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Abstract

Chronic stress plays a crucial role in the development of psychiatric diseases, such as anxiety and 

depression. Dysfunction of the medial prefrontal cortex (mPFC) has been linked to the cognitive 

and emotional deficits induced by stress. However, little is known about the molecular and cellular 

determinants in mPFC for stress-associated mental disorders. Here we show that chronic restraint 

stress induces the selective loss of p11 (also known as annexin II light chain, S100A10), a 

multifunctional protein binding to 5-HT receptors, in layer II/III neurons of the prelimbic cortex 

(PrL), as well as depression-like behaviors, both of which are reversed by selective serotonin 

reuptake inhibitors (SSRIs) and the tricyclic class of antidepressant (TCA) agents. In layer II/III of 

the PrL, p11 is highly concentrated in dopamine D2 receptor-expressing (D2+) glutamatergic 

neurons. Viral expression of p11 in D2+ PrL neurons alleviates the depression-like behaviors 

exhibited by genetically manipulated mice with D2+ neuron-specific or global deletion of p11. In 

stressed animals, overexpression of p11 in D2+ PrL neurons rescues depression-like behaviors by 

restoring glutamatergic transmission. Our results have identified p11 as a key molecule in a 

specific cell type that regulates stress-induced depression, which provides a framework for the 

development of new strategies to treat stress-associated mental illnesses.
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INTRODUCTION

Corticosteroid stress hormones serve as important regulators of cognitive and emotional 

processes by exerting complex effects in the central nervous system.1, 2, 3, 4, 5, 6 Exposure to 
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prolonged stress induces heightened vulnerability to anxiety, depression and other mood 

disorders.7, 8, 9

Among the multiple brain areas involved in cognition and emotion, the medial prefrontal 

cortex (mPFC), a region controlling higher-level ‘executive’ functions, is a primary target of 

stress hormones.5, 10, 11, 12 Structural and functional changes induced by stress in the mPFC 

have been correlated with emotional disturbances in humans13, 14, 15 and rodents.3, 11, 12 

Glutamate receptor-mediated synaptic transmission, which controls mPFC network activity, 

is crucial for mood and working memory.16, 17 Repeated stress negatively influences mPFC-

mediated cognitive processes by disturbing glutamatergic signaling in rats.18, 19

A key question waiting to be answered is the molecular and cellular basis of stress-induced 

depression. In the brain, the multifunctional protein p11 which interacts with 5-HT 

receptors, ion channels, enzymes, and chromatin-remodeling factors, has been found to be 

critically involved in depression-like behaviors and/or antidepressant actions.20, 21, 22, 23 p11 

is enriched in distinct neuronal types, such as cholinergic neurons in nucleus accumbens 

(NAc),24 mossy cells and basket cells in dentate gyrus,20 and layer 5 corticostriatal 

projection neurons.25 However, it is largely unknown whether p11 in specific subtypes of 

neurons controls depressive phenotypes in response to chronic stress. In this study, we 

sought to investigate the anatomical distribution and identify the neuronal cell types of p11 

in mPFC and to analyze its potential role in stress-induced depression. The synaptic 

mechanisms underlying the behavioral effects of p11 were also explored by examining 

glutamatergic signaling in mPFC of stressed animals.

MATERIALS AND METHODS

Animals

Eight transgenic mouse lines were generated and used for this study: p11-EGFP 
mice,21, 22, 26 D2-Cre mice,24, 26 D2-tdT mice (D2-Cre line crossed with tdTomato line),20 

p11 cKO mice (D2-Cre line crossed with p11f/f line27), p11 cKO-tdT mice (D2-Cre crossed 

with tdTomato line and p11 cKO line), p11 gKO mice (D2-Cre line crossed with p11 KO 

line21), p11 gKO-tdT mice (D2-Cre crossed with tdTomato line and p11 KO line), D1-tdT-
D2-eGFP mice (D1-Cre26 crossed with tdTomato line and D2-eGFP mice). The C57BL/6J 

mice and tdTomato reporter mice (Rosa26-CAG-tdTomatoloxp/ +, 007908) were purchased 

from the Jackson Laboratory. We produced the progeny for each line by in vitro fertilization 

(IVF) and embryo transfer (ET) techniques (Transgenic Facility, The Rockefeller University, 

New York, NY, USA).

All experiments were approved by The Rockefeller University Institutional Animal Care and 

Use Committee and were performed in accordance with the guidelines described in the 

National Institutes of Health Guide for the Care and Use of Laboratory Animals. Mice were 

housed in groups of up to five animals on a 12 h dark/light cycle at 22°C and maintained 

with rodent diet (Picolab) and water available ad libitum. Male mice were used for all 

experiments.
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Restraint stress and antidepressant treatments

The restraint stress treatment was performed as previously described.20, 28 Briefly, mice 

were housed 2 per cage and individually placed head-first into well-ventilated 50 ml 

polypropylene conical tubes, which were then plugged with a 4.5-cm-long middle tube, and 

finally tied with a cap of the 50 ml tube. After each session of restraint stress, the mice were 

returned to their home environment, in which they were housed in pairs in normal plastic 

cages with free access to food and water. From the next day after the last restraint session, 

imipramine, fluoxetine and escitalopram were administered by a daily I.P. injection (20 

mg/kg/day) for up to 4 weeks. Imipramine, fluoxetine and escitalopram were purchased 

from Sigma-Aldrich. Fluoxetine and escitalopram were dissolved in dimethylsulfoxide 

(DMSO) and then diluted in saline. Imipramine was dissolved in saline. Each drug was 

finally diluted in 100 µl of 0.9% saline and administered at the dose indicated. Control 

groups were administered saline.

Viruses

For gene silencing, Lenti-GFP-shRNAmir (GFP-shRNA, RHS4348) and Lenti-p11-GFP-

shRNAmir (p11-shRNA, VGM5524-99213741) viruses were purchased from Thermo 

Scientific. For Cre-mediated recombination/inversion of the flanked p11 as DIO (double-

floxed inverse ORF) viruses, AAV vector production of the AAV2 serotype was performed 

by the University of Pennsylvania vector core. AAV2-EF1a-DIO-eYFP-WPRE-hGH was 

used as the control vector. AAV2-EF1a-DIO-p11-WPRE-hGH vector construction for 

overexpression of p11 was made by Dr. Jung-Hyuck Ahn (Ewha Womans University, Seoul, 

South Korea). Double floxed AAV constructs were generated by insertion of the inverted 

p11 expression cassettes between double lox 2722 and lox P incompatible sites (DIO). In the 

absence of Cre expression, the p11 or eYFP were not produced. In the presence of Cre 

expression, the transgene will be FLEXed, leading to the expression of the p11 or eYFP. The 

titers (genome copies per milliliter) of the AAVs were as follows: 4.04e12 for AAV2-EF1a-

DIO-eYFP-WPRE-hGH (AAV_eYFP) and 3.64e12 for AAV2-EF1a-DIO-p11-WPRE-hGH 

(AAV_p11).

Stereotaxic surgery

All stereotaxic injections were carried out on an Angle Two stereotaxic frame for mouse 

with motorized nanoinjector (Leica). Ten-week-old male mice were anesthetized with 

ketamine and xylazine and stereotaxically injected with Lenti-GFP-shRNA, Lenti-p11-GFP-

shRNA, AAV2-EF1a-DIO-eYFP-WPRE-hGH and AAV2-EF1a-DIO-p11-WPRE-hGH into 

the layer II/III PrL (AP: 1.98 mm; ML: ± 0.12 mm; DV: −2.21 mm from bregma). The total 

injection volume was 0.5 µl. All injections were performed at a rate of 0.15 µl/min using 

Hamilton syringes (33 gauge) and the needle was kept in place for an additional five 

minutes. After 14 days of injection, depression-like behavioral tests and electrophysiological 

recording were performed.

Behavioral assessments

As previously described,20, 28 all behavioral tests were performed during the light cycle in a 

dedicated sound-proof behavioral facility by experimenters blind to treatment- and genotype 
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information. Mice were brought to the testing room 30 min before the start of each 

behavioral test and remained in the same room through the test. At all times, sound was 

masked with 60–65 dB white noise.

Tail suspension test—Mice were suspended individually by their tails. The rod was 

fixed 50 cm above the surface of a table covered with a safety mat in a sound-isolated room. 

The tip of the tail was fixed using adhesive Scotch tape; the duration of the test was 5 min. 

The test session was videotaped and immobility scored by using automated TST/FST 

analysis software from Clever Systems.

Forced swim test—In brief, mice were placed in a glass cylinder (height: 30 cm, 

diameter: 16 cm) containing water at 24 °C and a depth of 14 cm so that they could neither 

escape nor touch the bottom. Mice were forced to swim for 6 min. The animals were 

habituated for the first 1 min and behavior was monitored over the next 5 min. A 6 min test 

session was videotaped and immobility scored by using automated TST/FST analysis 

software from Clever Systems.

Sucrose preference test—Mice were presented with two water bottles. After habituation 

for 1 day, mice were given a free choice between two bottles, containing tap water or 2% 

sucrose solution. To prevent a possible effect of drinking behavior, the left/right location of 

the bottles was switched every day. The consumption of water and sucrose solution was 

measured daily for 3 days by weighing the bottles. The sucrose preference was calculated as 

the ratio of consumed sucrose solution to consumed water.

Novelty-suppressed feeding test—After 24 hours food-deprivation (water was 

provided ad libitum), mice were assayed by NSF, At the end of this time, a single 2 × 2 cm 

oval food pellet was placed on a circular piece of white filter paper (150 mm diameter) 

positioned in the center of the open field (40 × 40 × 40 cm). Each mouse was placed in a 

corner of the open field. The latency to first bite the lab chow pellet and consumption over 

15 min were recorded. Immediately after the mouse began to eat the chow, the tested animal 

was placed in its home cage alone with a weighed piece of chow for 30 min. At the end of 

this period, the amount of food consumed was determined by weighing the piece of chow.

Locomotion test—Locomotor activity was measured in the open field of a Plexiglas 

chamber (40 × 40 × 40 cm). Each mouse was placed in the corner of the open field, and 

locomotion was recorded for the indicated period for 30 min. An automated Superflex 

software (Accuscan Instruments) was used to measure the total distance traveled across a 

session. The measures were automatized using two rows of infrared photocells placed 20 

and 50 mm above the floor, spaced 31 mm apart. Photocell beam interruptions were 

recorded on a computer using the Superflex software.

Immunohistochemistry

Brains were perfused transcardially with cold PBS, followed by 4% paraformaldehyde 

(PFA) and postfixed in the same solution overnight at 4°C. The brains were coronally cut 

into 40 µm-thick sections with a vibratome (VT 1000S, Leica). Free-floating sections were 
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washed three times with 0.1 M PBS containing 0.1% Triton X-100 in PBS-T, pH 7.4, for 15 

min each time and permeabilized with PBST in 2% normal goat serum, 2% normal horse 

serum, and 2% BSA for 1 h. After blocking, sections were incubated with the primary 

antibodies diluted in the blocking buffer. The immunohistochemistry was done using the 

following antibodies: anti-p11 (goat polyclonal, 1:200, R&D systems), anti-eGFP (chicken 

polyclonal, 1:500, Abcam), anti-CaMKII (rabbit polyclonal, 1:500, Santa Cruz), anti-

GAD67 (mouse monoclonal 1:1000, Millipore). After 24 hours incubation, sections were 

washed, and incubated with Alexa-fluor-conjugated secondary antibodies (1:500, 

Invitrogen). Slices were washed three more times in PBS-T for 15 min each and mounted 

with Vectashield mounting medium with DAPI (Vector Laboratories) onto microscope 

slides. All the sections were examined under a Zeiss LSM710 confocal microscope or wide-

field fluorescence microscope (Zeiss). All histology findings were confirmed in at least five 

different animals.

Cell counting

The number of eGFP, tdTomato, p11, CaMKII or GAD67-immunolabeled neurons was 

quantified with ImageJ software (NIH). Three to five coronal sections per animal were 

quantified and averaged for each animal. Fluorescence images for obtaining layer II/III PrL 

were acquired using a Zeiss LSM710 confocal microscope with a ×40/0.50 NA objective 

(45176.65 um2; 262144 pixels). Background autofluorescence was accounted for by 

applying an equal cut-off threshold to all images. All imaging and analyses were performed 

blind to the experimental conditions. A one-way ANOVA followed by Newman–Keuls post 

hoc test multiple comparisons or one-sample t-tests were used to analyse data and later 

graphed using Microsoft Excel or Prism Software (GraphPad).

Western blot analysis

Tissue samples were obtained from the PrL of the mice. Tissue samples were homogenized 

in RIPA buffer (Sigma-Aldrich) supplemented with a protease inhibitor cocktail (Complete-

EDTAfree; Roche) and a phosphatase inhibitor cocktail (PhosStop, Roche). Protein 

concentrations were determined using a BCA assay (Thermo Scientific). 30 µg of protein 

were denatured in Laemmli sample buffer at 95 °C for 5 min and separated by SDS-PAGE 

using 4–20% Tris-glycine gel (Life Technologies). After transfer of proteins to nitrocellulose 

membranes, blots were blocked in 5% non-fat milk for 1 h at room temperature and 

incubated with the respective primary antibody at 4 °C overnight. Primary antibodies were 

as follows: anti-p11 (goat polyclonal, 1:500, R&D systems), anti-β actin (mouse 

monoclonal, 1:5000, Abcam). Primary antibodies were detected using either HRP-linked 

donkey anti–goat IgG (1:2000, Santa Cruz) or HRP-linked sheep anti–mouse IgG (1:10000, 

GE Healthcare) together with Western Lightning Plus-ECL (Perkin Elmer). Signals were 

quantified with ImageJ software (NIH).

Quantitative RT-PCR

Reverse transcription was performed with 1 µg of total RNA using ImProm-II Reverse 

Transcription System (Promega) with Oligo dT primer according to the manufacturer’s 

protocol. 10 ng of cDNA was used for each qPCR reaction and all samples were run in 

triplicate. Q-PCR was carried out using an Applied Biosystems 7900HT system. Taqman 
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Universal PCR Master Mix (Life Technologies) was used for all analyses. Taqman gene 

expression assays (FAM) from Life Technologies were as follows: p11 (Mm00501457_m1) 

and Gapdh (Mm99999915_g1). All data were normalized to TaqMan Rodent GAPDH 

Control, and relative expression levels between conditions were calculated by the 

comparative CT (2−ΔΔCT) method.

Electrophysiological recordings

As previously described,19, 29 whole-cell voltage-clamp recording technique was used to 

measure synaptic currents in layer II/III PrL D2+ neurons. After chronic restraint stress 

treatment with or without viral (AAV2-EF1a-DIO-eYFP-WPRE-hGH or AAV2-EF1a-DIO-

p11-WPRE-hGH) injection into the layer II/III PrL, D2-tdT mice (D2-Cre line crossed with 

tdTomato line) or p11 cKO-tdT mice (D2-Cre crossed with tdTomato line and p11 cKO line) 

were used for electrophysiological experiments. Red fluorescent D2+ neurons were selected 

for recordings. Mouse slices (300 µm) were positioned in a perfusion chamber attached to 

the fixed stage of an upright microscope (Olympus) and submerged in continuously flowing 

oxygenated ACSF (in mM: 130 NaCl, 26 NaHCO3, 1 CaCl2, 5 MgCl2, 3 KCl, 1.25 

NaH2PO4, 10 glucose, pH 7.4, 300 mOsm). Bicuculline (10 µM) and CNQX (20 µM) were 

added for NMDAR-EPSC recordings. Bicuculline and D-APV (50 µM) were added in 

AMPAR-EPSC recordings. Patch electrodes contained an internal solution (in mM): 130 Cs-

methanesulfonate, 10 CsCl, 4 NaCl, 10 HEPES, 1 MgCl2, 5 EGTA, 2 QX-314, 12 

phosphocreatine, 5 MgATP, 0.2 Na3GTP, 0.1 leupeptin, pH 7.2–7.3, 265–270 mOsm. Layer 

II/III PrL D2+ neurons were visualized with a ×40 water-immersion lens and recorded with 

the Multiclamp 700A amplifier (Molecular Devices). Evoked EPSC were generated with a 

pulse from a stimulation isolation unit controlled by an S48 pulse generator (Grass 

Technologies). A bipolar stimulating electrode (FHC, Bowdoinham) was placed ~100 µm 

from the neuron under recording. For NMDAR-EPSC, the cell (clamped at −70 mV) was 

depolarized to +40 mV for 3 s before stimulation to fully relieve the voltage-dependent 

Mg2+ block. Membrane potential was maintained at −70 mV for AMPAR-EPSC recordings. 

For input-output responses, EPSC was elicited by a series of pulses with different 

stimulation intensities (50 – 90 µA) delivered at 0.033 Hz. For paired-pulse ratios, AMPAR-

EPSC was evoked by double pulses with various intervals (0.02 – 0.4 sec). Data analyses 

were performed with Clampfit (Axon instruments, Molecular Devices), Kaleidagraph 

software (Albeck, Synergy Software) and Prism software (GraphPad).

Statistics

Two-sample comparisons were performed using the Student's t test, while multiple 

comparisons were made using one-way ANOVA followed by a Newman–Keuls post hoc test 

and two-way ANOVA by a Bonferroni post hoc test to compare selected pairs of data. 

PRISM software (GraphPad Software) was used to perform statistical analyses. All data are 

presented as the mean ± s.e.m.
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RESULTS

Chronic stress induces the loss of p11 expression in PrL and depression-like behaviors

To identify the neuronal types of p11 in mPFC that may be involved in stress-induced 

depression, we first examined the anatomical and cellular distribution of p11 using p11 

promoter-driven EGFP (p11-EGFP) mice. GFP immunofluorescence showed that p11 was 

present in all three subregions of mPFC, anterior cingulate cortex (ACC), prelimbic cortex 

(PrL) and infralimbic cortex (IL), but that it was most abundant in layer II/III pyramidal 

neurons of PrL (Figures 1a and b).

Next, we investigated whether p11 expression in mPFC, especially PrL and IL (rodent 

homolog of human orbitofrontal cortex30), was altered by stress. Mice exposed to chronic 

restraint stress (RST, 2 hours/day, 14 days)20, 28 exhibited significantly reduced p11 

expression in layer II/III PrL neurons, but not in IL neurons, compared to the control group 

(Figures 1c–e).

In parallel, we also examined behavioral outcomes of chronic stress. Compared to the 

control group, mice exposed to RST exhibited significantly increased immobility in the tail 

suspension test (TST, Figure 1f) and forced swim test (FST, Figure 1g), two measurements 

of helplessness and hopelessness. Stressed mice also showed anhedonia in the sucrose 

preference test (SPT, Figure 1h) and anxiety in the novelty suppressed feeding test (NSF, 

Figure 1i), while food consumption and locomotor activity were not altered (data not 

shown). These data indicate that the chronic stress paradigm induces depression-like 

behaviors.

To determine whether the stress-induced loss of PrL p11 is responsible for depression-like 

behaviors, we knocked down p11 expression by injecting p11 shRNA lentivirus into PrL 

(Supplementary Figure S1a). The p11 shRNA induced a potent suppression of p11 

expression in PrL (Supplementary Figure S1b). The p11 shRNA-injected mice exhibited 

significantly increased immobility in both TST and FST (Supplementary Figures S1c and d), 

indicating that the loss of p11 from PrL contributes to the manifestation of depression-like 

behaviors.

Antidepressants restore p11 levels in PrL and alleviate stress-induced depression

To further determine the role of PrL p11, we investigated the impact of antidepressant 

treatment on stress-induced changes in p11 expression and depression-like behaviors. 

Western blotting and quantitative PCR (qPCR) results revealed that the levels of p11 protein 

and mRNA in PrL were reduced in chronically stressed mice, which were reversed by 2-

week treatment with three distinct antidepressants, imipramine (TCA), fluoxetine (SSRI) 

and escitalopram (SSRI) (Figures 2a and b). These antidepressants also rescued the 

depression-like behaviors in TST, FST, SPT and NSF (Figures 2c–f).

Chronic stress-induced depression-like behaviors are long-lasting, but can be reversed over 

time28, 31. Therefore we also examined the natural recovery of stress-induced changes in p11 

expression and behavior. At 14 days post-stress, the level of p11 in PrL was significantly 

lower than control animals, but at 90 days post-stress, the level of p11 in PrL was restored to 
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the control level (Supplementary Figures S2a and b). In parallel, the depression-like 

behaviors measured by TST and FST disappeared 90 days, but not 14 days, post-stress 

(Supplementary Figures S2c and d). More detailed time courses showed that the recovery of 

p11 expression and behaviors were well correlated (Supplementary Figure S2).

The expression of p11 in D2R-containing glutamatergic PrL neurons determines 
depression-like behavior

Given the heterogeneity of PrL neurons, we sought to determine which neuronal subtypes 

were involved in stress-induced depression. Immunofluorescence staining revealed that, in 

layer II/III PrL, p11 was present in most (~88%) D2 dopamine receptor-expressing (D2+) 

neurons (Figure 3a; Supplementary Figures S3a–c; Supplementary Table S1–3), but only in 

a few (~8%) D1 dopamine receptor-expressing (D1+) neurons (Supplementary Figure S3a; 

Supplementary Table S1). Most (~88%) of the p11+/D2+ neurons in layer II/III PrL also 

expressed Ca2+/calmodulin-dependent kinase II (CaMKII, Supplementary Figure S3b; 

Supplementary Table S2), but not glutamic acid decarboxylase 67 (GAD67, Supplementary 

Figure S3c; Supplementary Table S3), indicating that they are glutamatergic neurons.

To determine the role of p11 in layer II/III PrL D2+ (D2+ PrL) neurons, we generated 

conditional knockout mice with p11 deletion selectively in D2+ neurons (p11 cKO; D2-Cre 

× p11f/f). The p11 cKO mice displayed depression-like behaviors as demonstrated by 

increased immobility in TST and FST (Figures 3b–c), and anxiety-like behavior as indicated 

by increased latency to feed in NSF (Figure 3e). To specifically manipulate p11 expression 

in D2+ PrL neurons, we injected the Cre-dependent p11 overexpression virus (AAV_p11; 

AAV2-EF1a-DIO-p11-WPRE-hGH) to layer II/III PrL of p11 cKO mice, followed by 

behavioral measurements. As shown in Figures 3b–e, the depressive phenotypes of p11 cKO 

mice in TST, FST, SPT and NSF were all rescued by viral expression of p11 in D2+ PrL 

neurons.

Global p11 knockout (p11 gKO; D2-Cre × p11 KO) mice also manifested depressive 

behaviors in TST, FST, SPT and NSF (Figures 3g–j), consistent with previous reports on p11 

KO mice.21, 24 Viral expression of p11 (AAV_p11) in D2+ PrL neurons of p11 gKO mice 

(Figure 3f) rescued all the depression-like phenotypes (Figures 3g–j). Collectively, these 

data indicate that restoration of p11 expression in D2+ PrL neurons is sufficient for the 

reversal of depressive behaviors induced by global deletion of p11.

p11 overexpression in D2R-containing PrL neurons ameliorates stress-induced behavioral 
and synaptic deficits

Given the loss of PrL p11 in stressed animals (Figures 1 and 2), we examined whether 

restoring p11 in D2+ PrL neurons could reverse stress-induced depression. TST, FST, SPT 

and NSF indicated that, compared to control D2-Cre mice [CON(D2)], chronically stressed 

D2-Cre mice [RST(D2)] exhibited depression-like behaviors, which were reversed by 

injecting AAV_p11, but not AAV_eYFP, to layer II/III PrL after stress (Figures 4a–d). 

Interestingly, overexpressing AAV_p11 in layer II/III PrL of control mice [CON(D2)] 

induced antidepression-like behaviors (Figures 4a and b). These data further confirm that 

p11 in D2+ PrL neurons contributes to stress-induced depression.
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To address the potential mechanisms underlying the role of p11 in stress-induced depression, 

we investigated the impact of p11 on PrL glutamatergic transmission, which plays a key role 

in regulating stress responses and emotional processes.5, 6, 12 We first examined the 

alteration of synaptic strength mediated by AMPARs and NMDARs in PrL neurons from 

stressed animals. The input-output curves of AMPAR-EPSC and NMDAR-EPSC were 

significantly decreased in layer II/III PrL D2+ neurons of stressed mice [RST(D2),Figures 

4e–h], in parallel with the loss of p11 expression in these cells (Figures 1c and d; Figures 2a 

and b). More importantly, overexpression of p11 (AAV_p11) in D2+ PrL neurons of stressed 

mice restored both AMPAR-EPSC and NMDAR-EPSC (Figures 4e–h). Manipulation of p11 

in D2+ PrL neurons did not significantly alter the coefficient of variation (CV) of AMPAR-

EPSC and NMDAR-EPSC, or paired-pulse ratio (PPR) of AMPAR-EPSC (Supplementary 

Figures S4a–c), pointing to a postsynaptic locus for p11 effects on glutamatergic signaling. 

Collectively, these results show that p11 in D2+ PrL neurons may control stress-induced 

depression by regulating glutamatergic synaptic transmission.

DISCUSSION

Chronic stress causes the development of mood disorders including anxiety and 

depression.1, 2, 3, 5, 6 Our previous studies have implicated p11 as an important molecule 

involved in the etiology of depression and the mechanism of action of antidepressants.22 p11 

was initially identified as a binding protein for serotonin receptors using a yeast two-hybrid 

screen.21, 23 The level of p11 mRNA and protein is downregulated in the brain of depressed 

humans, suicide subjects and a mouse model of depression.21, 32 In contrast, the level of p11 

is increased by electroconvulsive therapy or chronic administration of monoaminergic 

antidepressants including SSRIs.20, 21, 22 p11 knockout mice exhibit depression-like 

behaviors and reduced responses to SSRIs.21, 22, 25 Conversely, mice overexpressing p11 in 

cholinergic interneurons in NAc show antidepressant-like behaviors.24 SMARCA3, a 

chromatin-remodeling factor, is a binding partner of p11 and plays a central role in p11-

dependent neurogenic and behavioral responses to SSRIs. Moreover, we have found that p11 

binds to mGluR5 and increases the surface availability of the receptor, which provides a 

molecular mechanism underlying the antidepressant-like activity of mGluR5 antagonism.33 

Three classes of antidepressant agents, including SSRIs, TCA, and mGluR5 antagonist, as 

well as electro convulsive therapy (ECT) have each been shown to require p11 to achieve 

their therapeutic effects.21, 22, 33 It would be interesting to determine whether other classes 

of antidepressants, such as monoamine oxidase inhibitors (MAOIs) also require p11 to 

achieve their therapeutic effects.

In the present study, by using a combination of genetic, molecular, cellular, 

electrophysiological and behavioral approaches, we have demonstrated that the depressive 

symptoms in stressed animals are closely associated with the reduction of p11 in layer II/III 

PrL. Antidepressants including SSRIs and TCA restore the expression of p11 in PrL, leading 

to the alleviation of stress-induced depression. Overexpressing p11 in layer II/III PrL D2+ 

neurons (D2+ PrL) rescued depression-like behaviors in mice using two genetic models of 

p11 deletion (D2+ neuron-specific or global), as well as chronic stress exposure. Thus, our 

results have identified p11 in D2+ PrL as a key molecular and cellular determinant in chronic 

stress-induced depression.
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What are the potential mechanisms underlying the regulation of stress-induced depression 

by p11 in D2+ PrL? Our data demonstrate that AMPAR- and NMDAR-mediated 

glutamatergic transmission in D2+ PrL neurons is attenuated by chronic stress exposure, 

which is restored by p11 expression. Since the diminished glutamatergic signaling in PrL 

mediates cognitive and emotional disturbances in response to stress,6, 12, 17, 19 the anti-

depression effects of p11 in stressed animals may be through the potentiation of glutamate 

receptor surface expression and synaptic function.

Medial prefrontal cortical pyramidal neurons project to several brain regions implicated in 

the pathophysiology of stress-induced psychiatric symptoms,2, 3, 5, 12, 34 such as 

NAc,36, 37, 38 hippocampus (HP),35, 39 lateral habenula (LHb),35, 40, 41 paraventricular 

nucleus (PVN)42 of hypothalamus and basal lateral amygdala (BLA).35, 43, 44 The p11 

regulation of glutamatergic transmission in layer II/III PrL D2+ neurons may impact the 

synaptic drive to these subcortical regions, which mediates the depression-like behaviors 

through the integrated action of the emotional circuits.

Identification of key molecules in specific neuronal types that mediate the development of 

psychiatric disorders should enable the discovery of novel treatments. Our finding of a role 

for p11 in D2+ PrL neurons in the control of stress-induced depression provides a framework 

for the development of new strategies to treat stress-associated mental illnesses.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Chronic stress induces loss of p11 in PrL, as well as depression-like behavior
(a) Immunofluorescence image illustrating p11-positive cells (EGFP+) in mPFC. Scale bar, 

500 µm. (b) High-magnification image of p11 expression in different layers of prelimbic 

cortex (PrL) and infralimbic cortex (IL). Scale bar, 100 µm. (c) p11 expressing cells in the 

PrL and IL from control (CON) and chronic restraint stressed (RST) mice. Scale bar, 40 µm. 

(d) High-magnification images of p11 expression in PrL layer II/III and IL layer V from 

control and stressed mice. Scale bar, 25 µm. (e) Quantification of p11-expressing cells in 

PrL (layer II/III) and IL (layer V) from control and stressed mice (n = 5 per group). (f–i) 
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Chronic stress-induced depression-like behaviors measured by immobility time in tail 

suspension test (TST, f), forced swim test (FST, g), the ratio of sucrose to water consumption 

in sucrose preference test (SPT, h), and the latency to feed in novelty suppressed feeding test 

(NSF, i) (n = 24 per group). *P < 0.05, **P < 0.01, two-tailed t-test. ACC, anterior cingulate 

cortex; PrL, prelimbic cortex; IL, infralimbic cortex; M2, motor cortex 2; fmi, forceps minor 

of the corpus callosum. Data are means ± s.e.m.
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Figure 2. Antidepressants restore p11 levels in PrL and alleviate stress-induced depression
(a,b) Western blot measurement of p11 protein (a) and qPCR measurement of p11 mRNA 

(b) in PrL from control and stressed mice with or without antidepressant treatments (a, n = 

10 CON, n = 12 for each group of RST, RST+Imi, RST+Flu, RST+Esci; b, n = 6 per group). 

(c–f) Depression-like behaviors in control and stressed mice with or without antidepressant 

treatments, as measured by TST (c), FST (d), SPT (e) and NSF (f) (n = 10 CON, n = 12 for 

each group of RST, RST+Imi, RST+Flu, RST+Esci). # P < 0.05, ## P < 0.01, compared to 

CON; * P < 0.05 and ** P < 0.01, compared to RST, one-way ANOVA. Imi, imipramine; 

Flu, fluoxetine; Esci, escitalopram. Data are means ± s.e.m.
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Figure 3. p11 in D2R-containing PrL neurons determines depression-like behavior
(a) Co-localization of dopamine D2 receptor (D2, red) and p11 (green) in layer II/III PrL 

neurons from D2-tdT (D2-Cre × tdTomato) mice. Scale bar, 10 µm. (b–e) Depression-like 

behaviors in wild-type (WT, p11f/f) and D2+ neuron-specific conditional p11 knockout (p11 

cKO, D2-Cre × p11f/f) mice with the expression of AAV-DIO-p11 (AAV_p11) or AAV-DIO-

eYFP (AAV_eYFP) in D2R-containing PrL neurons, as measured by TST (b), FST (c), SPT 

(d) and NSF (e) (n = 6, WT+AAV_eYFP; n = 6, WT+AAV_p11; n = 12, p11 cKO

+AAV_eYFP; n = 12, p11 cKO+AAV_p11). (f) Immunofluorescence images of p11 (blue) 

and eYFP (green) in global p11 knockout (p11 gKO-tdT, D2-Cre × tdTomato × p11 KO) 

mice with the injection of AAV_p11 or AAV_eYFP into layer II/III PrL. Scale bar, 20 µm. 

(g–j) Depression-like behaviors in WT and p11 gKO (D2-Cre × p11 KO) mice with the 

injection of AAV_p11 or AAV_eYFP into layer II/III PrL, as measured by TST (g), FST (h), 

SPT (i), and NSF (j) (n = 15, WT; n = 16, p11 gKO; n = 7, p11 gKO+AAV_eYFP; n = 6, 

p11 gKO+AAV_p11). *P < 0.05, **P < 0.01, one-way ANOVA. Data are means ± s.e.m.
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Figure 4. p11 overexpression in D2R-containing PrL neurons ameliorates stress-induced 
behavioral and glutamatergic synaptic deficits
(a–d) Depression-like behaviors in control and stressed D2-Cre mice with the expression of 

AAV_p11 or AAV_eYFP in D2R-containing PrL neurons, as measured by TST (a), FST (b), 

SPT (c) and NSF (d) (n = 10 CON(D2)+AAV_eYFP, CON(D2)+AAV_p11; n = 12 

RST(D2)+AAV_eYFP; n= 14 RST(D2)+AAV_p11). *P < 0.05, **P < 0.01, one-way 

ANOVA. (e,g) Summarized input-output curves of AMPAR-EPSC (e) and NMDA-EPSC (g) 

in D2+ layer II/III PrL neurons from control mice (D2-tdT) and RST mice with PrL injection 
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of AAV_eYFP or AAV_p11 [e, n = 21 CON(D2), n = 26 RST(D2), n = 14 

RST(D2)+AAV_eYFP, n = 22 RST(D2)+AAV_p11; g, n = 13 CON(D2), n = 13 RST(D2), n 

= 15 RST(D2)+AAV_eYFP, n = 12 RST(D2)+AAV_p11]. (f,h) Representative AMPAR-

EPSC (f) and NMDAR-EPSC (h) traces in different groups. ** P < 0.01, *** P < 0.001, 

RST(D2) vs. CON(D2); # P < 0.05, ## P < 0.01, ### P < 0.001, RST(D2)+AAV_p11 vs. 

RST(D2)+AAV_eYFP, two-way ANOVA (e,g). CON(D2), control D2-Cre mice; RST(D2), 

D2-Cre mice exposed to chronic restraint stress. Data are means ± s.e.m.
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