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Abstract

This paper presents a novel approach for understanding information exchange efficiency and its 

decay across hierarchies of modularity, from local to global, of the structural human brain 

connectome. Magnetic resonance imaging techniques have allowed us to study the human brain 

connectivity as a graph, which can then be analyzed using a graph-theoretical approach. 

Collectively termed brain connectomics, these sophisticated mathematical techniques have 

revealed that the brain connectome, like many networks, is highly modular and brain regions can 

thus be organized into communities or modules. Here, using tractography-informed structural 

connectomes from 46 normal healthy human subjects, we constructed the hierarchical modularity 

of the structural connectome using bifurcating dendrograms. Moving from fine to coarse (i.e., 

local to global) up the connectome's hierarchy, we computed the rate of decay of a new metric that 

hierarchically preferentially weighs the information exchange between two nodes in the same 

module. By computing “embeddedness”-the ratio between nodal efficiency and this decay rate, 

one could thus probe the relative scale-invariant information exchange efficiency of the human 

brain. Results suggest that regions that exhibit high embeddedness are those that comprise the 

limbic system, the default mode network, and the subcortical nuclei. This supports the presence of 

near-decomposability overall yet relative embeddedness in select areas of the brain. The areas we 

identified as highly embedded are varied in function but are arguably linked in the evolutionary 

role they play in memory, emotion and behavior.

1 Introduction

Magnetic resonance imaging techniques have allowed us to study the human brain both 

functionally and structurally. Complex interactions between different regions of the brain 

have necessitated the development and growth of the field of connectomics. The brain 

connectome is typically mathematically represented using connectivity matrices to describe 

Corresponding Author: Alex Leow, MD PhD, Associate Professor in Psychiatry and Bioengineering, University of Illinois College 
of Medicine, Room 584, 1601 West Taylor Street, Chicago, IL 60612, Phone: (312) 768-8842, alexfeuillet@gmail.com. 

HHS Public Access
Author manuscript
Hum Brain Mapp. Author manuscript; available in PMC 2016 June 08.

Published in final edited form as:
Hum Brain Mapp. 2015 September ; 36(9): 3653–3665. doi:10.1002/hbm.22869.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the interaction among different brain regions. Most current connectome study designs 

involve the computation of summary statistics on a global or nodal level [Guimera and 

Amaral, 2005; Sporns et al., 2005]. Additionally, evidence suggests that brain regions are 

organized into modules, with several key regions of the brain serving as hubs that act as 

relay centers globally [Colizza et al., 2006; Sporns et al., 2007].

In one of the first attempts to quantify a node's “hubness” in a network [Guimera and 

Amaral, 2005], after determining the community structure, all nodes had the within-module 

degree z and the participation coefficient computed. The within-module degree (z-score) is 

defined as  where κi is the number of links of node i to other nodes in 

its module si,  is the average of κ over all the nodes in si, and σκsi
 is the standard 

deviation. The participation coefficient is defined as  with κis 

indicating the number of links node i has to nodes in any module s (P values are between 0 

and 1, with higher values indicating more links to nodes in other module). A node is said to 

be a global connector hub if its within module degree z-score is > 2.5 and its participation 

coefficient > 0.3.

In brain connectomics, researchers have also adopted similar classification schemes. For 

example, in [Meunier et al., 2009] the authors demonstrated the existence of hierarchical 

modular organization (i.e., the ubiquitous property of “near-decomposability” according to 

Simon's theory on complex systems; [Fisher, 1961; Simon, 1965; Simon and Ando, 1961]) 

in human brain resting state functional networks, and proceeded to classify the roles of a 

node based on various combinations of cut-off values of within-module degree z-score and 

participation coefficient.

However, here we argue such an approach has two main disadvantages. First, these cut-off 

values are ultimately arbitrarily determined and categorical, and thus do not necessarily 

reflect the complexity and the continuous nature of brain connectivity (e.g for a non-hub 

node, it is classified as ultra-peripheral if its participation coefficient is less than 0.05, 

peripheral if between 0.05 and 0.62, connector if between 0.62 and 0.80, and kinless if 

between 0.80 and 1.0). Second, despite the hierarchical nature of the human connectome, 

within-module degree z scores and participation coefficients are still defined after restricting 

to a specific modular hierarchy, and thus they do not properly capture the potential scale-

dependent nature of a node's role in the network as a whole. In this study, we thus seek to 

address these issues by proposing a new approach to collectively probe the scale-dependence 

of information transfer across all levels of modular hierarchy, without resorting to arbitrary 

thresholding, binning, or binarization of scalar-valued datapoints.

In a different yet related context, there have been substantial research efforts exploring 

topological organizations of neuroanatomy corresponding to the brain's functional 

“gradients”, for example, how the “ventral” emotional processing system interacts with the 

“dorsal” executive processing system [Catani et al., 2013; Iordan et al., 2013]. Along these 

two converging lines, we posit that the novel approach presented in this paper would yield 

results that not only are consistent with these known neuroanatomical topological 
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organizations or “gradients,” but also provide additional insights into the underpinnings of 

these topologies. In this sense, through acknowledgement and measurement of both standard 

connectome metrics such as efficiency and novel properties of scale-dependent information 

transfer, another facet of network interaction emerges; the extent that select regions embed 

in a complex system and how existence of such phenomena may help explain relevant 

observable system properties. Our approach can thus potentially offer a new platform for 

researchers to move beyond simple single-scale brain connectome analyses and can be easily 

adapted to probe both temporal and spatial brain connectivity across multiple scales.

2 Methods

2.1 Image Acquisition

Forty-six healthy control subjects (HC, mean age: 59.7±14.6, 20 males) were recruited by 

community outreach using newspaper, radio, television advertisements, and relevant 

outpatient clinics. The study was approved by the Institutional Review Board and conducted 

in accordance with the Declaration of Helsinki.

MRI data was aquired on a Philips 3.0T Achieva scanner (Philips Medical Systems, Best, 

The Netherlands) using an 8-channel SENSE head coil. High resolution three-dimensional 

T1-weighted images were acquired with a MPRAGE sequence (FOV = 240mm; 134 

contiguous axial slices; TR/TE = 8.4/3.9ms; flip angle = 8°; voxel size = 1.1 × 1.1 × 1.1 

mm). For DTI images, we used a single-shot spin-echo echo-planar imaging (EPI) sequence 

(FOV = 240 mm; voxel size = 0.83 × 0.83 × 2.2 mm; TR/TE = 6,994/71ms; Flip angle = 

90°). Sixty-seven contiguous axial slices aligned to the AC-PC line were collected in 32 

gradient directions with b=700s/mm2 and one acquisition without diffusion sensitization (b0 

image). Parallel imaging was utilized with an acceleration factor of 2.5 to reduce scanning 

time to ~ 4 minutes.

2.2 Data Preprocessing

We generated individual structural brain networks for each of the forty-six subjects using a 

pipeline reported previously [GadElkarim et al., 2012]. First, diffusion weighted (DW) 

images were eddy current corrected using the automatic image registration (AIR) tool 

embedded in DtiStudio software (http://www.mristudio.org) by registering all DW images to 

their corresponding b0 images with 12-parameter affine transformations. This was followed 

by computation of diffusion tensors and deterministic tractography using the FACT 

algorithm [Mori et al., 1999]. T1-weighted images were used to generate label maps using 

the Freesurfer software (http://surfer.nmr.mgh.harvard.edu).

These 82 Freesurfer labels were used to generate structural brain network of matrix size 82 

by 82. Each of these 82 Freesurfer ROI labels was then further subdivided using an 

algorithm that continuously bisected this region across all subjects using a plane 

perpendicular to the main axis of its shape. Mathematically, this is achieved by first aligning 

the centroid coordinates of this ROI across all subjects to yield a combined group ROI (thus 

accounting for the difference in individual subject spaces). Second, we determined the main 

axis by conducting a principal component analysis on all voxels belonging to this combined 
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group ROI. This bisecting process was then iterated until the average sub-regions’ voxel 

sizes were 2800, 1500 and 800 voxels. This corresponds to 184, 344, and 620 individual 

brain regions, with each cuboid brain region equivalent to about 4, 2 and 1 cm3 respectively. 

Note as matrix sparsity increases with upsampling of the region labels, all networks were 

examined to ensure that every region was directly connected to at least one other region, 

preventing the formation of any isolated “islands”, and as a result 1, 1, and 7 subjects were 

excluded from subsequent analyses for the 184, 344, 620 up-sampled networks.

To account for differences in total fiber counts, individual connectivity matrices were first 

normalized by dividing each (i,j)-th element by the total counts for that row (i.e., the total 

number of fibers originating from brain region i), thus converting the elements along each 

row to represent percentages. We then further symmetrized these normalized matrices by 

averaging the (i,j)-th and (j,i)-th elements, following the procedure in [Cao et al., 2013; Sun 

et al., 2012]. Shortest path length or the graph distance matrix was generated by setting the 

inverse of the normalized and symmetrized connectivity weights as the edge length 

[Dijkstra, 1959]. In order to examine the proposed scale-dependence in information transfer, 

we used the PLACE algorithm [GadElkarim et al., 2014] that extracts, top to bottom, a 

connectome's hierarchical modular structure using bifurcating dendrograms, reaching up to 

8, 16, 32, and 64 different communities (level 3, 4, 5 and 6) for the 82-, 183-, 334-, and 620- 

parcellation schemes respectively, thus maintaining the number of parcels per community to 

be ~10.

2.3 Determine community structure of brain networks (PLACE)

Just as social networks can be divided into cliques describing modes of association (family, 

school, etc.), a connectome can be divided into modules or communities. To compute the 

modular or community structure of networks, to date most studies have attempted to find the 

set of non-overlapping modules that maximizes the modularity or weighted modularity 

metric Q or Qw [Newman and Girvan, 2004]. As proposed by Newman and Girvan, Q is 

mathematically defined as:  where Q is a 

function of a graph G, m is the total number of edges, Aij = 1 if an edge links nodes i and j 
and 0 otherwise, δ(ci, cj) = 1 ifnodes i and j are in the same community and 0 otherwise, and 

ki is the node i's degree (the “weighted” version of Q that takes edge weights into 

consideration is similarly defined). To find the modular structure that maximizes Q or Qw, 

the fast unfolding algorithm is often used [Blondel et al., 2008]. Although Q has been the 

most commonly utilized measure, it is known that Q suffers from resolution limits. By 

contrast, PLACE [Ajilore et al., 2013; GadElkarim et al., 2012; GadElkarim et al., 2014] is a 

novel framework that extracts the connectome's hierarchical modular structure by finding 

groups of nodes that are highly efficiently integrated amongst themselves while separated 

from others. PLACE hierarchically maximizes a new metric ΨPL (using top-down binary 

trees), defined as the difference between the mean inter- and mean intra- modular path 

lengths: . For two communities Ci and Cj:
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(PL denotes the shortest path length between two nodes and N the number of nodes in a 

module). Thus, maximizing ΨPL is equivalent to searching for a partition such that its 

communities exhibit stronger intra-community integration and stronger between-community 

separation.

To illustrate, Figure 1 shows how PLACE sequentially extracted the hierarchical modular 

structure, from top to down, of the average group connectivity matrix obtained using the 

620-parcellation scheme, starting at level 1 (2 communities) to reach level 6 (64 

communities); refer to results section for details.

2.4 Measuring modular Scale-dependence information transfer

To probe the proposed scale-dependent information transfer across the entire brain 

connectome's modular hierarchy, we first define the following variable τ for any node i at 

any hierarchical level L:

Here n is the total number of ROIs, and Level*(i, j) indicates the most local hierarchy at 

which nodes i and j are still assigned to the same module (in PLACE community structures 

are extracted top-down; thus we will use “low level” to indicate coarse or more global, and 

“high level” to indicate finer or more local with the root level which contains all nodes to be 

labeled level 0). Note that the above equation collapses to the standard nodal efficiency 

when computed at the root (L=0):

Furthermore, the weighting term (1/2)L – min(L, Level*(i,j)) simply returns 1 if nodes i and j 

belong to the same module at level L, returns ½ if nodes i and j do not belong to the same 

module at level L, but do so at level L-1, ¼ if nodes i and j do not belong to the same 

module at level L or L-1, but do so at level L-2, etc. Thus, this factor gives more weights to 

the information exchange efficiency between nodes that remain in the same module at higher 

levels of hierarchy, and as a result τ can be interpreted as a hierarchically weighted nodal 

efficiency.

Next, as PLACE algorithm assigns nodes based on path lengths, plotting  (y axis) 

against level of bifurcation (x axis) thus yields a monotonically increasing function, which 

then can be fitted with an exponential function  where the rate constant μi 
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is unique to each region. Intuitively, the rate constant μi thus represents the rate of decay in a 

given node's information exchange efficiency with other regions, as we move from fine-to-

coarse or local-to-global along the modular hierarchy.

3 Results

3.1 Hierarchical modularity of the structural connectome

As predicted, PLACE algorithm successfully extracted hierarchical modular structures from 

the connectome of each of the subjects for all parcellation schemes (excluding those with 

disconnected networks. For visualization purposes, the hierarchical structure of the averaged 

connectome for the group, as a whole, is superimposed on one subject's brain. To illustrate 

PLACE-based hierarchical modularity, Figure 1A shows the structural networks rearranged 

to match the community structure created from PLACE. The subsequent extracted modular 

structure (each color represents one community) of the averaged connectome is seen in 
Figure 1B, which is formed by averaging element-wise the connectomes of all 39 subjects 

for the 620-parcellation scheme (7 subjects out of 46 had disconnected networks and thus 

were excluded).

3.2 The rate of decay in information exchange

After the modular structures are extracted, for each ROI we then computed the vector 

 and averaged them over all available subjects for that particular 

parcellation scheme. Figure 2 visualizes the group average  versus the 

level (L) for all four schemes, showing, as we hypothesized, that  is a monotonically 

increasing function with respect to L. For each node,  against level of bifurcation is 

then fitted with an exponential function in the form: .

Figure 3 visualizes this novel μi variable plotted against the standard nodal efficiency (i.e., 

). Note that nodal efficiency  decreases as the resolution or granularity of parcellation 

increases from 825 to 620, while the novel variable μi is relatively insensitive to parcellation 

resolution. Such observations are further confirmed by correlational analyses (Tables I and 

II), which supported that μ values are highly correlated (thus relatively parcellation-

insensitive, also see Figure 4) when compared across different parcellation schemes, as 

measured by both standard correlation coefficients and the ranking based on their values 

(Kendall's tau).

Interestingly, we note that in general less efficient nodes (those with low nodal efficiency ) 

tend to also have higher rates of decay; by contrast, nodes that have lower decay rate can 

have either low, medium, or high nodal efficiency . In fact, if we restrict ourselves to 

nodes with decay rates μi less than 0.08, the correlation between μi and  becomes 

statistically nonsignificant after controlling for multiple comparisons (correlation coefficient 

r and p values for the 82, 184, 334, and 620 parcellation schemes were −0.134/ 0.274, 

−0.206/0.060, 0.180/0.054, and −0.144/0.041 respectively). These correlational results thus 
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support that the decay rate constant μ captures scale-dependent properties of the connectome 

that are not measured by single-scale graph metrics such as standard nodal efficiency.

For the 82-parcellation scheme, we additionally conducted post hoc multiple linear 

regression analyses to test an age effect (age measured in years) in the decay rate: μ = 

μintercept + μage × age. Results revealed that both the left and right superior frontal gyrus 

exhibit an age effect (left superior frontal gyrus: μage =−0.0013, p=0.0021); right superior 

frontal gyrus μage=−0.0012, p=0.0054) before controlling for multiple comparisons (neighter 

survived multiple comparison corrections using FDR).

Last, we propose to form the ratio , which can be thought of as a measure of 

hierarchical embeddedness of any brain region. By sorting this ratio from high to low one 

can highlight nodes that not only 1) have high nodal efficiency, but also 2) have slower 

decay from local to global across connectome's hierarchical modularity. Indeed, these 

regions not only communicate overall more efficiently with other brain regions, they do so 

across all levels of hierarchy (i.e., insensitive to scale changes).

Figure 4 visualizes both the decay rate constant μi and the “embeddedness” ratio 

neuroanatomically using top views for all 4 parcellation schemes on the brain surface of a 

representative subject. Note that visually trends are consistent across all schemes, showing 

both a medial-to-lateral gradient and (to a lesser degree) posterior-to-anterior gradient for μi 

and  (the gradients are increasing for decay rate μi and decreasing for the ratio ; 

the medial-to-lateral gradient is discussed in the Discussion section, while the posterior-to-

anterior gradient is possibly related to the rostro-caudal gradient during neurodevelopment 

[Redies and Puelles, 2001]).

To better appreciate how the gradient of this ratio translates to known neuroanatomical 

regions, after averaging μi and  within each of the original 82 Freesurfer anatomical labels 

using data from the 620-parcellation scheme, Table III lists label-averaged embeddedness 

 for the 82 anatomical regions, from high to low. Regions ranked higher here thus 

exhibit higher degrees of scale-invariant efficiency in communicating with the rest of the 

network. Note that highly embedded brain regions are primarily the bilateral subcortical 

structures including the thalamus and basal ganglia, the regions forming the limbic system 

(insula, nucleus accumbens, and subdivisions of cingulum), the precuneus (part of the 

default mode network [Raichle et al., 2001]), superior parietal regions, and the medial 

orbitofrontal cortex. Figure 5 visualizes decay rate μi and embeddedness  for these 

regions using axial views (overlaid with high-resolution T1-weighted structural images from 

a representative subject; precuneus and neighboring parietal regions are best appreciated in 

slice A, basal ganglia, thalamus, and insula in slice B, and nucleus accumbens, medial 

temporal lobe and medial orbitofrontal cortex in slice C).

4 Discussion

In this study, we proposed a multi-scale approach to understand the property of 

“embeddedness” in structural brain connectome. The proposed approach is advantageous in 
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that it collectively examines all levels of a connectome's hierarchical modularity, instead of 

restricting to one hierarchy in prior studies. To measure embeddedness, we quantified the 

rate of exponential decay in information exchange, from local to global or fine to coarse, 

across modular hierarchies. Post hoc analyses further revealed that this rate of decay exhibits 

no statistically significant age-related changes across the whole brain. We then 

mathematically define “embeddedness” as the numerical inverse of this decay rate 

multiplied by nodal efficiency; nodes with high degrees of embeddedness thus not only 

communicate overall more efficiently with other brain regions, they do so with relative 

modular scale-invariance.

To validate this multi-scale approach, we investigated regional nodal embeddedness using 

diffusion weighted MR imaging data from a sample of 46 normal healthy human subjects. 

For all subjects, the structural connectome's hierarchical modularity was extracted using a 

path-length based algorithm at four levels of parcel granularity: the original Freesurfer-based 

parcellation as well as three upsampled schemes with mean parcel volumes of approximately 

4, 2, and 1 cm3 respectively. Results supported that the rate of information exchange decay 

is relatively invariant with respect to the granularity of parcellation schemes. Moreover, 

while in general high decay rate is associated with low nodal efficiency, nodes with low 

decay rate displays wide-ranging efficiency values (i.e., when restricted to lower values, 

decay rate dissociates from nodal efficiency), and thus they measure separate properties of 

the human brain connectome.

It is worth noting that although overall the decay rate μ remains relatively constant across 

adulthood with no evidence of a significant age-dependence, these was however a trend 

toward a decreasing rate with age in the bilateral superior frontal gyrus before controlling for 

multiple comparisons. While age-related changes in structure and function in select regions 

of the frontal lobe have been reported in the superior frontal gyrus [Convit et al., 2001; 

Solbakk et al., 2008; Wellington et al., 2013], the trend decrease in decay rate may 

additionally be consistent with the compensatory scaffolding (i.e. the recruitment of 

additional circuitry) theory in cognitive aging involving the frontal lobe [Park and Reuter-

Lorenz, 2009].

Computing group-average nodal embeddedness and sorting them from high low, we showed 

that neuroanatomical regions with highest degrees of embeddedness are those comprising 

the limbic system, the subcortical nuclei (basal ganglia and thalamus), and the default mode 

network.

Our results have several implications. First, by successfully extracting hierarchical 

modularity we demonstrated that the human connectome, like many other types of complex 

systems in nature, exhibits the ubiquitous property of “near-decomposability” as theorized in 

[Simon, 1965] which pioneered work on complex systems more than 50 years ago (in this 

theory, most complex systems are near-decomposable systems, i.e., there exists of a 

hierarchy of components, such that at any level of the hierarchy the rates of interaction 

within components are much higher than those between different components [Simon, 

2002]). However, we additionally demonstrated that despite being nearly decomposable 

overall, select components of the human brain connectome further exhibit relative 
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“embeddedness” (i.e., variability in the extent that a region's efficiency of communication 

persists through increasing distances of the network).

We note that the highly embedded brain regions detected in this study heavily (if not 

entirely) overlap with the recently proposed “revised limbic system” [Catani et al., 2013] 

model for memory, emotion and behavior. In this model, the authors updated the classic 

limbic model as proposed by [Papez, 1937; Yakovlev et al., 1960] to include three distinct 

but partially overlapping networks: the Temporo-amygdala-orbitofrontal network, the 

Hippocampaldiencephalic and parahippocampal-retrosplenial network, and the Dorsomedial 

default network. Thus, our results offer connectome evidence for fundamental differences 

between the affective/limbic system and the executive/cognitive-control system (the latter 

regions responsible for specialized and well-defined higher cortical functions).

Our results may additionally support an evolutionarily value to a high degree of embedded 

integration of emotional information. Indeed, the limbic system has been a more ancient part 

of evolutionary development relative to higher level cognition. Therefore it makes sense that 

the former is better embedded from a system perspective; basic functions mediated by the 

limbic system require a diffuse pattern of integration and efficient access to the rest of the 

brain.

Note an analogy can thus be drawn between our findings and the “System 1/fast versus 

System 2/slow” conclusion discussed by [Kahneman, 2011] as part of a rapidly evolving 

new discipline – behavioral economics [Camerer et al., 2011; Colin and George, 2004] (here 

System 1 is the “brain's fast, automatic, intuitive approach while System 2 refers to the 

mind's slower analytical mode, where reason dominates” [Walsh, 2014]). Although both 

systems offer value in their respective ways, we posit that connectome conditions necessary 

for generating highly complex executive functions (highly localized and organized) are thus 

different from those necessary for generating intuition-based functions (e.g., kneejerk 

reaction); to say it simply, one comes at the cost of the other.

The potential implication of our findings can be far-reaching. For example, they further 

explain the well-established emotional distractibility seen during cognitive tasks [Dolcos et 

al., 2014; Iordan et al., 2013]. Along these lines, a better understanding of various disease 

states might be understood. For instance, those with autism spectrum disorders might be 

viewed as having abnormalities in terms of the degree that emotional circuitry is embedded 

[Washington et al., 2014]. A difficulty in this area might explain why these individuals tend 

to gravitate towards activities with less emphasis on emotional integration. In this same 

light, those with savant skills might be viewed as not actually developing a new function, but 

rather that the loss of limbic embeddedness allows for unfettered functioning of brain 

regions built for highly complex mental operations.

To briefly compare our results with relevant findings in a recent study [Meunier et al., 2009] 

that similarly constructed hierarchical modularity using functional brain networks, we note 

that in that study the well-known modularity metric (Q) was employed. Also, despite 

demonstrating modular hierarchies, the authors determined node roles based on the most 

global (nontrivial) modular decomposition, but qualitatively examined brain regions in each 
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module at the most local level using one representative subject (instead of collectively 

investigating across all hierarchies as in this current study). Results also differ in their 

selection of modules in that they identify medial and lateral occipital areas amongst the 

largest modules. They note that occipital modules decompose towards a dominant sub-

module, whereas the other identified regions decompose more evenly into multiple sub-

modules. By contrast, our results indicated that occipital areas are relatively less embedded 

compared to the limbic system network, pointing to different utilities in the use of our 

method in assessing brain networks.

Another interesting concept to which we compare our results is the property of “rich-club” 

organization in the human connectome [Harriger et al., 2012; van den Heuvel and Sporns, 

2011; de Reus and van den Heuvel, 2014]. We note that similar to our medial-to-lateral 

gradient (Figure 5), regions reported to be rich club (precuneus, superior frontal and superior 

parietal, as well as subcortical hippocampus, putamen and thalamus) are primarily medially 

located bihemispherically. However, excluding the superior frontal cortex all rich-club 

regions form a subset of the regions that we found to also exhibit higher degree of 

embeddedness. This suggests that the “rich-clubness” and embeddedness are two distinct yet 

potentially complementary properties. Future studies are thus needed to further understand 

their relationship.

It should note that as a potential limitation of the current study our data is derived from 

diffusion-weighted MRI instead of functional MRI (fMRI). One may argue that the use of 

fMRI might elucidate variations in network architecture during various functional states 

(resting vs task-specific), as well as better understand the functional correlates of 

“embeddedness” as a novel network property. A future area of study would clearly be to 

apply the proposed technique to fMRI data. Other potential limitations may also include: 1) 

DTI as a method is based on numerous assumptions that may not reflect “actual” white 

matter pathways in the brain, this can lead to confounding results from anisotropic voxels, b-

value weighting, and tractography reconstruction algorithms; 2) PLACE's method of a 

bifurcating community structure may not be optimal in other studies of embeddedness, such 

as with functional MRI [Yeo et al., 2011]; 3) the concept of embeddedness needs to be 

replicated in larger datasets as well as using networks that arise in fields outside of 

neuroscience.

Last, the observed left-right split for the first-level bifurcation in our PLACE results may be 

related to the under-estimation of inter-hemispheric connections during DTI tractography, 

explaining the medial-lateral gradient in the decay rate and embeddedness. We thus cross-

validated our approach using a second dataset (21 healthy subjects; mean age in years: 

40.4±10.1; 15 males) whose diffusion-weighted MRI utilized a higher angular resolution (68 

directions; 64 with a b value of 1000s/mm2; 4 b0 images) coupled with probabilistic 

tractography (see supplementary material) [Behrens et al., 2007]. Interestingly, for this 

second dataset, PLACE varied its first-level split between left/right and anterior/posterior, 

depending on the individual. However, all subjects had the complementary split happen in 

the following level (if the first level was an anterior/posterior split, the second level was a 

left/right split). The ordering of the first two levels could thus depend on individual 

differences during fiber reconstruction. Regardless, the correlations between the nodal 
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efficiency, μ, and embeddedness values obtained from the two datasets were all statistically 

significant with p values less than 0.001, despite the fact that they were generated from two 

different samples using two different tractography reconstruction techniques.

5 Conclusion

This work presents a novel connectome approach to understand the property of 

embeddedness, i.e., the degree of scale-dependence of information exchange efficiency 

across levels of hierarchical modularity. Our results support that the structural human 

connectome exhibits: 1) overall near-decomposability and 2) selective embeddedness in 

brain regions within the “limbic network” (including the limbic system, subcortical 

structures, and regions known to be part of the default mode network). That is, these regions 

display higher degrees of information exchange efficiency with lower decay. Results may 

have clinical implication, in that such topological differences may provide structural 

evidence of the prioritization of limbic network-mediated information, possibly in the 

context of its enhanced evolutionary value.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
To illustrate PLACE-based hierarchical modularity, Figure 1A shows the structural networks 

rearranged according to the community structure created from PLACE. Figure 1B 

visualizes, on the surface of an individual participant's brain, the subsequent extracted 

modular structure (each color represents one community) of the mean connectome, which is 

formed by averaging element-wise the connectomes of all 39 subjects for the 620-

parcellation scheme (7 subjects out of 46 had disconnected networks and thus were 

excluded).

Ye et al. Page 14

Hum Brain Mapp. Author manuscript; available in PMC 2016 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 

The proposed metric (y-axis, ) in each ROI as we move from global (coarse) to local 

(fine) levels of modular hierarchy (x-axis). As expected, the metric monotonically increases 

with respect to the level, indicating that a region has higher information transfer efficiencies 

with its closer neighbors. Here, each line represents a specific brain region's information 

transfer efficiency as the granularity increases.
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Figure 3. 

In this figure, we plot the rate constant μ, obtained from fitting  for each 

region i, against the nodal efficiency in all four parcellation schemes. We note that in general 

less efficient nodes (those with low nodal efficiency ) tend to also have higher rates of 

decay; by contrast, nodes that have lower decay rate can have either low, medium, or high 

nodal efficiency . In fact, it we restrict ourselves to nodes with decay rates μi less than 

0.08, the correlation between μi and  becomes statistically insignificant except for the 620-

parcelation scheme (p=0.041) before correcting for multiple corrections (all insignificant 

after controlling for multiple comparisons).
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Figure 4. 

Figure 4A visualizes both the decay rate constant μi (left panel) and the ratio  (right 

panel) neuroanatomically using top views for all 4 parcellation schemes on the brain surface 

of a representative subject. Note that visually trends are consistent across all schemes, 

showing both a posterior-to-anteriro gradient and a medial-to-lateral gradient for μi and 

 (the gradients are increasing for decay rate μi and decreasing for the ratio ). 

Figure 4B visualizes the embeddedness, as a heat map, on a Freesurfer-defined group 

average cortical surface using the 82-parcellation scheme.
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Figure 5. 

shows regions with low decay rate μi and high  ratio (embeddedness) using axial views 

overlaid with corresponding high-resolution T1-weighted structural images (top) from a 

representative subject with slices shown on a lateral view of the 3D brain (bottom). Here, 

precuneus and neighboring parietal regions are best appreciated in slice A, basal ganglia, 

thalamus and insula in slice B, and nucleus accumbens, medial temporal lobe and medial 
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orbitofrontal cortex in slice C. A sagittal slice for localization is shown at the bottom of the 

figure. Also see Table III.
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Table I

Correlation Coefficients of Efficiency between Parcellation Schemes

Values given are 
(correlation, Kendall's 
Tau)

Efficiency (82reg/8comm) Efficiency (184reg/16comm) Efficiency (334reg/32comm) Efficiency (620reg/64comm)

Efficiency (82reg/8comm) 1.000,1.000 0.629,0.177 0.348,0.164 0.012,0.144

Efficiency (184reg/16comm) 1.000,1.000 0.808,0.153 0.510,0.011

Efficiency (334reg/32comm) 1.000,1.000 0.815,0.152

Efficiency (620reg/64comm) 1.000,1.000

This table shows the correlation coefficients for the nodal efficiency values between different parcellation schemes, and the Kendall's Tau 
correlations computed using the rank lists of these values.
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Table II

Correlation Coefficients of μ between Parcellation Schemes

Values given are (correlation, Kendall's Tau) μ (82reg/8comm) μ (184reg/16comm) μ (334reg/32comm) μ (620reg/64comm)

μ (82reg/8comm) 1.000,1.000 0.805,0.546 0.758,0.459 0.719,0.460

μ (184reg/16comm) 1.000,1.000 0.972,0.447 0.952,0.399

μ (334reg/32comm) 1.000,1.000 0.971,0.387

μ (620reg/64comm) 1.000,1.000

This table shows the correlation coefficients for the μ values between different parcellation schemes, and the Kendall's Tau correlations computed 
using the rank lists of these values. Comparing this table to Table I, it is clear μ values are less dependent on the parcellation schemes than nodal 
efficiency.
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Table III

Rank List of Embeddedness for 82 FreeSurfer Regions

Region Name Embeddedness Region Name Embeddedness

‘ctx-rh-isthmuscingulate’ 0.389 ‘ctx-rh-temporalpole’ 0.268

‘Right-Pallidum’ 0.379 ‘ctx-rh-parahippocampal’ 0.263

‘ctx-rh-posteriorcingulate’ 0.372 ‘ctx-lh-lingual’ 0.262

‘Right-Thalamus-Proper’ 0.369 ‘ctx-lh-pericalcarine’ 0.261

‘ctx-lh-isthmuscingulate’ 0.369 ‘ctx-lh-entorhinal’ 0.26

‘ctx-rh-precuneus’ 0.361 ‘ctx-rh-precentral’ 0.256

‘Left-Pallidum’ 0.361 ‘ctx-lh-precentral’ 0.254

‘Right-Putamen’ 0.36 ‘ctx-rh-pericalcarine’ 0.254

‘Left-Putamen’ 0.357 ‘ctx-rh-lateralorbitofrontal’ 0.251

‘Left-Thalamus-Proper’ 0.354 ‘ctx-rh-lingual’ 0.251

‘ctx-lh-posteriorcingulate’ 0.35 ‘ctx-lh-lateralorbitofrontal’ 0.25

‘ctx-rh-caudalanteriorcingulate’ 0.346 ‘ctx-rh-entorhinal’ 0.248

‘ctx-lh-precuneus’ 0.343 ‘ctx-lh-inferiorparietal’ 0.247

‘Left-Accumbens-area’ 0.332 ‘ctx-rh-transversetemporal’ 0.245

‘Right-Accumbens-area’ 0.33 ‘ctx-rh-parsorbitalis’ 0.245

‘ctx-lh-caudalanteriorcingulate’ 0.329 ‘ctx-rh-superiortemporal’ 0.243

‘Right-Caudate’ 0.328 ‘ctx-lh-transversetemporal’ 0.243

‘ctx-rh-paracentral’ 0.328 ‘ctx-rh-postcentral’ 0.243

‘ctx-rh-superiorparietal’ 0.326 ‘ctx-rh-lateraloccipital’ 0.24

‘ctx-lh-paracentral’ 0.32 ‘ctx-lh-superiortemporal’ 0.238

‘ctx-lh-insula’ 0.319 ‘ctx-rh-parsopercularis’ 0.237

‘ctx-lh-superiorparietal’ 0.317 ‘ctx-lh-caudalmiddlefrontal’ 0.236

‘Left-Caudate’ 0.316 ‘ctx-lh-parsopercularis’ 0.235

‘ctx-lh-medialorbitofrontal’ 0.307 ‘ctx-lh-postcentral’ 0.233

‘ctx-rh-insula’ 0.305 ‘ctx-rh-rostralmiddlefrontal’ 0.232

‘Right-Amygdala’ 0.305 ‘ctx-lh-parstriangularis’ 0.231

‘ctx-rh-medialorbitofrontal’ 0.3 ‘ctx-lh-parsorbitalis’ 0.23

‘Left-Amygdala’ 0.297 ‘ctx-rh-parstriangularis’ 0.228

‘ctx-rh-frontalpole’ 0.297 ‘ctx-lh-rostralmiddlefrontal’ 0.227

‘ctx-rh-rostralanteriorcingulate’ 0.293 ‘ctx-rh-caudalmiddlefrontal’ 0.225

‘Left-Hippocampus’ 0.291 ‘ctx-rh-inferiorparietal’ 0.224

‘ctx-lh-cuneus’ 0.29 ‘ctx-lh-fusiform’ 0.223

‘Right-Hippocampus’ 0.288 ‘ctx-rh-fusiform’ 0.221

‘ctx-lh-rostralanteriorcingulate’ 0.287 ‘ctx-lh-inferiortemporal’ 0.22

‘ctx-lh-frontalpole’ 0.286 ‘ctx-rh-middletemporal’ 0.217

‘ctx-lh-superiorfrontal’ 0.285 ‘ctx-rh-bankssts’ 0.216

‘ctx-rh-superiorfrontal’ 0.282 ‘ctx-rh-inferiortemporal’ 0.215

‘ctx-lh-lateraloccipital’ 0.276 ‘ctx-lh-middletemporal’ 0.214

‘ctx-lh-parahippocampal’ 0.271 ‘ctx-rh-supramarginal’ 0.209
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Region Name Embeddedness Region Name Embeddedness

‘ctx-lh-temporalpole’ 0.269 ‘ctx-lh-bankssts’ 0.208

‘ctx-rh-cuneus’ 0.269 ‘ctx-lh-supramarginal’ 0.199

After averaging within each of the original 82 anatomical labels using data generated from the 620-parcellation scheme, for both μ and nodal 
efficiency, the ratio of nodal efficiency to μ or “embeddedness” was computed and the regions were sorted and listed from high to low with respect 
to this ratio. Regions ranked higher thus not only 1) have high nodal efficiency, but also 2) have slower efficiency decay. Regions with the highest 
degrees of embeddedness are primarily the bilateral subcortical structures including the thalamus and basal ganglia (pallidum, caudate, and 
putamen), the regions forming the limbic system (insula, nucleus accumbens, and subdivisions of cingulum), the precuneus and neighboring 
parietal regions, and the medial orbitofrontal cortex.
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