. 

They are all mycoses controlled by macrophages upon inhalation: four cases due to 

Aspergillus fumigatus [58,59,66–68], one possible Blastomyces dermatitidis case [69], one 

Coccidioides case [70], one Mucorales case [48] and four cases due to Histoplasma 
capsulatum [49,71]. GM-CSF is reported as a critical cytokine in the generation of an 

optimal protective immune response against pulmonary challenge of mice with H. 
capsulatum [72]. Neutralization of GM-CSF resulted in an increase in fungal burden and 

higher mortality suggesting that the GM-CSF enhances antimicrobial defenses against 

intracellular pathogens such as H. capsulatum. The mode of anti-Histoplasma action 

enhanced by GM-CSF in mice was reported as the sequestration of labile Zn in infected 

macrophages by inducing metallothioneins in a STAT3 and STAT5 dependent manner 

[73,74]. Since Zn is a basic element essential for organismal growth, Zn deprived 

Histoplasma fails to replicate within the macrophages leading to fungal clearance [73,74]. 

GM-CSF also promoted resistance to Aspergillus conidia by maintaining proinflammatory 

response by alveolar macrophages [75].

Why do GM-CSF autoantibodies pose a higher risk for C. gattii than C. neoformans 
infection? Before attempting to address this question, it is necessary to investigate whether 
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anti-GM-CSF autoantibodies are also prevalent in pulmonary C. gattii infection without 

CNS involvement since evaluation of GM-CSF autoantibodies and cryptococcosis thus far 

has only focused on patients with CNS infection. Pulmonary infection without CNS 

involvement is more prevalent with C. gattii than with C. neoformans infection [12,16,76]. If 

GM-CSF autoantibodies are prevalent only among the C. gattii patients with CNS 

involvement, it suggests that GM-CSF may play a more important role in dissemination of 

C. gattii than C. neoformans to the brain from the lung and/or brain immunity against 

C.gattii than C. neoformans. Little is known about the role of GM-CSF in dissemination of 

Cryptococci to the brain or brain immunity against the fungus. Our study with GM-CSF−/− 

mice suggested that a lack of the cytokine function enhances dissemination of both the C. 
neoformans strain H99 and the C. gattii VG1 strain isolated from the GM-CSF antibody 

positive Chinese patient [26] from the lung to the brain (unpublished data). However, the 

effect was significantly greater with the VGI strain compared to H99. Investigation of the 

immunological mechanism responsible for this difference between dissemination of H99 vs. 
the VGI strain is currently underway in our laboratory and should shed more light as to the 

role of GM-CSF in dissemination and brain immunity against C. gattii. Although GM-CSF 

does not appear to influence brain microglial killing of C. neoformans serotype A strains 

[77], there has not been any study on killing of C. gattii by immune cells in the brain.

4. Could C. gattii Infection Have Induced Production of GM-CSF 

Neutralizing Antibodies?

Before GM-CSF autoantibody was known as the cause of PAP, a hypothesis that PAP is an 

abnormal pulmonary response to an unusual infectious agent such as Pneumocyctis carinii 
[49,78,79] (now called P. jirovecii) or C. neoformans [80] gained some support [44]. 

However, the lung lavage fluids of a vast majority of PAP patients have been found to be free 

of pathogens and it has been recognized that most infectious cases in PAP patients are 

secondary in origin [44]. Among the first 27 cases of PAP patients reported, there were only 

two patients with superimposed fungal infections (one case each of histoplasmosis and 

cryptococcosis), which indicates that production of GM-CSF autoantibodies resulting in 

PAP was not due to fungal pathogens [49]. In the case of the seven GM-CSF autoantibody 

positive cryptococcosis patients reported by Rosen and colleagues [25] as well as the seven 

patients reported by Saijo et al. [26], none of them were diagnosed with PAP at the 

presentation of cryptococcal CNS infection. Only one patient developed symptomatic PAP 

two years later and another patient developed radiographic and cytopathologic changes 

without symptoms [25]. This suggests that the GM-CSF autoantibody positive 

cryptococcosis patients could eventually develop PAP but that cryptococcosis was not the 

cause of PAP. This also suggests that PAP symptoms were not necessary for GM-CSF 

autoantibody-associated C. gattii infection. There is a possibility that pulmonary infection 

with C. gattii stimulates GM-CSF production more than C. neoformans and the high 

cytokine production by C. gattii for a long period of time can cause induction of functional 

antibodies against the cytokine. Could C. gattii also exacerbate the production of GM-CSF 

autoantibodies more than C. neoformans in the patients who already are antibody positive? 

This question cannot be answered since the anti-GM-CSF antibody titers in these patients 

prior to C. gattii infection are unknown and there are no longitudinal studies on the GM-CSF 
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autoantibody titers during the infection in such patients. Monitoring the health status and the 

GM-CSF autoantibody titers over time in the healthy Chinese volunteer positive for the 

cytokine antibodies [26] could offer valuable information concerning this question.

5. Conclusions

Anti-GM-CSF autoantibodies are apparently an important underlying risk factor for 

meningoencephalitis caused by Cryptococcus in otherwise healthy individuals. For some 

unknown reason, the neutralizing antibodies against GM-CSF appear to be a greater risk for 

cryptococcosis due to C. gattii than C. neoformans. This etiologic agent’s difference in the 

prevalence of GM-CSF neutralizing antibodies among otherwise healthy cryptococcosis 

patients may offer an important clue in order to address the differences in the host’s 

immunological response to the two pathogens. It is important to also include the GM-CSF 

autoantibody test during immunological profiling of cryptococcosis patients who appear to 

be otherwise healthy. This is not only for the assessment of subtle underlying immune 

disorders but also for better clinical management for those positive for GM-CSF antibodies 

since they may eventually develop PAP after meningoencephalitis.
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Figure 1. 
The role of GM-CSF in differentiation and innate immune function of the alveolar 

macrophage. Matured macrophages also secrete GM-CSF via autocrine and paracrine 

signaling. Adapted with permission from Shibata et al., copyright Elsevier, 1982.
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Table 1

Detection of anti-GM-CSF autoantibodies in plasma from Chinese immunocompetent, otherwise healthy 

cryptococcosis patients with CNS infection [26].

No. Patient Samples Etiologic Agent Anti-GM-CSF AB

20 C. neoformans, VNl, VNlll 0

1 C. gattii, VGl 1

20 normal volunteers None 1
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Table 3

Detection of GM-CSF autoantibodies in plasma of Australian immunocompetent otherwise healthy 

cryptococcosis patients with CNS infection [26].

Patients Ethnicity Etiologic Agent Anti-GM-CSF Ab Mol. Types

1 Caucasian C. gattii + VGl

2 Caucasian C. gattii + VGl

3 Caucasian C. gattii + VGl

4 Aborigine C. gattii + VGl

5 Caucasian C. gattii − VGl

6 Asian C. neoformans − NA

7 Asian C. gattii + VGl

8 Caucasian C. gattii + VGll

9 Asian C. gattii − VGl
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