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Abstract

Background and Purpose—Imaging-based tumor grading is highly desirable, but faces 

challenges in sensitivity, specificity, or diagnostic accuracy. A recently proposed diffusion imaging 

method using a fractional order calculus (FROC) model offers a set of new parameters to probe 

not only the diffusion process itself, but also intra-voxel tissue structures, providing new 

opportunities for non-invasive tumor grading. This study aims at demonstrating the feasibility of 

using the FROC model to differentiate low- from high-grade gliomas in adult patients and 

illustrating its improved performance over a conventional diffusion imaging method employing 

ADC (or D).

Materials and Methods—With approval from the institutional review board (IRB) and written 

informed consents from all participating patients, 54 adult patients (18–70 years old) with 

histology-proven gliomas were enrolled and divided into a low-grade (n = 24) and a high-grade 

group (n = 30). Multi-b-value diffusion MRI was acquired with 17 b-values (0–4000s/mm2) and 

analyzed using a FROC model. Mean values and standard deviations of three FROC parameters 

(D, β, and μ) were calculated from the normal contralateral thalamus (NCTH; as control) and the 

tumors, respectively. Based on these values, the low- and high-grade glioma groups were 

compared using a Mann-Whitney U-test. Receiver operating characteristic (ROC) analysis was 

performed to assess the performance of individual parameters as well as the combination of 

multiple parameters for low- versus high-grade differentiation.
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Results—Each of the three FROC parameters exhibited a statistically higher value (p ≤ 0.011) in 

the low-grade than in the high-grade gliomas, whereas there was no difference in the NCTH (p ≥ 

0.706). The ROC analysis showed that β (AUC = 0.853) produced a higher AUC than D (0.781) 

or μ (0.703), and offered a sensitivity of 87.5%, specificity of 76.7%, and diagnostic accuracy of 

82.1%.

Conclusion—The study has demonstrated the feasibility of using a non-Gaussian FROC 

diffusion model to differentiate low- and high-grade gliomas. While all three FROC parameters 

showed statistically significant differences between the two groups, β exhibited better performance 

than the other two parameters, including ADC (or D).

Introduction

Gliomas are the most common primary brain tumors seen in adults, accounting for 

approximately one third to one half of all cases diagnosed1 and 82% of malignant brain 

tumors2. According to the latest classification by the World Health Organization (WHO), 

gliomas can be divided into four grades, spanning a broad spectrum of biological 

aggressiveness3. Accurate grading of gliomas is pivotal in patient management, not only for 

selecting the most effective therapy for malignant tumors but also for avoiding unnecessary 

aggressive treatment for low-grade tumors prior to malignant transformation, maximizing 

the quality of life for the patients.

MRI has been widely used for initial diagnosis of brain tumors. Its role for tumor grading, 

however, is less established4. Conventional MRI techniques, including pre-contrast T1-

weighted (T1W), T2-weighted (T2W), T2W FLAIR, and post-contrast T1W imaging, have 

limited sensitivity (e.g., 72.5%) and specificity (e.g., 65.0%) for differentiating low-from 

high-grade gliomas4, 5. Perfusion imaging (e.g., CBV) can improve the sensitivity to > 

90%6, but the specificity (e.g., 57.5%) remains inadequate and is subject to the choice of 

CBV threshold values depending on tumor types7–9. With the ability to reveal tumor 

metabolic changes, MRS has also been used for tumor grading6, 10, 11. The long data 

acquisition times, poor spatial resolution, and magnetic susceptibility perturbations at 

specific locations (e.g., near the sinus and the skull) have hindered its widespread clinical 

application6, 10, 11. Because of the aforementioned challenges and limitations faced by MRI/

MRS, tissue biopsy remains to be the gold standard for tumor classification and grading, 

despite its sampling errors, invasiveness, and inability to evaluate residual tumor tissue after 

cytoreductive surgery5.

Over the past two decades, diffusion imaging based on ADC has been evaluated for tumor 

grading12–14. Despite the potential, several studies indicate that ADC values overlap 

considerably among different tumor grades in both adult15–17 and pediatric patients14, 18–20. 

The ADC values of tumor tissues are obtained by characterizing the diffusion MRI signals 

with a mono-exponential function, also known as a Gaussian diffusion model, which 

assumes that the diffusion process within a voxel is homogeneous21. Unlike low-grade 

gliomas, high-grade gliomas are hallmarked with an increased degree of tissue 

heterogeneity22, 23, which is not adequately captured by ADC. To overcome this limitation, a 

number of non-Gaussian diffusion models24–32 have been developed to extract tissue 
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microstructural information, including tissue heterogeneity, beyond what ADC can provide. 

The fractional order calculus (FROC) model26, 29, for example, can produce a set of 

parameters, including diffusion coefficient D (in µm2/ms), fractional order derivative in 

space β, and a spatial parameter μ (in µm). These parameters provide additional avenues to 

probing not only the diffusion process itself (D), but also the intra-voxel tissue heterogeneity 

(β) that can be used to improve tumor characterization26, 29, 33. In this study, we demonstrate 

the feasibility of using a new set of parameters from the FROC model to improve MR-based 

differentiation of low- and high-grade gliomas in adult patients.

Materials and Methods

Patients

The institutional review board (IRB) of the performing hospital approved this prospective 

study and the written informed consents were obtained from all participating patients. Fifty-

six adult patients (18–70 years old) with initial diagnosis of gliomas were recruited, and 

underwent multi-b-value diffusion MRI prior to biopsy or surgical treatment. Two patients 

were excluded from the analysis due to excessive motion. Among the 54 patients included in 

the study, histopathology revealed 24 low-grade gliomas including 1 pilocytic astrocytoma 

(WHO I), 2 oligodendroglioma (WHO I and II), 20 astrocytoma (WHO II; predominantly 

diffuse tumors), and 1 ganglioglioma (WHO II), and 30 high-grade gliomas including 2 

anaplastic oligodendroglioma (WHO III), 10 anaplastic astrocytoma (WHO III), and 18 

glioblastoma multiforme (GBM; WHO IV), according to the WHO guideline of 20073.

Image Acquisition

All MRI examinations were performed on a 3 Tesla scanner (MR750; General Electric 

Healthcare, Milwaukee, WI) with a 32-channel phased-array head coil. The imaging 

protocol included pre-contrast T1W FLAIR, T2W FLAIR, T2W PROPELLER, and multi-b-

value diffusion-weighted (DW) sequences, followed by post-contrast T1W imaging. 

Susceptibility-weighted imaging was applied on selected patients when the conventional 

sequences were inadequate to characterize hemorrhage within tumors. In all sequences, a 

FOV of 24cm and a slice thickness of 5mm were used. The parameters specific to each 

anatomic imaging sequence were: T1W FLAIR: TR/TE = 1750/32.4 ms, TI = 860 ms, flip 

angle = 90°, and matrix size = 320×320; T2W PROPELLER: TR/TE = 4260/102 ms, echo 

train length = 32, and matrix size = 320×224; T2W FLAIR: TR/TE = 8400/150 ms, TI = 

2100 ms, echo train length = 26, and matrix size = 256×256. The DW images were produced 

using a single-shot echo-planar imaging (EPI) sequence with 17 b-values (01, 201, 501, 1001, 

2001, 4001, 6001, 8001, 10001, 12001, 16001, 20002, 24002, 28002, 32004, 36004 and 40004 

s/mm2, where the subscript denotes the number of averages). At each b-value, a Stejskal-

Tanner diffusion gradient was successively applied along the x-, y-, and z-axis to obtain a 

trace-weighted image in order to minimize the influence of diffusion anisotropy. The key 

data acquisition parameters were TR/TE = 3025/94.5 ms, SENSE acceleration factor = 2, 

separation between two diffusion gradient lobes Δ = 38.6 ms, duration of each diffusion 

gradient δ = 32.2 ms, matrix size = 160×160 (reconstructed with a 256×256 matrix), and the 

scan time = 4.5 minutes.
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Image Analysis

Equation [1] was used to fit the intensity (S) of the multi-b-value diffusion images voxel-by-

voxel, according to the FROC diffusion model26, 29:

[1]

where S0 is the signal intensity without diffusion weighting, Gd is the diffusion gradient 

amplitude, and δ and Δ are defined earlier. The β parameter (dimensionless; 0<β≤1) is a 

fractional order derivative with respect to space, and μ (in units of µm) is a spatial constant 

to preserve the nominal units of diffusion coefficient D (in mm2/s). In the fitting, D (which 

reflects the intrinsic diffusivity) was estimated by a mono-exponential model using the data 

acquired at lower b-values (≤ 1000 sec/mm2), in an attempt to make D equivalent to 

conventional ADC. After D was determined, β and μ were subsequently obtained from a 

voxel-wise non-linear fitting using a Levenberg-Marquardt algorithm34 with all b-values.

Regions of interest (ROIs) were first placed on the normal contralateral thalamus (NCTH), 

which served as an internal control, followed by placing ROIs on the solid region of tumors 

by two neuro-radiologists (Y.X. and K.X. with 8 years and 15 years of clinical experience, 

respectively) blinded to the histology grades. Guided by the high-resolution anatomic 

images, regions of hemorrhage, cystic change and/or necrosis were excluded. In the solid 

region of tumors, the enhancing components and the non-enhancing (or not-so-obvious 

enhancing) components were measured and averaged. The ROI-based image analysis was 

performed with customized software developed in MATLAB (MathWorks, Inc., Natick, 

MA).

Statistical Analysis

Mean and standard deviation of D, β, and μ for each patient were calculated from the NCTH 

and the tumor ROIs, respectively. Based on these values, the low-grade and high-grade 

glioma groups were compared using a Mann-Whitney U-test with a statistical significance 

set at p < 0.05.

To investigate the potential value of using combinations of the FROC parameters (D, β, and 

μ) for differentiation of low- and high-grade gliomas, a logistic regression model was 

attempted:

[2]

where a0 is a constant, a1, a2, and a3 are the regression coefficients for D, β, and μ, 

respectively. The regression coefficients were estimated using a maximum likelihood 

method35. Receiver operating characteristic (ROC) analysis was performed to determine the 

area under the ROC curve (AUC) for assessing the performance of tumor differentiation 

using each of the three FROC parameters individually as well as the combination of FROC 

parameters represented by P0. The best cutoff values in the ROC analysis were determined 
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using Youden’s index. To determine the generalizability of the proposed method, a holdout 

cross-validation algorithm was employed by applying the logistic regression model in Eq. 

[2] on a “training dataset” and a “test dataset” (randomly and equally split from the 

samples). The Pearson’s correlation coefficients were then determined between the predicted 

values and the “true” histopathological results. All statistical analyses were carried out using 

SPSS software (SPSS, Inc., Chicago, IL).

Results

Comparison between Representative Patients in Each Group

Figure 1 shows a set of axial images from a representative patient (oligodendroglioma WHO 

I) in the low-grade glioma group, including T2W EPI (Fig. 1a), and the FROC maps (color 

images in Fig. 1b–d). The pre-contrast and post-contrast T1W FLAIR, pre-contrast T2W 

FLAIR, and T2W PROPELLER images are available online (Fig. A). The D, β, and μ maps 

(Figs. 1b–d, respectively) all exhibited higher values in the tumor than in the surrounding 

brain parenchyma. Figure 2 shows a set of axial images from a representative patient (GBM, 

WHO IV) in the high-grade glioma group using a layout similar to that of Fig. 1. The FROC 

parameters D, β, and μ (Figs. 2b–d, respectively) were considerably lower compared to those 

in Figs. 1b–d, leading to a distinct difference between the high- and low-grade tumors. 

Additional anatomic images are available online (Fig B).

Group Comparison based on the FROC Parameters

After calculating the mean values of the FROC parameters from each tumor ROI, the means 

and standard deviations from each patient group were obtained and listed in Table 1. Since D 
is mathematically equivalent to the conventional ADC (see Materials and Methods), an 

agreement of >96% was observed between D from the FROC model and ADC from a mono-

exponential fitting using two b-values (b = 0 and 1000 sec/mm2), as typically done in 

clinical studies. Thus, ADC and D are used interchangeably in this study. Comparison of the 

FROC parameters between the two tumor groups is shown in a set of box plots (Fig. 3). 

Consistent with the representative cases in Figs. 1 and 2, the group analysis exhibited 

statistically higher values (p ≤ 0.011) in the low-grade than the high-grade gliomas for each 

of the three FROC parameters. In comparison, the internal control using NCTH showed no 

significant differences (p ≥ 0.706) in the FROC parameters between the two patient groups, 

as summarized in Table 1.

ROC Analysis

Figure 4 illustrates the ROC curves of using individual FROC parameters for differentiating 

low- (positive) from high-grade (negative) gliomas. Since D and μ were strongly correlated 

(see the results below in Fig. 5), μ was excluded from the logistic regression to avoid over 

weighting. The constant and regression coefficients of D and β were 19.936, −0.012, and 

−24.145, respectively (see Eq. [2]), and the corresponding P0 was used in ROC analysis to 

represent the combination of D and β. Table 2 summarizes the cutoff values with the 

corresponding sensitivity, specificity, accuracy, the positive and negative predicted values 

(PPV and NPV), and asymptotic significance (p-value). Although D offered the highest 

sensitivity (91.7%), its specificity was the lowest (63.3%), leading to a moderate accuracy 
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(77.5%). The sensitivity was noticeably improved by β or the combination of β and D, 

which resulted in the best accuracy (82.1%). The AUC values of the ROC analyses together 

with their 95% confidence intervals (CIs) and standard errors (SEs) are given in Table 3. The 

parameter β had a higher AUC (0.853) than D (0.781) or μ (0.703), indicating a better 

performance for glioma differentiation. It is worth noting that the combination of D and β 
did not improve the sensitivity, specificity, accuracy and AUC when compared with β.

The cross-validation analysis showed that the Pearson’s correlation coefficients between the 

predicted values and the “true” histopathological results were 0.529 (p-value < 0.01) for the 

training set and 0.625 (p-value < 0.01) for the test set. The significance test for the difference 

between the two correlations (Fisher’s z-test) resulted in a p-value of 0.617, suggesting that 

the training and test datasets did not produce statistically different correlations.

The scatter plots in Fig. 5 illustrate the possible (or lack of) correlation between the FROC 

parameters using all patient data. A very strong correlation between D and μ was observed 

(Fig. 5a) with a Pearson’s correlation coefficient of r = 0.930 (p < 0.001). In contrast, a 

noticeably weaker correlation was seen between D and β (r = 0.766 p < 0.001). In Fig. 5b, 

the best cutoff values of D and β are indicated by the vertical (red) and the horizontal (green) 

lines, respectively. The diagonal black line in Fig. 5b corresponds to the cutoff probability of 

P0 = 0.662 for the combination of D and β. The close proximity between the black and green 

lines is a reflection that D has a considerably smaller role than β in the equation P0 = exp 

(19.936 − 0.012D − 24.145 β) / [1 + exp (19.936 − 0.012D − 24.145 β)].

Discussion

We have investigated the feasibility of using a set of novel FROC diffusion parameters to 

differentiate low- from high-grade gliomas in adults and demonstrated that D, β, and μ 

exhibited significant differences between the two tumor groups. When used individually, β 
outperformed the other two parameters. These results are important as they demonstrate that 

new parameters from the FROC diffusion model can contribute positively to glioma 

differentiation and extend the capability of diffusion imaging beyond conventional ADC.

Over the past two decades, ADC has been applied to differentiating a number of brain 

tumors14, 16, 18, 36, including gliomas. Although the sensitivity of using ADC to detect 

neoplastic changes has been demonstrated, it is well known that considerable overlap in 

ADC values exists between low- and high-grade brain tumors14, 16, 17, compromising the 

specificity and diagnostic accuracy. The sub-optimal performance of ADC for tumor grading 

originates, at least in part, from the use of a Gaussian diffusion model (i.e., the mono-

exponential model) which assumes a homogeneous diffusion process in tumor, despite 

overwhelming evidence of tumor heterogeneity37–39. In the presence of heterogeneity, non-

Gaussian diffusion models can be more effective in characterizing the complex diffusion 

process, particularly at high b-values (e.g., b ≥ 1500 s/mm2)15, 21–32, 36, 40.

Like other non-Gaussian diffusion models, the FROC diffusion model provides new 

parameters complementary to ADC. In the FROC model, correlation between β and intra-

voxel tissue heterogeneity has been suggested in several studies on phantoms and tissue 
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specimens26, 29, 41, 42. This correlation is also supported by in vivo studies indicating that 

tissues with a smaller β value exhibit a larger degree of intra-voxel heterogeneity22, 27, 33, 43. 

It is interesting to note that tissue heterogeneity is also a contributing factor to the WHO 

tumor grading system44. Thus, β parameter may provide a link between an MR 

measurement and WHO grades. The lower β values (i.e., high degree of intra-voxel 

heterogeneity) seen in high-grade gliomas (Figs. 2 and 3) are consistent with the increased 

degree of tissue heterogeneity because of the presence of edema, necrosis, hemorrhage, 

micro-calcification, etc. This observation is also consistent with a recent study on pediatric 

brain tumors33, 43 in which high grade tumors showed significantly lower β value compared 

to their low-grade counterpart. Further studies on well-controlled excised tissues are needed 

to directly establish and validate the correlation between diffusion heterogeneity suggested 

by β and structural heterogeneity revealed by histopathology.

Kwee et al. recently studied high-grade gliomas27 using an alternative non-Gaussian 

diffusion model based on a stretched-exponential formulism28. Although this model is 

similar to the FROC model, the stretched-exponential is developed empirically instead of 

using fractionalized Fick’s diffusion equation. The heterogeneity index α in the stretched-

exponential model resembles to β in this study. The α value for high-grade gliomas was 

reported to be 0.58 ± 0.08, which is lower than β = 0.77 ± 0.06 in our study. This is most 

likely due to the different diffusion times (Δ) employed in these studies45. Compared to the 

study of Kwee et al., our study produced a noticeably smaller standard deviation in β 
because of the relatively large number of b-values employed. Although a minimum of 4 b-

values is needed to obtain the three FROC parameters, a larger number of b-values improve 

the robustness of the non-linear fitting, particularly when the signal-to-noise ratio (SNR) is 

low.

Using all the patient data in this study, a strong linear correlation was observed between D 
and μ (Fig. 5a). As μ has been related to the dimension of free diffusion space26, the 

correlation in Fig. 5a reflects the classical relationship between diffusion rate and mean free 

length. It is interesting to note that β was less correlated with D or μ. This weaker correlation 

can be exploited to improve specificity and diagnostic accuracy, as these two parameters act 

more independently. In this study, we have seen a number of evidences suggesting β is a 

more dominant parameter than D for differentiating the low- from high-grade gliomas, as the 

combination of β with D did not significantly improve the performance compared to using D 
alone. This suggests the important role of tumor heterogeneity in various tumor grades.

Our study has several limitations. First, despite the improvement offered by the FROC 

model in glioma grading, the sensitivity, specificity, and diagnostic accuracy remain sub-

optimal. An extension of the FROC model to capturing temporal heterogeneity, as 

demonstrated recently42, 43, suggests new opportunities to further improve the performance. 

These non-Gaussian diffusion imaging techniques may eventually help complementing 

surgical biopsy in situations where tissue biopsy is difficult or risky. Second, the number of 

patients enrolled in the study is moderate. As such, we did not attempt to further 

distinguishing glioma sub-types or individual grades. Finally, limited by the SNR, the 

highest b-value attempted in this study was 4000 s/mm2, although an even higher b-value 

may further improve reliability of extracting the FROC diffusion parameters26, 29, 45.
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Despite these limitations, we have demonstrated the feasibility of using high b-value 

diffusion MRI together with the FROC diffusion model to improve differentiation between 

low- and high-grade gliomas. In particular, the new parameter β offers a higher diagnostic 

accuracy than using diffusion coefficient (D or ADC) alone, and is the most useful and 

dominant parameter among the three FROC parameters for differentiating glioma grades. 

Although the focus of this study is on gliomas, the non-Gaussian diffusion imaging approach 

demonstrated herein is expected to have applications in other disease processes which 

involve tissue heterogeneity changes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A 41 years-old female patient with a low-grade glioma (oligodendroglioma, WHO grade I). 

T2W EPI at b = 0 with the tumor ROI encircled in green (a), and FROC parameter maps of 

D (b), β (c), and μ (d) with the tumor ROIs indicated by the black contours (see online 

Figure A for a complete set of images including axial pre-contrast T1W FLAIR (e), post-

contrast T1W FLAIR (f), pre-contrast T2W FLAIR (g), and pre-contrastT2W PROPELLER 

(h) images). Compared to the GBM patient in Fig. 2, all three FROC parameters exhibited 

higher values.
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Figure 2. 
A 38 years-old male patient with a high-grade glioma (GBM, WHO grade IV). T2W EPI at 

b=0 with the tumor ROI encircled in green (a), and FROC parameter maps of D (b), β (c), 

and μ (d) with the tumor ROIs indicated by the black contours (see online Figure B for a 

complete set of images including axial pre-contrast T1W FLAIR (e), post-contrast T1W 

FLAIR (f), T2W FLAIR (g), and T2W PROPELLER (h) images). Compared to the 

oligodendroglioma patient in Fig. 1, all three FROC parameters exhibited lower values.
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Figure 3. 
Box plots of FROC parameters D (a), β (b), and μ (c) between the low- (L) and high-grade 

(H) gliomas. Boxes represent the 25th and 75th percentiles with the median indicated by the 

middle line in the box. Vertical end bars denote the range of data except for the outliers (i.e., 

values larger than the 75th percentile or smaller than the 25th percentile) represented by red 

+. The asterisk (*) indicates a significant difference (p < 0.05) between the low- and high-

grade gliomas.
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Figure 4. 
ROC curves for β (in red), D (in green), μ (in blue) for differentiating between low- and 

high-grade gliomas. The diagonal line serves as a reference.
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Figure 5. 
Scatter plots of D vs. μ (a) and D vs. β (b) from all patients (the blue diamonds represent 

low grade and the red triangles denote high grade). A very strong correlation between D and 

μ (a) (Pearson’s correlation coefficient r = 0.930; p < 0.001) and a weaker correlation 

between D and β (b) (Pearson’s correlation coefficient r = 0.766; p < 0.001) are illustrated. 

The dashed lines in (b) indicate the cutoff values for D (red), β (green), and the combination 

of D and β (black; linear equation: β=0.000497D+0.798)
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Table 1

FROC parameters of gliomas and normal contralateral thalamus (NCTH) of patients with low-grade (LG) and 

high-grade (HG) gliomas.

D (µm2/ms) β μ (µm)

LG 1.54±0.35 0.85±0.05 8.43±0.63

Gliomas HG 1.19±0.36 0.77±0.06 8.01±0.59

p-value* <0.001 <0.001 0.011

LG 0.76±0.06 0.78±0.03 7.33±0.38

NCTH HG 0.76±0.04 0.78±0.03 7.34±0.33

p-value* 0.876 0.706 0.890

*
Mann-Whitney U-test
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Table 3

AUC values of the ROC analyses with their 95% confidence intervals (CIs) and standard errors (SEs) using D, 

β, μ, and combination of D and β for differentiating low- (positive) from high-grade (negative) gliomas.

AUC 95% CI of AUC* SE**

D 0.781 0.647 to 0.882 0.0633

β 0.853 0.730 to 0.934 0.0511

μ 0.703 0.563 to 0.819 0.0736

D+ β 0.853 0.730 to 0.934 0.0511

*
Binomial exact Cis.

**
SEs were computed by the method of DeLong et al.46 using MedCalc.
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