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Abstract

As the only striated muscle tissues in the body, skeletal and cardiac muscle share numerous 

structural and functional characteristics, while exhibiting vastly different size and regenerative 

potential. Healthy skeletal muscle harbors a robust regenerative response that becomes inadequate 

after large muscle loss or in degenerative pathologies and aging. In contrast, the mammalian heart 

loses its regenerative capacity shortly after birth, leaving it susceptible to permanent damage by 

acute injury or chronic disease. In this review, we compare and contrast the physiology and 

regenerative potential of native skeletal and cardiac muscles, mechanisms underlying striated 

muscle dysfunction, and bioengineering strategies to treat muscle disorders. We focus on different 

sources for cellular therapy, biomaterials to augment the endogenous regenerative response, and 

progress in engineering and application of mature striated muscle tissues in vitro and in vivo. 

Finally, we discuss the challenges and perspectives in translating muscle bioengineering strategies 

to clinical practice.
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Introduction

The body possesses two types of striated muscle, cardiac and skeletal. Human skeletal 

muscles can be further categorized into slow-oxidative/Type I, fast-oxidative/Type IIa, and 

fast-glycolytic/Type IIb types based on their contractile and metabolic phenotypes [1]. 

Striated muscles are required for whole-body oxygen supply, metabolic balance, and 

locomotion. While structurally and functionally similar, the two striated muscles have vastly 

different sizes and regenerative capacities. In adult humans weighing ~70kg, skeletal muscle 

tissue weighs ~27 kg comprising 35% of the total body mass [2], while cardiac muscle is 

~100 times smaller weighing in average 270 g [3]. Skeletal muscle can regenerate in 

response to small muscle tears that occur during exercise or daily activity owing to the 

abundances of resident muscle stem cells called satellite cells (SCs), which upon injury 

activate, proliferate, and fuse to repair damaged or form new muscle fibers [4]. In contrast, 

cardiac muscle does not possess a cardiomyogenic stem cell pool and has little to no 
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regenerative ability, with injury resulting in the formation of a fibrotic scar and, eventually, 

impaired pump function [5].

Functional deficit in skeletal muscle occurs with age, chronic degenerative diseases such as 

muscular dystrophy [6], defects in metabolism such as Pompe disease [7], and with large 

volume muscle loss due to trauma or surgical resection [8]. In these conditions, SC pool is 

often depleted due to the disruption of SC niche or continuous SC activation resulting in 

impaired muscle regeneration and chronic fibrosis [9]. Cardiac muscle dysfunction arises 

largely from narrowing of coronary arteries caused by vascular disease and less frequently 

from non-ischemic cardiomyopathy, congenital abnormalities, diastolic disease, and certain 

muscular dystrophies [10, 11].

In this review, we first discuss the structure, function, and regenerative potential of healthy 

striated muscles, representing the desired outcome of any cell, biomaterial, drug, or gene 

therapy for muscle disorders. We then review the progress made with cellular therapies, 

where immature cells are directly delivered in vivo, as well as cell-free therapies where 

biomaterials are implanted to augment and replicate the natural repair capacity of muscle 

tissue. Lastly, we review recent developments in engineering mature striated muscle tissues 

in vitro and highlight the hurdles that need to be overcome to translate these promising 

approaches to the clinic.

Striated muscle structure and function

Striated muscles are highly organized tissues (Fig. 1) that convert chemical energy to 

physical work. The primary function of striated muscles is to generate force and contract in 

order to support respiration, locomotion, and posture (skeletal muscle) and to pump blood 

throughout the body (cardiac muscle).

Ultrastructure

Under light microscopy, striated muscles have highly ordered ultrastructure consisting of 

sarcomeres, which are basic contractile units containing a central myosin-rich dark 

anisotropic (A) band and two actin-dominated light isotropic (I) bands [12, 13]. While the 

sarcomeric proteins are conserved among cardiac and slow-twitch and fast-twitch skeletal 

muscles, the existence of specific isoforms of these proteins contributes to observed 

differences in rates of muscle contraction and relaxation [14, 15]. All types of striated 

muscle contain a branched network of membrane invaginations called T-tubules that enable 

synchronous calcium release throughout the entire cell volume. The T-tubules contact the 

sarcoplasmic reticulum (SR) between the A and I bands in skeletal muscle and at the Z-disc 

in cardiac muscle. Dihydropyridine-sensitive voltage-gated Ca2+ channels in the T-tubules 

associate with the Ryanodine receptors (RyR) on the junctional face of the SR, converting 

action potentials to calcium release [16].

In skeletal muscle, the Ca2+ channel (CaV1.1) and RyR1 physically interact, producing a fast 

release of calcium from SR (~ 2 ms) without the need for extracellular calcium entry into the 

cell (Fig. 1C). In cardiac muscle, the Ca2+ channel (CaV1.2)-RyR2 complex requires 

extracellular calcium entry for the calcium release from SR, which significantly slows the 
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maximal frequency at which cardiac muscle can contract and prevents generation of tetanus, 

a hallmark of skeletal muscle contraction [17] (Fig. 1D). Where the T-tubules and SR meet, 

the SR enlarges, fuses, and forms expanded chambers called terminal cisternae. In skeletal 

muscle the T-tubule meets with 2 terminal cisternae to form a triad, but only with a single 

terminal cisternae in cardiac muscle to form a diad. The triads enable sufficient supply of 

calcium from SR to sustain tetanic contractions.

Micro-/Macroscopic Structure

Despite possessing the same functional units, the microscopic structures of skeletal and 

cardiac muscle fibers are different. Individual skeletal muscle fibers arise from the fusion of 

many muscle cells, producing multi-nucleated linear fibers, millimeters to centimeters in 

length (Fig. 1A). In contrast, cardiac muscle consists of a cellular syncytium wherein 

individual cells are electromechanically interconnected in a branched pattern via specialized 

structures known as intercalated discs (Fig. 1B). Within the intercalated disc, gap junctions 

allow for a rapid propagation of electrical impulses (Fig. 1G), which results in a near-

simultaneous depolarization of the entire cardiac syncytium. Unlike the fused skeletal 

muscle fibers, individual cardiomyocytes are much smaller (~120 μm in length) [20], contain 

centrally located nuclei, and remain predominantly (~65%) mononucleated during all stages 

of human heart development [21], which is in contrast to a maturation-induced shift towards 

binucleation known to occur in murine hearts [22]. Finally, while skeletal muscle fibers are 

directly innervated by motor neurons, cardiomyocytes are excited via a conduction cascade 

that begins with specialized pacemaking cells of the sinoatrial node and terminates at the 

ventricular cardiomyocytes.

Skeletal muscle fibers are encased in a basement membrane rich in collagen IV, heparin 

sulfate proteoglycans (HSPGs), and laminin, which plays a key role in force transmission to 

the outer three connective tissue layers, the endo-, peri-, and epimysium. These layers 

predominantly consist of Type I, II and III collagens synthesized by fibroblasts. Healthy 

skeletal muscle has a high volume ratio of muscle cells to fibroblasts, with fibroblast nuclei 

comprising 8–15% of all nuclei in the tissue [23, 24]. In the heart, Collagen I is the main 

ECM protein made by cardiac fibroblasts that until recently were believed to be the most 

dominant cell type in the heart, with different abundances reported in different species [25–

27]. Recent studies, however, identified endothelial cells as the predominant cell type in both 

mouse and human adult ventricles, representing 45–55% of the total cell count (compared 

with ~30% cardiomyocytes and ~15% fibroblasts), although, similar to skeletal muscle, 

taking up only a small fraction of the ventricular volume [28]. While evidence for electrical 

coupling between fibroblasts and cardiomyocytes is present in vitro [29, 30], the ability of 

these cell types to form functional heterocellular gap junctions in vivo is still widely debated 

[31, 32]. Both in skeletal and cardiac muscles, blood is delivered to cells in a hierarchical 

manner with primary arteries progressively bunching into smaller vessels and capillaries [33, 

34]. Greater capillary density is found in slow-oxidative than fast-glycolytic muscles [1, 35] 

and in epicardium compared to endocardium with an average of 1.3–2.5 capillaries being 

associated with each cardiomyocyte or myofiber [33, 36, 37].
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Contractile function

Skeletal muscle force output is primarily achieved by summation and motor unit 

recruitment. Slow (10–30Hz) and fast (50–100Hz) fibers achieve peak force at different 

frequencies due to the speed of contraction and relaxation (Fig. 1E), which is dictated by the 

number of terminal cisternae and the fast or slow isoform dominance of sarcomeric and 

calcium handling proteins [1]. Although lacking a tetanic response characteristic of skeletal 

muscle, the human heart still displays a positive force-frequency relationship (Fig. 1H), 

largely attributed to an increased net uptake of Ca2+ into SR during faster heart rates [38]. 

Furthermore, force generation in skeletal muscle is typically controlled by motor unit 

recruitment, in order from smallest to largest, which results in an exponential increase in 

force and enables a single muscle to produce both delicate and explosive movements [39]. In 

contrast, cardiac muscle contracts as a syncytium and obeys an “all-or-none” phenomenon.

Both skeletal and cardiac muscles display a biphasic force-length relationship, which is, in 

part, explained by the sliding filament theory [40]. Lengthening of the muscle increases the 

overlap of myosin and actin filaments within each sarcomere, which produces a higher 

contractile force during the power stroke of the contraction cycle. Further increases in 

muscle length can decrease the myosin/actin overlap, causing a drop in the active tension 

(Fig. 1F). However, in cardiac muscle the predominant cellular basis for the force-length 

relationship is the increased affinity of troponin C to calcium, which yields opening of 

additional sites for binding of myosin to actin and permits greater force generation [41]. In 

contrast to skeletal muscle, which operates close to the peak of its active force-length curve, 

cardiac muscle operates on the ascending part of the curve to allow stronger pumping for 

increased ventricular filling (Fig. 1F). Furthermore, at their respective resting/working 

lengths, cardiac muscle experiences significantly higher passive tension than skeletal muscle 

(that has ~0 passive tension; Fig. 1F), reflecting the existence of much stiffer isoforms of 

titin and collagen in cardiac muscle [42].

Endogenous striated muscle repair

In response to injury, adult skeletal muscle exhibits robust regenerative response that 

involves a highly orchestrated action of multiple cell types. The most important cells are 

Pax7+ satellite cells (SCs), which are located between the sarcolemma and the basal lamina 

[43] and are essential for muscle regeneration [44]. During embryogenesis, myogenic 

transcription factors Myf5 and Mrf4 are transiently expressed to give rise to a significant 

number of SCs that persist throughout development [45, 46]. In adult muscle, SCs are a 

heterogeneous population with the majority of cells expressing Myf5 and being able to 

directly commit to myogenic differentiation [47]. SCs not expressing Myf5 preferentially 

self-renew and fill the SC niche but can divide asymmetrically to express Myf5 and support 

myogenesis [47, 48]. Regardless, the maintenance of SCs in adult muscle is dependent upon 

Myf5 highlighting the complex non-hierarchical regulatory network that controls SC 

stemness [49]. In response to injury and exercise, SCs that are typically quiescent become 

activated and contribute to muscle repair, as reviewed elsewhere [4, 50]. Briefly, upon 

activation, Pax7+ SCs begin to express MyoD, proliferate and divide asymmetrically to 

either: (1) commit to muscle differentiation by losing Pax7, and expressing Myf5, MyoD, 
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and ultimately myogenin and then fusing into damaged fibers or forming de novo fibers that 

express myogenin and Mrf4, or (2) maintain a quiescent state by losing MyoD expression 

and contributing to future rounds of muscle regeneration (Fig. 2A)[50][51]. SCs comprise 2–

7% of total nuclear content of skeletal muscle, yet no equivalent cell type has been 

discovered in cardiac muscle. The c-Kit+ cell niche that emerged over the last decade is 

likely the closest cardiac relative of the SC niche, although the ability of c-Kit+ cells to 

generate functional cardiomyocytes has created a wide scientific debate that continues to this 

day [52, 53]. Regenerative process in skeletal muscle is controlled primarily by the innate 

immune response (Fig. 2A), with deletion of monocytes completely preventing muscle 

regeneration [54]. During the first stage of muscle repair, infiltrated neutrophils promote 

degeneration of muscle fibers while M1 macrophages stimulate a pro-inflammatory cytokine 

release and muscle cell lysis [55, 56]. Subsequently, the SCs undergo activation and 

differentiation, which is followed by ECM deposition, angiogenesis to revascularize 

regenerating tissue, and reinnervation of the new myofibers. Proliferating SCs also migrate 

bi-directionally along the longitudinal but not the horizontal axis of the degenerating fibers 

to aid in the redistribution of regenerating muscle progenitors [57]. Conversion to an M2 

macrophage phenotype is critical for the repair process as it shifts SCs towards 

differentiation and away from proliferation seen predominantly with M1 macrophages [58]. 

Among the other cell types important for successful muscle regeneration, fibroadipogenic 

progenitors (FAPs) are known to promote myofiber formation through controlled ECM 

deposition and paracrine factors [59, 60].

In contrast to skeletal muscle, the adult mammalian heart lacks robust regenerative potential 

[5, 61]. However, shortly after birth mammalian hearts can still regenerate, as recently 

shown in the case of a newborn child with myocardial infarction [62]. In neonatal mice, this 

regenerative process is associated with the activation of epicardial-specific genes, 

angiogenesis, and a global proliferation of existing cardiomyocytes that restores cardiac 

function [63] and is dependent upon infiltration of neonatal macrophages [64]. In contrast, 

cardiac injury in adult heart produces a primarily fibrotic scar that leads to a decline in 

function. The cellular and molecular events responsible for this process can be broken down 

into early (<72hrs) and late (>72hrs) phases [65] (Fig. 2B). The early remodeling phase 

consists of neutrophil infiltration, activation of matrix metalloproteinasaes and early 

degradation of extracellular matrix (ECM), which leads to wall thinning and ventricular 

dilation. During the late phase, initial release of TGF-β1 from necrotic cardiomyocytes 

induces chemotaxis of fibroblasts and macrophages, proliferation and transformation into 

myofibroblasts, synthesis of Type I & III collagen, and eventual fibrosis. Pathological 

hypertrophy also develops as an adaptive response to the decreased contractile function and 

is largely initiated by the myofiber stretch following chamber dilation and neurohormonal 

activation, in particular via combined actions of norepinephrine, endothelin-1, and 

angiotensin II [65].

Striated muscle dysfunction

In contrast to certain amphibians [66] and fish [67], the endogenous repair mechanisms in 

mammalian skeletal muscle can only regenerate a finite amount of muscle tissue and can 

thus be overwhelmed by the deposition of fibrotic scar following volumetric muscle loss 
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resulting from trauma or large resection [68]. Furthermore, in sarcopenia, skeletal muscle 

mass, function, and regenerative ability decrease with age and can cause or exacerbate health 

problems [69, 70]. Sarcopenia is characterized by a muscular atrophy, loss of muscle fibers, 

decreased number and size of motor units, and increased fibrosis and fat accumulation [71–

74], and can likely be attributed to SC depletion and impaired SC function. In mice, aged 

satellite cells have reduced regenerative potential [75] due, in part, to defective FGFR1 

signaling and consequent p38αβ MAPK activation which promotes SC exhaustion [76]. 

Inhibition of p38 MAPK restores the regenerative potential of aged SCs, and can restore 

force generation of muscles in aged mice to levels found in younger animals [75, 76].

Similar to skeletal muscle, impaired function of cardiac muscle can arise from various 

congenital or acquired diseases. In ischemic heart disease, the leading cause of morbidity 

and mortality in the world [77], the buildup of atherosclerotic plaques within coronary 

arteries increases with age and can cause tissue ischemia or necrosis (myocardial infarction) 

upon rupture, which can precipitate into congestive heart failure over time. Numerous 

myopathies, including autoimmune and viral myocarditis, can similarly lead to heart failure 

if left untreated. Diastolic cardiac dysfunction occurs due to pathological hypertrophy and 

stiffening of the heart walls that impairs chamber relaxation and filling during the cardiac 

cycle. The long-standing hypertension, ischemic injuries, aging, and aortic stenosis, as wells 

as certain metabolic diseases such as glycogen storage disease [78] can all cause diastolic 

dysfunction. Lastly, congenital heart defects (CHDs) are the most common type of birth 

defect and represent the leading cause of mortality in infants [79, 80]. Three of the top five 

common types of CHDs—ventricular septal defects, Tetrology of Fallot, and atrial septal 

defects—all contain a defect in the heart wall that requires surgical correction when 

sufficiently large, and often multiple surgeries due to failed or inadequate grafts [81].

Since a large number of proteins are expressed in all striated muscles, the same genetic 

defect can result in both cardiac and skeletal muscle disease. For example, mutations of 

proteins in the dystrophin-associated glycoprotein complex (DGC) or associated ECM 

proteins such as laminin and merosin can lead to a wide range of muscular dystrophies [82]. 

The DGCs link the sarcomeres to the ECM and are involved in the transmission of force and 

protection of the membrane from shear stress [83]. Thus, dystrophic muscles are damaged 

more easily, resulting in a repetitive degeneration/regeneration cycles, eventual exhaustion of 

the SC pool, muscle loss, and fibrosis [9, 84]. Still, not all skeletal muscles are affected 

equally by muscular dystrophy, with the ocular muscles being typically spared [85], but the 

diaphragm which is in constant use being the most severely affected muscle [86] and load-

bearing muscles such as the gluteus maximus and the posterior muscles of the lower legs 

[87, 88] also being severely affected. Furthermore, different diseases can affect cardiac and 

skeletal muscles differently. Duchenne Muscular dystrophy (DMD), the most severe form of 

muscular dystrophy characterized by the complete loss of functional dystrophin, typically 

has a more severe skeletal muscle phenotype and a milder cardiac phenotype [89]. In 

contrast, Becker’s Muscular Dystrophy (BMD), characterized by a partial loss of functional 

dystrophin, has a milder skeletal phenotype and a more pronounced cardiac phenotype, 

potentially due to BMD patients being more physically active than DMD patients and 

placing more strain on their heart muscle [90, 91].
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Therapies for striated muscle disorders

Cell injection therapies

The first cell-based approaches to improve function of injured or diseased striated muscles 

involved transplantation of stem or progenitor cells into the site of tissue damage. These 

strategies require expanding a suitable cell population in vitro to generate sufficient cell 

numbers for transplantation. The desired characteristics of the expanded cells would be to: 

1) Retain innate stemness or myogenicity during in vitro culture, 2) Be immuno-privileged 

to obviate a need for long-term immunosuppression, 3) Survive and robustly engraft upon 

transplantation, 4) Structurally and functionally integrate with host tissue, 5) Repopulate and 

replenish the tissue-resident stem cell niches and 6) Permanently improve muscle function 

following transplantation. Additionally, having cells that can be delivered throughout the 

circulatory system and efficiently home to damaged tissues would be desirable to avoid 

damage due to multiple intramuscular injections and when needed enable the uniform 

distribution of cells throughout the entire organ.

Skeletal muscle

Primary myoblasts and satellite cells: Given the robust regenerative potential of satellite 

cells (SCs), it was hypothesized that expanding these cells in vitro and injecting them into 

damaged muscles may counter loss of muscle mass and function. Initial transplantations of 

in vitro expanded SCs into skeletal muscle however resulted in poor survival, motility, and 

engraftment/fusion with host myofibers as well as immunorejection [92]. The poor outcomes 

in these studies have been attributed in part to the in vitro conditions used to expand SCs 

[93, 94]. Traditional culture for SC expansion is optimized to maximize cell proliferation, 

which activates SCs and rapidly leads to their commitment and differentiation to myoblasts 

that can not be readily reverted back to a self-renewing state. Furthermore, committed 

myoblasts with high proliferation and differentiation potential undergo apoptosis following 

implantation of whole muscle cultures, with the cells that survive and engraft being the 

slow-dividing “stem-like” cells [95]. Selection and implantation of these slow-dividing cells 

promoted greater and longer-lasting muscle regeneration in vivo [96]. Recently, SCs 

cultured on 12 kPa compliant PEG hydrogels (mimicking stiffness of native skeletal muscle 

[97]) were shown to engraft more efficiently compared to cells grown on standard tissue 

culture dishes but still less efficiently than freshly isolated SCs [98], suggesting that 

mechanical cues of native SC microenvironment are an important but not the only 

determinant of SC “stemness” to be replicated during SC expansion in vitro.

Of note is that encouraging results have been recently reported in a Phase I/IIa clinical trial 

of myoblast transplantation in patients with oculopharyngeal muscular dystrophy, where the 

dystrophic phenotype is limited to pharyngeal muscles. Two years after autologous myoblast 

transplantation patients showed improved quality of life and no deterioration of swallowing 

function [99]. This suggests that despite low survival and engraftment, transplanting large 

numbers of myoblasts could still yield successful repair of small muscles. For larger muscle 

defects, improved culture conditions to increase the proportion of slow-dividing myogenic 

cells and/or self-renewing SCs will be required to develop efficient cell-based therapies. On 

the other hand, myoblasts have low engraftment efficiency when delivered systemically, 
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which prevents their use in treatment of congenital diseases that affect all muscles in the 

body, thus necessitating an alternative cell source.

Human pluripotent stem cell-derived skeletal muscle cells: Human pluripotent stem cells 

(hPSCs) have the potential to overcome the issue of in vitro satellite cell expansion due to 

their unlimited proliferative potential. The generation of muscle progenitors from hPSCs has 

been achieved by utilizing cell sorting for defined extracellular markers, direct genetic 

reprogramming, or small molecule inhibitors. After the first published protocol for 

derivation of muscle progenitors from hESCs by sorting for CD73+/CD56+ cells [100] that 

has been difficult to reproduce, researchers have overexpressed the myogenic transcription 

factors Pax7 [101–103] or MyoD [104–106] in hPSCs to generate muscle progenitors in as 

little as 5 days. These cells efficiently differentiated to myotubes in vitro, fused more 

efficiently to existing myofibers in vivo than human myoblasts and improved muscle 

function. Still the risk of undesired genetic recombination or reactivation makes this 

approach unlikely to be used clinically. Recently small molecules have been used to 

differentiate hPSCs to muscle progenitors capable of fusing in vitro and with mouse 

myofibers in vivo [107–110] by protocols that combined GSK3β inhibition and IGF-1, HGF, 

and/or FGF2 supplementation, with overall efficiency that could be increased via cell sorting 

[108] or the addition of forskolin [109].

Interstitial cells, Fibroadipogenic progenitor cells, Pericytes and Mesoangioblasts: In 

addition to SCs, other tissue-resident cells with regenerative potential have been recently 

identified in rodent and human skeletal muscle. Specifically, interstitial muscle progenitor 

cells are a heterogeneous cell pool that does not reside under the basal lamina. A fraction of 

these cells termed Pw1 interstitial cells (PICs) express Pw1/Peg3, an early marker of the 

myogenic lineage [111], and do not express Pax7 [112]. Developmentally, PICs have distinct 

origin from SCs but can give rise to SCs indicating that they are upstream of SCs in muscle 

precursor lineage hierarchy. PICs may also contribute to muscle regeneration through 

paracrine release of pro-myogenic and differentiation factors. Fibroadipogenic progenitors, 

which are a subset of PICs, are activated in response to muscle injury and shown to promote 

murine muscle regeneration via paracrine growth factor release [59]. They are also identified 

in human skeletal muscle [113]. However, in response to chronic injury or aging, they can 

contribute to fibrosis and fat accumulation [114, 115]. Further delineation of how exogenous 

transplantation of PICs regulates muscle regeneration is required but given their greater 

abundance in extraocular muscles, which are unaffected by sarcopenia and muscular 

dystrophy [116], PICs are a promising cell source for muscle regeneration.

Other types of PICs include pericytes, which surround endothelial cells in microvessels, and 

mesoangioblasts, which are thought to be a subset of pericytes or pericyte precursors that 

exhibit multi-lineage developmental potential [117–122]. Pericytes display greater 

spontaneous myogenic differentiation in vitro than mesoangioblasts but in contrast to SCs, 

do not express myogenic regulatory factors until after myotube formation [121]. Pericytes 

can be further classified into type 1 and type 2 [120]. Type 1 pericytes express the 

adipogenic marker PDGFRα and contribute to fat accumulation and do not appear to be 

directly involved in muscle regeneration. They have significant overlap with FAPs in terms 
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of cell marker expression and cell behavior in vivo and in vitro and therefore under certain 

circumstances may secrete factors that enhance muscle self-repair. Conversely, type 2 

pericytes do not express PDGFRα, are highly myogenic both in vitro and in vivo and upon 

implantation fuse into damaged myofibers. When delivered intra-arterially, pericytes and 

mesoangioblasts show higher survival, retention and fusion into myofibers compared to 

satellite cells and distribute throughout all muscles in the body [123]. Furthermore, these 

cells proliferate extensively in vitro and can be genetically modified making them an 

attractive cell source for treatment of congenital myopathies such as muscular dystrophy 

[124–126]. Additionally, iPSCs derived from mesoangioblasts fuse more efficiently with 

skeletal muscle compared to iPSCs derived from fibroblasts suggesting the mesoangioblasts 

may be a more ideal source from which to generate iPSC-derived myogenic progenitors 

[127]. To date, all published work with mesoangioblasts and pericytes has been preclinical, 

being performed in mice and dogs, and it is currently unclear if this promising cell therapy 

approach will translate to humans and be clinically feasible. Interestingly, PW1 is required 

for mesoangioblasts to cross blood vessel walls and engraft into myofibers and silencing of 

PW1 inhibits myogenic differentiation potential of mesoangioblasts [128]. Therefore, 

engineering and/or selecting cells with high PW1 expression may enhance the efficacy of 

cell transplantation but this has yet to be tested.

Cardiac muscle—Owing to the vast prevalence of heart disease throughout the world, a 

wide variety of cell types have been used as cardiac cell therapies. Recent reviews have 

nicely summarized the most important clinical trials using autologous cell types [129, 130], 

which can be broadly grouped into three main categories: 1) skeletal myoblasts, 2) adipose- 

and bone marrow-derived cells, and 3) Resident cardiac progenitors and cardiosphere-

derived cells.

Myoblasts: Given the limited success of myoblast transplantation into diseased skeletal 

muscles and the similarities of the two types of striated muscle, early investigations aimed to 

determine whether myoblasts could also be used for cardiac repair. Initial small non-

randomized phase I trials showed a functional benefit following myoblast transplantation but 

the interpretation of these results is difficult due to the use of confounding treatments such as 

left ventricular assist device or coronary bypass grafting surgery [131–133]. However, larger 

Phase II trials found no improvement in LVEF [134, 135] and lack of electromechanical 

integration between donor myotubes and host myocardium, which even if possible could 

increase the incidence of arrhythmias [136]. The larger Phase II trials did find an attenuation 

of LV remodeling and decrease in LV volume, which was attributed to myoblast paracrine 

action [137, 138]. Overall, the use of myoblasts for cardiac myoplasty is likely to never 

permit sufficient return of function that would outweigh the incidence and risks of 

arrhythmia, and thus alternative cell sources have been pursued.

Bone marrow- and adipose-derived cells: Bone marrow-derived cells have been a natural 

source for cell therapy owing to their relative ease of isolation and the presence of stem cells 

that have the ability to differentiate into various tissues. These cells are a mixed population 

of largely undifferentiated cells that consist of early committed cells, hematopoietic and 

endothelial progenitor cells (~2–4%), as well as mesenchymal stem cells (MSCs, <0.1%) 
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[139]. MSCs are a unique multipotent cell group of mesodermal origin characterized by 

expression of surface antigens CD73, CD90, CD105, CD44, CD106, and CD166, but not 

CD34, CD31, CD14, CD45, CD133, or CD105 [140]. Given the relative scarcity of these 

cells in the bone marrow, MSCs have also been successfully isolated from numerous other 

organs, including periosteum, synovial membrane, skeletal muscle, skin, pericytes, 

peripheral blood, deciduous teeth, periodontal ligament, umbilical cord, and adipose tissue, 

the latter of which holds much promise given the ubiquitous presence of adipose tissues in 

the body and limited patient morbidity and discomfort upon isolation [141]. To date, two 

recent meta-analysis studies assessed a combined 82 clinical trials (close to 5000 patients 

enrolled) using bone marrow-derived cells for cardiac repair and found modest yet 

significant improvements in LVEF and reduction in scar size (both ~4%) [142, 143]. 

However, a 3rd meta-analysis comprising 22 clinical trials failed to identify a significant 

effect of bone marrow cell treatment on MRI-derived cardiac parameters or clinical 

outcomes [144]. As typical with cellular therapies, this discrepancy likely stems from 

differences in the exact cell type, amount of injected cells, route of delivery, and timing and 

number of injections, suggesting that even larger studies may be needed to establish the 

utility of bone marrow-derived cells for treatment of heart disease. Similarly, a recent power 

meta-analysis involving 1225 patients found a statistically significant improvement in LVEF 

following MSC treatment, with a majority of clinical trials that demonstrated decreased LV 

dilation and remodeling employing exogenous MSCs [145]. Further trials are ongoing or 

planned to determine the exact mechanisms of functional improvements and identify MSC 

subfractions (such as CD133+ cells[146]) with enhanced therapeutic benefits.

Resident cardiac progenitors and cardiosphere-derived cells: Since the ground-breaking 

discovery of endogenous cardiac progenitors (“cardiac stem cells”, CSCs) over a decade ago 

[147], numerous pre-clinical studies have assessed whether in vitro expansion followed by 

administration of these cells into the heart can be a viable therapeutic approach for cardiac 

repair. CSCs are an exceptionally rare c-Kit+/Lin− population, comprising 0.002–0.005% of 

all cells in the heart, and are typically subcultured from cardiac biopsies [130]. Alternatively, 

cell clusters termed cardiospheres can be cultured from endocardial biopsies and dissociated 

to obtain cardiosphere-derived cells, a heterogeneous population predominantly containing 

c-Kit+/Lin− CSCs and CD105+/CD90+/CD45− non-hematopoietic cardiac mesenchymal 

cells [148]. Recent advancements in endocardial biopsy techniques have significantly 

improved the ability to isolate CSCs and cardiosphere-derived cells [149]. A recent 

randomized controlled phase I trial (SCIPIO) demonstrated that intracoronary administration 

of purified c-Kit+ CSCs significantly improved LV systolic function (up to 12% increase) 

and reduced infarct size after 1 year when administered to patients suffering from chronic 

ischemic cardiomyopathy [150]. Another randomized controlled phase I clinical trial 

(CADUCEUS) similarly showed that administration of cardiosphere-derived cells (95% 

CD105+ without c-Kit+ cell purification) improved regional function of infarcted 

myocardium and decreased scar size, this time in patients with a more acute LV dysfunction 

after a myocardial infarction [151]. As such, these studies have paved the way for future 

phase II clinical trials, which will aim to establish the curative effect of cardiosphere-derived 

cells and/or CSCs in both acute and chronic settings of ischemic cardiomyopathy.
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Human pluripotent stem cell-derived cardiomyocytes: Since the first successful cardiac 

differentiation of human embryonic stem cells (hESCs, [152]) and induced pluripotent stem 

cells (hiPSCs, [153]), hPSC-derived cardiomyocytes (hPSC-CMs) have rapidly gained 

interest for use in heart repair by being the only currently available source of functional 

human cardiomyocytes. To date, hPSC-CMs have been only tested in infarcted hearts of 

mice [154], rats [155–158], guinea pigs [159, 160], pigs [161], and most recently, Macaque 

monkeys [162], but not in humans. A majority of these studies reported some structural and 

functional improvements (decreased scar size, thicker heart wall, increased LVEF, etc; for a 

recent review see [163]), although the Macaque studies have also risen concerns about the 

potential arrhythmogenicity of the therapy. Despite this limitation, the cryopreservation 

techniques developed by the Murry’s group that allowed them to transplant 1 billion 

cardiomyocytes into the non-human primate hearts [162] is an important milestone prior to 

clinical translation, and it is foreseeable that in the near future hPSC-CM therapies will 

progress to clinical trials.

Cell-free, biomaterial therapies

An alternative to cell transplantation is the injection of biomaterials that stimulate different 

aspects of endogenous repair process or provide favorable mechanical environment to 

enhance survival of muscle cells. This approach decreases the costs and circumvents 

technical issues associated with expanding large numbers of patient specific cells, thus 

permitting the treatment to start sooner after injury. Additionally, the ability to deliver 

biomaterials in a liquid form has potential for repairing injuries of any shape or size.

Skeletal muscle—Promising biomaterials for repair of large skeletal muscle defects are 

decellularized scaffolds, where native tissue is stripped of cellular material to prevent a host 

immune response. When implanted, decellularized scaffolds show a progression of events 

that mimic natural tissue repair [164]. In practice, decellularization protocols are intended to 

provide a balance between sufficient cellular removal and maintenance of ECM structure. 

Cellular debris in decellularized scaffolds [165, 166] and excessive modification of native 

ECM structure with cross-linkers [167] are both associated with poor remodeling outcomes. 

Despite the clinical use of decellularized scaffolds, the Food and Drug Administration has 

not established standards for tissue decellularization, resulting in high variability between 

different manufacturers and variable functional outcomes upon implantation [168].

The gastrointestinal small intestine submucosa (SIS) and bladder are the most commonly 

used tissues to derive acellular scaffolds for skeletal muscle repair, with SIS showing the 

same level of muscle regeneration compared to a skeletal muscle derived decellularized 

ECM [169]. In animal models, acellular scaffolds can restore muscle function though the 

level of functional repair can vary significantly [164, 170, 171]. Preliminary work in humans 

has mirrored the findings of animal studies, namely a variable functional recovery following 

scaffold implantation [164, 172]. It should be noted, however, that in the human studies 

scaffold implantation occurred months to years after volumetric muscle loss injury, which 

could preclude more favorable outcomes expected to result from earlier implantations. In 

addition to technical improvements in acellular scaffolds, combined implantation of cells 
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and scaffolds [171] as well as optimization of physical therapy may further improve 

functional recovery in these patients [173].

Cardiac muscle—In terms of applicability in the heart, the SIS-ECM decellularized 

matrix has been demonstrated to be feasible and safe in 40 patients with congenital heart 

disease [174], while its utility for the repair of ischemic myocardium has been shown in 

murine [175, 176] and rabbit [177] models of myocardial infarction with moderate 

improvements in cardiac function. Similar to the SIS-ECM, decellularized matrix from rat 

[178] or porcine [179, 180] hearts has been used for myocardial repair in rat [178, 179] as 

well as porcine [180] models of myocardial infarction, the latter being delivered via a 

percutaneous transendocardial injection, demonstrating potential translatability to human 

therapies. Outside of decellularized matrices, a variety of scaffold materials have shown 

promising results in animal models of MI, including natural derivatives such as fibrin, 

alginate, collagen, chitosan, Matrigel, hyaluronic acid, and Gelfoam/gelatin, as well as 

synthetic materials such as self-assembling peptides and polymer-based systems (reviewed 

in detail in [181, 182]). In these studies, biomaterial injections in peri-infarct zone mainly 

served to reduce the compliance mismatch between the scar and remote myocardium and 

consequently promote cell survival and favorable remodeling of the heart. Additionally, 

numerous studies have demonstrated further therapeutic benefits by incorporation of growth 

factors (bFGF, TGF-β1, IGF-1, VEGF, Neuregulin-1β) and/or cells in the injected 

biomaterials [183–185]. Many of such studies continue to be performed in small animals, 

however, studies in larger animal models [186] are required to develop effective treatment 

strategies with prospect for clinical translation.

Engineered Tissue Therapies

The inability to engraft sufficient viable cells after transplantation by a bolus injection [187] 

has prompted development of alternative approaches to pre-engineer a striated muscle tissue 

in vitro followed by its implantation at the injury site in vivo. In an ideal case, the 

advantages of this approach are that tissue function is known prior to implantation, tissue 

implants can be preconditioned for maximized survival and function, patients can expect a 

more immediate return of function, restoration of large defects can be performed with a 

single intervention, and any adverse immune response is localized. It is accepted, although 

debatable, that the key to engineering a functional tissue in vitro is to best replicate the in 
vivo milieu, which can be achieved by providing cells with an appropriate ECM, 

biochemical, and mechanical microenvironment to support maximal differentiation and 

maturation. The ECM should be biocompatible and biodegradable, provide a high surface 

area for cell adhesion and structural support, and amplify autocrine and paracrine effects by 

minimizing diffusion distances [188, 189]. Furthermore, cells are exquisitely sensitive to the 

stiffness to which they are exposed to [190, 191] requiring that the provided ECM should be 

of similar stiffness to that of native tissue in vivo. The similar ECM protein composition and 

stiffness of skeletal (12kPa) [97, 98, 191] and cardiac (8–18kPa) [192, 193] muscles have 

resulted in the use of similar biomaterials for their in vitro tissue engineering.

Skeletal muscle—The most abundant ECM protein in adult striated muscles is collagen 

type I [194], and thus the first engineered skeletal muscle was produced by embedding avian 
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myotubes within a collagen I hydrogel anchored between two fixed points [195]. This was 

followed by demonstrations that murine C2C12 myoblast cell line can undergo myogenesis 

(i.e., proliferate, fuse, and differentiate) within a 3D hydrogel environment [196–199]. 

Mechanical tension between the anchor points within hydrogel promoted myoblast 

alignment and stimulated muscle growth. Compared to culture in traditional 2D dishes, the 

3D environment permitted longer culture times and greater maturation levels. This method 

has been used to engineer muscle from primary rodent [200–204] myoblasts but active 

forces were only generated when collagen was mixed with matrigel. The only reported 

functional engineered muscle using a pure collagen matrix was constructed by alternate 

layering of rat myotubes and collagen [205] and yielded specific forces of 2 mN/mm2, 

significantly smaller than 230 mN/mm2 measured in native muscle [206].

More recent studies have utilized fibrin hydrogels that permit significant matrix remodeling 

and ECM synthesis, and exhibit stiffness resembling that of skeletal muscle [207, 208]. The 

first fibrin-based engineered skeletal muscle constructs utilized primary neonatal rat 

myoblasts and generated specific forces (36 mN/mm2) ~6 times lower than native adult rat 

muscles but greater than collagen-based muscle constructs [209]. Further improvements in 

specific force to approach values of 100 mN/mm2 [210] have been achieved by including 

Matrigel [211], a matrix containing laminin and collagen IV proteins found in the basal 

lamina, dynamic culture and decreased tissue size to maximize nutrient and oxygen delivery 

[211, 212], and using a highly fusigenic progenitor population [212]. Overall, the absolute 

and specific forces generated by engineered muscles made of neonatal rat myoblasts have 

been far higher than those reported when using cells from other species [213–215], 

including human myoblasts which under similar conditions produced specific forces of 7.2 

mN/mm2 [215].

An alternative approach to use of hydrogels/scaffolds to support muscle formation is to 

allow cells to secrete their own ECM and self-organize into a 3D tissue. Using saran wrap as 

a cell culture substrate and adding fibroblasts to secrete sufficient ECM enabled the self-

assembly of muscle tissue constructs that expressed adult isoforms of myosin heavy chain 

[216]. This method was improved by replacing saran wrap with laminin, the major 

component of the basal lamina [217]. While rat skeletal muscle cells in these tissues 

generated a specific force of 4.1 mN/mm2, primary mouse cells generated 15.6 mN/mm2, 

possibly due to the greater ECM secretion by fibroblasts to support muscle differentiation 

and force transmission. The long time to formation (~35 days) and challenges with scale-up 

have limited utilization of this technique compared to use of natural or synthetic scaffolds. 

Alternatively, self-assembly of large-area muscle constructs has been achieved using a cell 

sheet engineering technique in which mixtures of muscle cells and fibroblasts were cultured 

on dishes coated with thermoresponsive polymer poly(N-isopropylacrylamide) until they 

generated sufficient ECM and then detached from tissue culture plates by decreasing 

temperature [218–220]. Stacking of the sheets can allow generation of thicker muscle tissues 

and incorporation of endothelial and neuronal layers [218, 219]; however, functionality of 

these muscle constructs has yet to be reported.

While state-of-the-art in vitro engineered skeletal muscle tissues can display postnatal levels 

of generated contractile force and physiological length-tension and force-frequency 
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relationships [210], their twitch:tetanus ratios mostly resemble embryonic state, although 

this may be dependent upon the geographical origin of the culture serum [221]. Furthermore, 

engineered muscles retain the contractile and metabolic phenotype specific to a muscle used 

for cell isolation [213, 222] and have been recently designed to successfully regenerate in 
vitro in response to cardiotoxin injury [210], thus exhibiting features characteristics of native 

mature muscle. Still, the myofiber diameter and functional parameters of engineered muscle 

remain inferior to those typically found in adult skeletal muscles. Generation of more 

complex tissue constructs containing additional non-muscle cell types may yield improved 

properties and utility of engineered muscles. For example, the addition of fibroblasts [223] 

or their paracrine factors [224] enhanced engineered muscle formation, though excessive 

fibroblasts can negatively impact force generation. Muscle-tendon units have been 

engineered by fabricating composite scaffolds to simultaneously form muscle and tendon de 
novo [225, 226], or by using native tendons [227, 228] or bone-tendon structures [229] as 

engineered muscle anchors. Addition of motor neurons [230–232] or spinal cord explants 

[233] resulted in the formation of neuromuscular junctions and promoted force generation of 

engineered muscle [233]. Whilst engineering a muscle-tendon-bone unit is expected to 

benefit in vivo implantation, it is unclear if neuron-muscle implants would integrate into the 

host neuronal system. Alternatively, factors that promote acetylcholine receptor formation 

and clustering on muscle fiber sarcolemma, such as agrin, may provide more benefit to 

functional integration of engineered muscle implants in vivo [234–236].

Although soluble factors and co-culturing with other muscle-resident cells are likely to 

promote myofiber maturation, engineering an adult-like muscle construct in vitro will 

require additional biophysical and metabolic cues. The continuous passive stretch applied to 

skeletal muscle by bone growth is critical for muscle development [237] while cyclic 

mechanical loading is crucial for regulating adult muscle mass [238]. Replicating these 

distinct loading regimes with ramp or cyclic stretch resulted in improved myotube 

alignment, hypertrophy, and mass of engineered muscle [239–242]. In addition to 

mechanical loading, tonic and voluntary muscle contractions induced by functional 

innervation are required for complete muscle development [243, 244], maintenance of 

muscle mass [245], and regulation of muscle fiber phenotype [246]. Thus application of 

electrical stimulation to mimic neuronal input induced rapid increase in force generation 

[222, 247–251], while mimicking fast and slow neural activation patterns directed 

engineered muscle contractile and metabolic phenotype and protein expression towards 

particular fiber type [213, 222, 248]. While the above methodologies will support maturation 

of engineered muscle in vitro and survival and functional integration in vivo, the scale-up of 

tissue size along with sufficient vascular supply remain as major roadblocks to clinical 

translation.

Cardiac muscle—Almost a decade after the emergence of the first tissue-engineered 

skeletal muscles, embryonic chick cardiomyocytes were embedded in a collagen gel loaded 

between Velcro-coated glass tubes to create the first tissue-engineered cardiac muscle [252]. 

These early cardiac tissues generated contractile stresses (specific forces) of 0.2–0.3 

mN/mm2 and showed length- and Ca2+-dependent force increase characteristic of native 

myocardium. Owing to their relative ease of isolation and low cost, neonatal rat ventricular 
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myocytes (NRVMs) have been the first, widely utilized mammalian cell source for cardiac 

tissue engineering. The first NRVM-based cardiac tissues were engineered by Bursac et al. 

in 1999 using fibrous polyglycolic scaffolds [253], followed by the first gelatin mesh-based 

cardiac tissues implanted by Li et al [254]. Since then, NRVMs were utilized in 3D alginate 

scaffolds [255], collagen gels [256, 257] and collagen/Matrigel matrices [258], and have 

progressed towards the use in scaffold-free cell sheets [259] and cylinders [260], fibrin gels 

[261–263], and fibrin/Matrigel constructs [264, 265], the latter of which have generated 

contractile stresses of ~9 mN/mm2 [264], still significantly lower than those measured in 

adult rat myocardium (~70 mN/mm2 [266, 267]).

In addition to force of contraction, which is arguably the most critical functional output of 

engineered skeletal muscle, the engineered cardiac muscle must also replicate the fast action 

potential propagation (assessed by measuring conduction velocity, CV) that allows the native 

heart to rapidly contract in an orderly fashion. In terms of cardiac repair applications, mature 

electrophysiological properties of engineered cardiac tissues, including high conduction 

velocity, are necessary to ensure electrical safety of the therapy, while high contractile forces 

would contribute the therapeutic efficacy. To this end, several studies with NRVMs [264, 

268–272] have utilized the technique of optical mapping, whereby incubation of engineered 

tissues in a voltage-sensitive dye such as Di-4-ANEPPS and stimulation by a point electrode 

allow CV measurement by analyzing the spatial spread of action potential wavefronts. 

Measured CVs have ranged from 14.4 cm/s [268] to 36.1 cm/s [272], still inferior to values 

reported for adult rat ventricular tissues (66–69 cm/s [273, 274]). Beside the evaluation of 

the basic tissue-scale functional parameters, robust formation of T-tubules (hallmark of 

excitation-contraction coupling maturation) was reported in NRVMs after 3–4 weeks of 

culture in fibrin-based constructs [272]. While these results were obtained without any 

external stimulation, application of chronic cyclic stretch to better mimic the in vivo cardiac 

mechanics has also yielded the T-tubular formation in NRVMs [258]. Recently, chronic 

electrical stimulation (4 Hz over 5 days) yielded a positive force-frequency relationship, 

which despite being at sub-physiological rates and small in magnitude, is still the first 

demonstration of an important adult-like physiological response [275].

With the advent of stem cell research, experiences with engineering of NRVM constructs 

have been applied to generate cardiac tissues from mouse [276–280] and, more recently, 

human embryonic and induced pluripotent stem cell-derived cardiomyocytes, ESC-CMs and 

iPSC-CMs [281]. In particular, numerous groups have engineered 3D cardiac tissues from 

hESCs and hiPSCs [163, 282–285] that generated specific forces ranging from 0.08 

mN/mm2 [286] to 11.8 mN/mm2 [287] and conduction velocities ranging from 4.9 cm/s 

[288] to 25.1 cm/s [287, 289]. Thus, further progress in the field will be necessary to bring 

the state of human cardiac tissue engineering closer to replicating the robust phenotype of 

the adult human myocardium (specific forces of 25–44 mN/mm2 [290, 291], average 

conduction velocity of ~50 cm/s [292]). In particular, as hESC- and hiPSC-CMs are 

structurally and functionally more similar to human fetal than neonatal or adult CMs [293], 

numerous strategies have been attempted to improve maturation of cardiomyocytes, 

including long-term culture, electrical and mechanical stimulation, supplementation with 

growth factors and hormones such as IGF-1 and T3, and fostering heterocellular interactions 

with non-myocytes [294–296]. For example, 3–4 month 2D culture of hPSC-CMs has 
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produced structurally and electrophysiologically more mature cardiomyocytes [297], while 

1-year 2D-cultured hPSC-CMs demonstrated appearance of M-bands (in <10% of CMs), a 

hallmark of advanced sarcomeric maturation [298]. Recently, a 4-month long culture within 

3D PEG (poly(ethylene glycol))-fibrinogen hydrogels yielded the formation of T-tubules in 

hPSC-CMs [282]; still the CM volume in all these studies remained significantly smaller 

than that of the adult CMs.

Since long-term cultures are obviously time and resource intensive, much recent focus has 

been placed on accelerated maturation of human cardiomyocytes in vitro. Application of 

chronic electrical stimulation to engineered tissues improved hPSC-CM ultrastructural 

organization, contractile force generation, electrophysiological properties, and conduction 

velocity [299, 300], while cyclic stretch improved hPSC-CM alignment and hypertrophy 

[286]. Treatment of hPSC-derived cardiac tissues with thyroid hormone T3, which normally 

stimulates cardiac maturation during development, has led to increased cardiomyocyte size, 

sarcomere length, and contractile force, all indicative of structural and functional maturation 

[295]. Furthermore, several groups have demonstrated the crucial role that non-myocytes, 

primarily fibroblasts, smooth muscle cells, and endothelial cells, play in the development of 

functional 3D cardiac tissues [276, 286–289]. However, there exists a delicate balance in the 

cardiomyocyte to non-myocyte ratio, as insufficient non-myocytes will inadequately 

remodel and compact a 3D tissue, while their overabundance can impede the formation of a 

functional, electromechanically coupled syncytium [253]. Studies of various cell ratios using 

mESC-derived CMs suggest that as few as 3% fibroblasts are enough to remodel a tissue 

matrix without impeding inter-myocyte connections [276], while a moderately high hESC-

derived cardiomyocyte fraction (60–80%) is optimal for generating human 3D tissues with 

highest forces of contraction [287]. Overall, success of the above individual modifications 

has been modest, and it is likely that achieving a true, adult cardiomyocyte phenotype in 
vitro will entail more sophisticated and mechanistically driven approaches to provide the key 

time-varying environmental cues present in the postnatal cardiac development (e.g. 

biomechanical, metabolic, endocrine, cell-matrix, cell-cell, etc.).

Engineered tissue vascularization and implantation

While the above strategies are expected to result in successful generation of mature striated 

muscles suitable for disease modeling and drug development in vitro, one of the main 

obstacles to successful therapies in vivo will be the ability to rapidly supply implanted 

muscle cells with oxygen and nutrients from the host circulation. The high metabolic 

demand of any larger size avascular striated muscle implants would result in rapid 

consumption of diffused oxygen within the tens of microns from the host capillaries leading 

to hypoxia and cell death. At least in the case of skeletal muscle implants, some regeneration 

could occur from resident satellite cells [210, 301] while similar effects in cardiac tissue 

constructs would only be expected if implanted cardiomyocytes remained proliferative in 
vivo. Formation of pre-vascularized tissues in vitro prior to implantation and/or conditions to 

accelerate vascularization in vivo offers avenues to improve implant survival and enhance 

therapeutic effects.
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Skeletal muscle

In early studies, pre-vascularized engineered skeletal muscle tissues formed by tri-culture of 

myoblasts, endothelial cells (ECs) and fibroblasts in scaffolds composed of 50% poly-(L-

lactic acid) (PLLA) and 50% polylactic-co-glycolic acid (PLGA) [302] showed improved 

cell survival and vascularization compared to tissues formed by co-culture of myoblasts and 

endothelial cells. In these constructs, fibroblasts were necessary to stabilize and increase 

formation of lumen structures, while increased tri-culture time prior to implantation further 

enhanced survival and function of muscle implants in vivo [303]. On the other hand, 

acellular bladder matrix, which naturally supports rapid angiogenesis and vascular 

infiltration [304], allowed the use of only ECs and muscle progenitor cells yielding 

vascularization, neuron infiltration, and maturation of engineered muscle tissue in vivo 
[305]. As skeletal muscle requires an axial vascular pedicle to maintain function and develop 

adequate vascularization [306], an arteriovenous (AV) loop connecting an artery and vein 

was used to provide such a pedicle [307–309], and combined with a tri-culture scaffold in 
vivo allowed the repair of large muscle defects [310]. Alternatively, engineered muscle 

tissues were placed along the femoral vessels to provide an axial vascular supply leading to 

the formation of viable myofibers throughout the tissue cross-section [306, 311]. These 

studies, among others, are highlighted in Table 2, which summarizes the function, 

vascularization, and in vivo tissue repair of in vitro engineered skeletal muscle implanted 

into various animal models.

Other approaches have involved incorporation of vascular endothelial growth factor (VEGF) 

into biodegradable polymer scaffolds or engineering of myoblasts to secrete angiogenic 

factors [312–314]. The sustained levels of VEGF by these methods result in far greater 

angiogenesis than bolus VEGF delivery. The results of these studies can be further improved 

by co-delivery of pro-myogenic growth factors, such as IGF-1, resulting in enhanced muscle 

regeneration and innervation [315, 316]. Lastly, a recent approach involving the use of 

human mesangioblasts transduced with the proangiogenic placenta growth factor (PlGF) 

embedded in fibrinogen-PEG hydrogel restored a full murine tibialis anterior muscle defect 

yielding vascular and neuronal ingrowth into engineered muscle implants [317]. 

Mesangioblast implants not expressing PlGF showed decreased vascular infiltration, muscle 

size and density, suggesting that the proangiogenic effects of PlGF promoted survival of 

muscle fibers [317, 318]. While single explanted myofibers from the regenerated muscle had 

specific forces similar to those of native myofibers, it is unclear if they were purely of 

human origin and if contractile force from the whole regenerated muscle (reflective of 

functional recovery) was the same as that of the intact TA muscle.

Cardiac muscle

Similar to skeletal muscle, successful pre-vascularization of engineered cardiac tissues has 

typically required co- and/or tri-culture of cardiomyocytes and vascular cells, most 

commonly endothelial cells and either fibroblasts or smooth muscle cells [277, 286, 319–

322] (reviewed in [323]). Beside adding supporting cell types, engineering cardiac tissues 

using porous scaffolds [184, 319, 324, 325] or impregnating scaffolds with pro-angiogenic 

factors such as VEGF [184, 326] or stromal-cell derived factor-1 (SCF-1) [326] have 

enhanced host neovasculogenesis upon tissue implantation in both normal and infarcted 
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hearts. Hence, numerous studies have assessed the ability of engineered cardiac tissue 

implants to actively repair infarcted myocardium in small and large animal models (Table 1). 

While various studies have shown some degree of structural and functional repair, the results 

differ widely on the extent of functional recovery, graft vascularization, and electrical 

integration with the host heart. Of note, very few studies assessed in vitro contractile 

function of engineered tissues prior to their implantation, and no studies reported important 

measures of electrical function and electrical safety, such as conduction velocity. A recent 

comparison between injected hPSC-CMs and transplanted hPSC-CM patches showed that 

injected cells were able to form electrical connections with host myocardium [327] while 

functional integration of transplanted patches was hampered by the existence of fibrous layer 

between the patch and host myocardium. Thus, the lack of direct electromechanical 

integration between implant and host cardiomyocytes remains an important challenge in the 

field, resolution of which would be expected to further enhance therapeutic effects of 

engineered cardiac tissues beyond mere paracrine effects. Importantly Menasche et al. has 

recently presented the first clinical implantation of a hESC-derived cardiac progenitor patch 

into a human heart [328]. No adverse effects and preliminary evidence of significant 

improvement in the patient’s heart failure severity offer encouraging prospects for the use of 

hPSC-derived cardiac tissues in human heart repair, and will undoubtedly be followed up by 

future clinical trials and in-depth mechanistic studies.

Future considerations

Successful therapies for striated muscle dysfunction will require further technological 

advances and improved understanding of muscle physiology, development, and disease. 

Congenital muscle pathologies are most likely to benefit from gene therapies that employ 

modern genome engineering techniques [342–345], while cell therapies with healthy or 

genetically corrected cells will be limited to repair of the heart and specific skeletal muscles, 

or potentially all striated muscles via intra-arterial delivery of mesoangioblasts [124, 126], 

The use of biomaterials with or without cells will likely be most beneficial for treatment of 

myocardial infarction [346] and traumatic skeletal muscle injuries such as volumetric 

muscle loss [168, 172].

One of the important challenges in the cell-based human skeletal muscle repair is the 

inability to expand satellite cells in sufficient quantities without loss of their myogenic 

potential [94]. Successful methods to recreate SC niche and enable SC self-renewal in vitro 
may require the presence of differentiated myofibers and various non-muscle cells (FAPs, 

ECs, pericytes), manipulation of ECM proteins and substrate mechanics, and use of 3D cell 

culture [75, 98, 212]. Alternatively, generating functional SCs from hPSCs may overcome 

this challenge but improved differentiation protocols, via identification of novel small 

molecules, cell sorting, or genome editing, will be required to increase the efficiency of 

myogenic hPSC differentiation. Furthermore, while hPSC-derived myogenic precursors have 

been shown to fuse with mouse myofibers and contribute injury repair in vivo, their ability 

to form functional human muscle is still unknown. For systemic delivery of myogenic cells 

it will be also important to promote their passing through capillary walls, which could be 

achieved by use of gene editing techniques (e.g. CRISPR/Cas9) to safely and stably express 

proteins such as Pw1/Peg3 [128].
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In contrast to skeletal muscle, where implantation of muscle progenitors can contribute to 

formation of new mature myofibers and muscle repair, injection of immature hPSC-CMs in 

the heart may not lead to the formation of mature cardiac muscle and may predispose heart 

to life-threatening arrhythmias [162]. Tissue engineering strategies have emerged as 

alternative cell delivery methods given their ability to improve cell retention and survival 

and to promote the maturation of hPSC-CMs, although even state-of-the-art 3D cardiac 

tissues still lack various properties of adult myocardium. It is possible that full maturation of 

engineered hPSC-CM tissues can be achieved through a combination of biochemical factors 

and electromechanical conditioning that closely mimic the complex microenvironment of 

developing myocardium. Moreover, understanding the complex interactions between hPSC-

CMs and non-CMs (fibroblasts, endothelial cells, smooth muscle cells, pericytes, 

macrophages, etc.) will be likely required for the successful engineering of mature cardiac 

tissues. Alternatively, combinations of non-physiological stimuli may be identified that 

jump-start maturation programs in hPSC-CMs to accelerate their metabolic adaptation, 

hypertrophy, and acquisition of an adult functional phenotype.

For successful tissue engineering therapies, incorporating a vascular and neuronal 

component will be required to overcome the size and survival limitations. Obtaining robust 

vascular networks in vitro will likely require the presence of both endothelial and 

perivascular (pericyte, macrophage, smooth muscle, fibroblast) cells, yet the exact 

proportions of these cell types remains unclear. Furthermore, in vitro conditions for 

vascularization need to be identified that do not compromise differentiation, force 

generation, or electrical conduction (for cardiac) of engineered muscle. Related challenge is 

the inability to functionally integrate (i.e. enable synchronous activity) of engineered and 

host muscles in vivo. For engineered skeletal muscle, stable and functional NMJs are 

required to both promote muscle maturation and enable its innervation upon engraftment. In 
vitro or in vivo application of synaptogenic factors (e.g. agrin) [234, 236] or intermittent 

neuromuscular electrical stimulation [347] may be necessary to promote implanted 

engineered muscle survival, maturation, and formation of stable connections with the host 

motor neurons. For engineered cardiac muscle, the main contributor to the lack of electrical 

coupling between the implanted and host cardiac tissue is the fibrous layer that forms 

between the tissue implant and epicardium [327]. Surgical strategies to better adhere 

engineered tissues to the heart surface, or genetic engineering strategies to render the fibrous 

layer electrically conducting [348] may yield functional synchronization between the 

implanted and host cardiomyocytes.

Conclusions

Current pharmacological therapies show limited capacity to augment the regenerative 

response of human striated muscles to ischemic injury, excessive trauma, or degenerative 

disease. Over the past 35 years, a range of alternative cell-, gene-, and material-based 

strategies have evolved that have shown promising results in both small and large animal 

studies. Still, a greater understanding of the specific cellular and molecular mechanisms that 

can benefit striated muscle repair and regeneration is required to improve the efficacy of 

these approaches. For skeletal muscle therapies, improved cell isolation and culture 

techniques are needed to expand functional stem cells and maintain their myogenic potential 
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in vitro. For effective cardiac repair, robust methods are required to accelerate in vitro 
cardiomyocyte maturation and promote transplanted cell survival in vivo. Finally, methods 

to produce large striated muscle tissues that can be rapidly vascularized and functionally 

integrated with host muscles need to be developed to enable successful translation of these 

promising strategies to clinical practice.
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Non-standard abbreviations

CM cardiomyocyte

CSC cardiac stem cell

CV conduction velocity

CHD Congenital heart defect

DGC dystrophin-associated glycoprotein complex

ECM extracellular matrix

FAP fibroadipogenic progenitors

hESC human embryonic stem cell

hiPSC human induced pluripotent stem cell

mESC-CM mouse embryonic stem cell-derived cardiomyocyte

MHC myosin heavy chain

MMP matrix metalloproteinase

MSC mesenchymal stem cells

NRVM neonatal rat ventricular myocyte

PIC Pw1 interstitial cell

RyR Ryandodine receptor

SR sarcoplasmic reticulum

SERCA sarcoplasmic reticulum Ca2+ ATPase

SC satellite cell

SIS small intestine submucosa
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Fig. 1. Structure and function of striated muscles
A) Adult skeletal muscle contains uniformly aligned, long multinucleated myofibers, blood 

vessels, and resident satellite cells, with fewer fibroblasts relative to cardiac muscle. B) 

Adult cardiac muscle consists of a branched network of shorter cardiomyocytes connected 

via intercalated discs and surrounded by blood vessels and extracellular matrix secreted 

primarily by fibroblasts. C) Skeletal muscle excitation-contraction (E–C) coupling begins 

with a depolarization-induced conformational change in L-type Ca2+ channels (CaV1.1, 

dihydropyridine receptor, DHPR) that triggers release of Ca2+ from two neighboring SR 

terminae via opening of the Ryanodine receptor (RyR1) channels, creating a triad (rather 

than a diad as in cardiac muscle) with the T-tubules. Calcium is pumped back into the SR via 

the SR-ATP-ase (SERCA1a). D) Cardiac E-C coupling occurs through a Ca2+-dependent 

Ca2+ release wherein T-tubular entry of extracellular Ca2+ through depolarization activated 

L-type Ca2+ channels (CaV1.2) triggers a release of Ca2+ stored in the sarcoplasmic 

reticulum (SR) via opening of the RyR2 channels. Calcium is pumped back into the SR via 
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the SR-ATP-ase (SERCA2a). E) Tetanic responses of slow and fast-twitch skeletal muscle 

fibers showing increased ability to recover from fast-paced stimulation in fast-twitch fibers. 

F) Comparison of active and passive tension-length relationships in cardiac and skeletal 

muscle. Both striated muscles exhibit stronger active (contractile) force with increased 

muscle length followed by decay at higher levels of stretch (Frank-Starling relationship). 

While skeletal muscle operates close to the peak of its active force-length curve, cardiac 

muscle operates at the ascending limb of the curve to allow more forceful contraction at 

larger diastolic filling. Simultaneously, passive tension of cardiac muscle at its operating 

length is markedly higher than that of skeletal muscle, primarily due to higher stiffness of 

titin molecules within the sarcomeres. G) Unlike skeletal muscle, cardiac muscle can 

propagate action potentials (APs) between myocytes that are connected via gap junctions. 

Schematic depicts an isochrone map showing AP propagation through cardiac muscle, from 

which conduction velocity can be measured. H) Positive force-frequency relationship of 

cardiac muscle demonstrating increased force production at higher excitation rates.
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Fig. 2. Endogenous and exogenous repair of striated muscles
A) Damage to skeletal muscle results in proliferation and migration of satellite cells (SCs) 

along the longitudinal axis of dying fibers (gray) and initial infiltration of pro-inflammatory 

M1-macrophages and neutrophils which aids in the degeneration of damaged fibers. 

Conversion to and infiltration of M2-macrophages stimulates SCs to differentiate and 

eventually fuse into functional myofibers. B) Ischemic injury to cardiac muscle results in 

death of cardiomyocytes (CMs), an initial infiltration of neutrophils and upregulation of 

matrix metalloproteinases. Release of TGF-β from necrotic CMs induces late migration of 

macrophages and fibroblasts as well as transformation of fibroblasts into myofibroblasts, 

which secrete collagen to ultimately produce a fibrotic scar. C) Striated muscle repair can be 

augmented via exogenous delivery of single cells, biomaterials with or without cells, as well 

as transplantation of in vitro engineered functional muscle tissues.
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