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Abstract

Longitudinal neuroimaging analysis of the dynamic brain development in infants has received 

increasing attention recently. Many studies expect a complete longitudinal dataset in order to 

accurately chart the brain developmental trajectories. However, in practice, a large portion of 

subjects in longitudinal studies often have missing data at certain time points, due to various 

reasons such as the absence of scan or poor image quality. To make better use of these incomplete 

longitudinal data, in this paper, we propose a novel machine learning-based method to estimate the 

subject-specific, vertex-wise cortical morphological attributes at the missing time points in 

longitudinal infant studies. Specifically, we develop a customized regression forest, named 

Dynamically-Assembled Regression Forest (DARF), as the core regression tool. DARF ensures 

the spatial smoothness of the estimated maps for vertex-wise cortical morphological attributes and 

also greatly reduces the computational cost. By employing a pairwise estimation followed by a 

joint refinement, our method is able to fully exploit the available information from both subjects 

with complete scans and subjects with missing scans for estimation of the missing cortical 

attribute maps. The proposed method has been applied to estimating the dynamic cortical 

thickness maps at missing time points in an incomplete longitudinal infant dataset, which includes 

31 healthy infant subjects, each having up to 5 time points in the first postnatal year. The 

experimental results indicate that our proposed framework can accurately estimate the subject-

specific vertex-wise cortical thickness maps at missing time points, with the average error less 

than 0.23 mm.
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1. Introduction

In recent years, with the advance of pediatric MR imaging acquisition and post-processing 

techniques, longitudinal neuroimaging analysis of the early postnatal brain development, 

which can uniquely capture both subject-specific and population-averaged developmental 

trajectories, has received increasing attention (Almli, et al., 2007; Fan, et al., 2011; Gilmore, 

et al., 2012; Kaukola, et al., 2009; Li, et al., 2013; Li, et al., 2014b; Meng, et al., 2014; Nie, 

et al., 2014; Schumann, et al., 2010; Shi, et al., 2010). During the early postnatal stage, the 

human cerebral cortex develops extremely dynamically, with the surface area increasing 

80% and the cortical thickness increasing 40% in the first postnatal year (Li, et al., 2013; 

Lyall, et al., 2014). Charting longitudinal cortical developmental trajectories in this early 

postnatal period can help better understand the relationship between normal structural and 

functional development of the cerebral cortex (Awate, et al., 2010; Dubois, et al., 2008; 

Gilmore, et al., 2007; Schnack, et al., 2014), and also provide fundamental references for 

understanding of many neurodevelopmental disorders that are likely the outcomes of 

abnormal brain development during this period (Gilmore, et al., 2012; Lyall, et al., 2014).

To accurately study the dynamic early brain development, many studies expect using 

subjects with complete longitudinal scans. However, in practice, missing data at certain time 

points are unavoidable in longitudinal studies due to various reasons, such as subject’s 

absence from the scheduled scan or poor imaging quality of the scan. On one hand, directly 

using the incomplete data would introduce biases and consequently reduce precision and 

power in statistical analysis. For example, when constructing spatial-temporal infant cortical 

surface atlases (Li, et al., 2014c), each time point will have a different number of subjects 

because of missing data. As a result, different biases could be introduced to different time 

points, thus leading to low accuracy and longitudinal inconsistency for subsequent analysis, 

especially for those time points with limited number of scans. Another example is that, in 

longitudinal study of the spatial distribution of deep sulcal landmarks on infant cortical 

surfaces (Meng, et al., 2014), each involved subject needs to be scanned at all time points for 

consistent and unbiased comparison across ages. Due to missing data, different subjects are 

scanned at different time points, thus leading to biased and inconsistent comparison. On the 

other hand, discarding subjects with missing time point(s) is a terrible waste of the useful 

information in these subjects and also the considerable cost for data acquisition. Hence, 

accurate estimation of information at missing time points plays an important role in 

longitudinal analysis of early brain development.

A common strategy to handle missing data is to replace the missing data by the weighted 

average over the most representative subset of existing data (e.g., k-nearest neighbors) 

(Ching, et al., 2010; Troyanskaya, et al., 2001; Tsiporkova and Boeva, 2007), but the 

effectiveness of this strategy often decreases with the increase of the portion of missing data. 

For recovering a large portion of missing data, several methods based on low-rank matrix 

completion were proposed (Cai, et al., 2010; Cand and Tao, 2010; Candès and Recht, 2009; 

Liu, et al., 2013), but these methods work well only if the missing data are distributed 

randomly and uniformly. Unfortunately, in neuroimaging study, the missing data are usually 

distributed in blocks and not uniformly (Li, et al., 2014f; Thung, et al., 2014; Yuan, et al., 

2012). For example, the missing data can be the entire image, rather than some independent 

Meng et al. Page 2

Hum Brain Mapp. Author manuscript; available in PMC 2017 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



pixels or clinical scores, thus the methods based on low-rank matrix completion can no 

longer work properly. Recently, multi-source feature learning methods (Yuan, et al., 2012) 

and deep convolutional neural networks (Li, et al., 2014f) were proposed to estimate 

information of missing imaging modalities based on the available modalities, and the 

estimated modalities were demonstrated to help diagnose neurodegenerative diseases. To 

deal with the missing modalities in the application of disease diagnosis, another alternative 

method is to first select the most discriminative features extracted from the available 

modalities and then estimate only those most discriminative features in the missing 

modalities (Thung, et al., 2014). However, the estimation of missing vertex-wise cortical 

morphological maps in this paper has specific characteristics. First, many longitudinal 

analysis needs information of morphological measurements at every vertex on the cortical 

surface, rather than just a simple mean value in each region. For example, to extract deep 

sulcal landmarks from the infant cortex (Meng, et al., 2014), the whole cortical 

morphological map containing the depth values for all vertices of the cortical surface is 

needed. Second, cortical surfaces are usually represented by triangular meshes, rather than 

by 3D volumes. Thus, the ways used to extract features as employed in the image-based 

methods (Li, et al., 2014f; Yuan, et al., 2012) are not naturally extendable to extraction of 

features from cortical surfaces. Therefore, the existing image-based methods (Li, et al., 

2014f; Thung, et al., 2014; Yuan, et al., 2012) cannot be directly applied to our task of 

estimating missing vertex-wise morphological maps on the dynamic developing cortical 

surfaces.

In this paper, we propose a novel learning-based framework for subject-specific estimation 

of the vertex-wise map for cortical morphological attributes at missing time point(s) in the 

longitudinal infant brain studies. Of note, this is challenged by the extremely dynamic and 

regionally-heterogeneous growth of the infant cortex and also by the considerable inter-

subject variability of cortical morphology and developmental patterns. Technically, we 

leverage the regression forest (Breiman, 2001) as our core regression tool to estimate cortical 

morphological attributes at each vertex of the cortical surface. However, using a single 
conventional regression forest (CRF) to estimate vertex-wise cortical morphological 

attributes of the entire surface is not suitable. Because the cortical morphological attributes 

and their developments in infants are highly regionally heterogeneous, using a single CRF 

cannot precisely estimate values at vertex level. An intuitive way to solve this problem is to 

partition the whole cortical surface into a set of small regions of interest (ROIs), and then 

train a local regression forest for each ROI. However, this will lead to spatially unsmooth 

estimation results around the boundaries of neighboring ROIs. This is because cortical 

attributes of vertices in the two sides of a ROI boundary are estimated using two different 

regression forests that are trained independently with different training samples. Intuitively, 

increasing the overlapping area among ROIs or training a complete regression forest at each 

vertex could produce smoother estimation results, but it unexpectedly increases the 

computational cost. Based on our experiments, to make the estimation results as smooth as 

the real data, more than 90% area of a ROI needs to be overlapped with its neighboring 

ROIs. Unfortunately, such a large portion of overlap requires a large number of ROIs in 

order to cover the whole cortex, and thus leads to huge computational workload, since a 

respective set of individual trees need to be trained for each ROI. Taking account all these 
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issues, we propose a novel Dynamically-Assembled Regression Forest (DARF). Specifically, 

by first training one decision tree for each vertex in the training stage and then locally 

grouping decision trees of neighboring vertices as forests in the testing stage, DARF is able 

to produce the spatially smooth regression results and meanwhile also save a lot of 

computational cost.

In general, for estimating the vertex-wise cortical attributes maps at missing time point(s), 

our method includes two major stages. In the first stage, in order to use as many training 

subjects as possible, the missing data (e.g., vertex-wise cortical attributes maps) at each 

missing time point of each subject is estimated multiple times with each time based on the 

available data at each existing time point independently, and then these estimated results at 

each missing time of each subject are averaged as an initial estimation. In the second stage, 

to better use longitudinal information, the missing data at each time point of each subject is 

refined based on both real data and the initially-estimated missing data at all other time 

points jointly. We have validated our missing data estimation method on an incomplete 

longitudinal dataset of infants for the estimation of vertex-wise map of cortical thickness, 

which is an important morphological measure for the cerebral cortex and also correlates with 

both normal development and neurodevelopmental disorders (Lyall, et al., 2014). The 

experimental results show that our method achieves high accurate estimations, with the 

average vertex-wise error of less than 0.23 mm. It is worth mentioning that, among all the 

cortical attributes, cortical thickness is relatively more difficult to estimate, as it is quite 

variable in terms of both spatial distribution and dynamic longitudinal development across 

individuals. Of note, our method is very generic and not limited to only estimating cortical 

thickness, as it can also be extended to estimate other morphological attributes, such as 

sulcal depth, surface area, cortical folding, and local cortical gyrification (Li, et al., 2014e).

2 Dataset and Image Processing

2.1 Subjects and MR Image Acquisition

This study was approved by the Institutional Review Board of the University of North 

Carolina (UNC) School of Medicine. The UNC hospitals recruited healthy pregnant mothers 

during their second trimesters of pregnancy. There was no abnormal fetal ultrasound, 

congenital anomaly, metabolic disease or focal lesion in the infants in the study cohort. For 

each infant, informed consents were obtained from both parents. All infants were scanned 

during natural sleep with no sedation used. During each scan, the heart rate and oxygen 

saturation of the infant were monitored by a physician or a nurse using a pulse oximeter.

For each infant, MRI scans were scheduled at every 3 months in the first year of life, every 6 

months in the second year of life, and every 12 months in the third year of life. At each 

scheduled scan, T1-, T2-, and diffusion-weighted MR images were acquired by a Siemens 

3T head-only MR scanner with a 32 channel head coil. T1-weighted images (144 sagittal 

slices) were acquired with the imaging parameters: TR = 1900 ms, TE = 4.38 ms, flip angle 

= 7, acquisition matrix = 256 × 192, and voxel resolution = 1 × 1 × 1 mm3. T2-weighted 

images (64 axial slices) were acquired with the imaging parameters: TR/TE = 7380/119 ms, 

flip angle = 150, acquisition matrix = 256 × 128, and voxel resolution = 1.25 × 1.25 × 1.95 

mm3. Diffusion-weighted images (DWI) (60 axial slices) were acquired with the parameters: 
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TR/TE = 7680/82 ms, acquisition matrix = 128 × 96, voxel resolution = 2 × 2 × 2 mm3, 42 

non-collinear diffusion gradients, and diffusion weighting b = 1000 s/mm2. More 

information on image acquisition can be found in (Li, et al., 2014a; Nie, et al., 2012; Wang, 

et al., 2012).

The whole longitudinal dataset is illustrated in Figure 1, where each black block denotes the 

missing data at a respective time point for a certain subject. It can be seen that this dataset 

contained a large portion (≈25.7%) of missing data. In this paper, only a subset (enclosed by 

the red rectangle in Figure 1) of all the data is used, because we need a sufficient amount of 

real data as the ground truth to evaluate our proposed method. In the selected subset, 31 

healthy infants were scanned at 5 time points, i.e., 1, 3, 6, 9, and 12 months of age; 16 

infants have complete 5 scans, 10 infants have one missing scan, and 5 infants have two 

missing scans.

2.2 Cortical Surface Reconstruction and Registration

All infant MR images were processed by using an infant-specific computational pipeline for 

cortical surface based analysis, which has been extensively verified on over 500 infant MRI 

scans (Li, et al., 2013; Li, et al., 2015b; Li, et al., 2014c; Lyall, et al., 2014). Of note, our 

infant-specific computational pipeline was inspired by many existing work for cortical 

surface analysis of adults (Dale, et al., 1999; Fischl and Dale, 2000; Fischl, et al., 1999b; 

Han, et al., 2004; Kim, et al., 2005; Liu, et al., 2008; MacDonald, et al., 2000; Mangin, et 

al., 2004; Shattuck and Leahy, 2002; Shi, et al., 2013; Thompson and Toga, 1996; Van 

Essen, et al., 2001). First, distortion correction of DWI has been performed and the 

respective fractional anisotropy (FA) images were then computed. T2 images were first 

linearly aligned to their respective T1 images using normalized mutual information. Then, 

FA images were linearly aligned to the warped T2 images. To ensure the quality of 

alignment, the aligned T1, T2, and FA images were visually inspected. Second, for each set 

of aligned T1, T2, and FA images, skull stripping was performed using a learning-based 

method (Shi, et al., 2012), and then brain stem and cerebellum were removed by propagation 

of their respective masks from the atlas images to the subject images using an in-house 

developed registration method. Third, intensity inhomogeneity was corrected by N3 (Sled, et 

al., 1998). Fourth, all longitudinal images of the same infant were rigidly aligned. Fifth, an 

infant-specific 4D level-set method was used to segment brain tissues by leveraging 

longitudinal information and complementary multimodal information in T1, T2 and FA 

images (Wang, et al., 2014a; Wang, et al., 2014b). Finally, non-cortical structures were 

filled, and each brain was separated into left and right hemispheres.

For cortical surface reconstruction, we used a deformable surface method to reconstruct the 

topologically correct and geometrically accurate cortical surfaces for each hemisphere (Li, et 

al., 2012). Specifically, topology correction was first performed for the white matter of each 

hemisphere. Then, the topology-corrected white matter was tessellated as a triangulated 

surface mesh. Finally, a deformable surface method was applied to deform the shape of 

triangulated surface mesh while keeping its initial topology and also spatially-adaptive 

smoothness, to reconstruct the inner and outer cortical surfaces (Li, et al., 2014a). To prevent 

surface meshes from self-intersection, in each step of the surface deformation, a fast 
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triangle–triangle intersection detection method was also performed at each vertex in the 

local region. Once any triangle–triangle intersection was detected, the deformation was 

reduced to a location without such intersection (Li, et al., 2014a). Cortical thickness of each 

vertex was then computed as the mean of the minimum distances from inner to outer 

surfaces and also from outer to inner surfaces (Li, et al., 2015a; Li, et al., 2014a) as in 

FreeSurfer (Fischl, 2012). The sulcal depth of each vertex was defined as the shortest 

distance from the vertex to the cerebral hull surface, and was computed using the method in 

(Li, et al., 2014b).

For cortical surface registration, all inner cortical surfaces were first mapped onto a spherical 

surface by minimizing the metric distortion (Fischl, et al., 1999a) using FreeSurfer (Fischl, 

2012). The intra-subject registration was then performed to unbiasedly align all longitudinal 

cortical surfaces of the same infant together, using a group-wise surface registration method, 

namely Spherical Demons (Yeo, et al., 2010). The inter-subject registration was then 

performed by group-wise registration of the mean cortical surfaces of all different infants, 

using Spherical Demons again. Finally, each cortical surface was resampled to the same 

mesh tessellation on the spherical space based on the registration results, and thus the vertex-

wise correspondences of all cortical surfaces of different infants were established (Li, et al., 

2014d). More details on both intra-subject and inter-subject surface registrations can be 

found in (Li, et al., 2014c).

3 Methods

In this section, we first introduce our regression model, named Dynamically-Assembled 

Random Forest (DARF), and then describe how to use this method for subject-specific 

estimation of missing vertex-wise cortical morphological attributes at missing time point(s) 

for an incomplete longitudinal infant dataset.

3.1 Regression Model

3.1.1 Training and Testing a Decision Tree—In the training stage, given a set of 

training samples {(xi, yi)|xi ∈ ℝd, yi ∈ ℝ}, where xi and yi are respectively the d-

dimensional feature vector and the scalar target value of the i-th training sample, each binary 

decision tree is independently trained by recursively finding a series of optimal partitions of 

the training samples. Specifically, at the root node, the training samples are optimally 

partitioned into two subsets by maximizing the following objective function:

(1)

where S is the set of training samples at the current node; Sl and Sr are respectively the 

subsets of S in the left child node and the right child node after partition; H is a metric that 

estimates the consistency of training samples in terms of regression target. Mathematically, 

H is defined as:
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(2)

where cov is the covariance matrix, and trace is the matrix trace. The partition is determined 

by two factors k and θ. For the i-th sample in the training set, if the k-th feature  in the 

feature vector xi is less than the threshold θ, the sample is dispatched to the left child node; 

otherwise, it is dispatched to the right child node. To maximize the objective function Eq. 1, 

all dimensions of the feature vector are tested one after another with a certain number of 

thresholds, which are selected randomly between the minimum and maximum feature values 

of training samples, and the pair (k and θ) with the largest objective value is selected as the 

optimal parameters and stored in the root node. The partition continues recursively for the 

subset of training samples in the left and right child nodes, until reaching any of the 

following two terminal criteria: 1) the tree reaches the specified maximum depth, and 2) the 

amount of training samples in a node falls below the specified minimum number. For each 

leaf node, where the partition stops, the target values of all training samples falling into this 

leaf node are averaged as the regression result and stored in this leaf node.

In the testing stage, for each individual decision tree, the testing sample goes from the root 

node to a leaf node according to the results of binary tests in the non-leaf nodes, and the 

output is the regression result stored in the leaf node.

3.1.2 Dynamically-Assembled Regression Forest (DARF)—In the training stage, an 

individual binary decision tree Treep is independently trained at each vertex p on the 

resampled spherical surface. Specifically, as shown in Figure 2(a), for a given vertex, all its 

nearby vertices in a specified neighborhood (the red region) are used together as training 

samples. For each training sample, we have a feature vector xi ∈ ℝd and a scalar target yi ∈ 
ℝ. The feature vector xi consists of a set of features (see Section 3.1.3 below) extracted 

from the local cortical attribute maps at the input time points, and the scalar target yi is the 

attribute value at the target time point. In the testing stage, to estimate the cortical attribute at 

a given vertex p, as shown in Figure 2(b), all trained nearby individual trees in a specified 

neighborhood (i.e., the green region) are grouped together to form a forest Fp = {Treei| ‖i − 

p‖ < Dt}, where Dt is a specified threshold. Then, features of the given vertex is computed 

and fed to each tree in the forest to estimate the cortical attribute at the corresponding vertex 

of target time point. Finally, the regression results from all the trees in the forest are 

averaged as the final estimation.

3.1.3 Feature Computation on Spherical Surface—For each vertex i, its feature 

vector xi includes two types of features: local features and context features. Local features 

provide local information at each vertex, while context features provide rich neighboring 

information. In our current implementation for estimating cortical thickness at missing time 

point(s), the local features include cortical thickness and sulcal depth, and the context 

features include a number of Haar-like features of cortical thickness and sulcal depth. 

Herein, Haar-like features provide two types of context information: (1) the mean attribute 

of a small cortical region, and (2) the difference between mean attributes of two small 

regions. Next, we introduce how to compute Haar-like features on a spherical surface.

Meng et al. Page 7

Hum Brain Mapp. Author manuscript; available in PMC 2017 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



As shown in Figure 3, given a vertex i on the resampled spherical surface, its neighbor is 

locally projected to the tangential plane, where a local 2D coordinate system is built at the 

center of vertex i. Two blocks A and B are randomly selected in the neighborhood [±uσ, 

±vσ], and their sizes ra and rb are also chosen randomly in the interval (r1, r2], where uσ, vσ, 

r1 and r2 are the user-defined parameters. Letting QA denote the set consisting of all the 

vertices in block A and also QB denote the set consisting of all the vertices in block B, then 

the Haar-like feature at vertex i can be mathematically formulated as:

(3)

where M(u, v) is the value of cortical morphological attribute (i.e., cortical thickness or 

sulcal depth) at position (u, v); and δ is a random coefficient that can only be 0 or 1. In the 

case of δ = 0, Haar-like feature is the mean value of cortical morphological attributes within 

the block A. In the case of δ = 1, Haar-like feature is the difference between the mean values 

of cortical attributes within block A and block B.

3.2 Estimation of Missing Cortical Thickness Map

As shown in Figure 1, in our longitudinal dataset for early brain development study, many 

time points are missing due to various reasons. Intuitively, to maximize the capability of 

estimating missing data, we expect using as much available information as possible to train 

the regression model (i.e., DARF). Specifically, by increasing the number of subjects for 

training, the regression model can better learn the large diversity among individuals; and 

also by engaging more time points in training process, the regression model can better 

capture the longitudinal information of cortex development. Unfortunately, due to the data 

incompleteness, increasing the number of training subjects and engaging more time points 

are conflicting with each other. For example, as shown in Figure 1, to estimate the missing 

data at 6 months, we can use at most 28 subjects to train the regression model, since only 28 

infants have real data at both 1 and 6 months. Consequently, only 1 time point (i.e., at 1-

month-old) is taken account into the training process. In another way, we can engage at most 
4 time points in the training process, but only 16 infants have real data at all 5 time-points 

and can be used as training subjects. To eliminate this confliction and fully use the available 

information, we propose a two-stage missing data completion method. Figure 4 shows the 

overview of the proposed method, containing the stages of 1) pairwise estimation and 2) 

joint refinement.

In Stage 1, to use as many subjects as possible for training, the data (i.e., cortical thickness, 

as introduced in Section 2.2) of each subject at each missing time point is estimated based 

on the existing data at each of other time points independently, and then these independent 

estimations are averaged together to obtain an initial estimation. For example, to obtain the 

initial estimations at 6 months, we will first use all the subjects with available data at both 1-

month-old and 6-months-old as training subjects to train a set of decision trees, by taking the 

data at 6-months-old as the regression target while the data at 1-month-old as the inputs. 

After training, for the subjects with available data at 1-month-old but without data at 6-
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months-old, these decision trees are dynamically/locally assembled as forests to estimate the 

missing data at 6-months-old. Similarly, we can also obtain the estimations of missing data 

at 6-months-old, respectively, using the existing data at each of the 3-, 9-, and 12-months-

old. In this way, the available data at all other time points can contribute to the estimation of 

the data at 6-months-old. Finally, we average all the estimations contributed from different 

time points together as the initial estimation. Similarly, for the missing data at each of 1-, 3-, 

9-, and 12-months-old, the same process can be performed to obtain their own initial 

estimations. After using Stage 1, the missing data of all subjects at all time points will be 

approximately recovered, thus providing a pseudo-complete longitudinal dataset.

In Stage 2, to take advantage of the longitudinal information and also to make the estimation 

temporally consistent, the data at each missing time point is further refined based on the data 

at all other time points jointly. For example, to obtain the final estimation of the missing data 

at 6-months-old, we use all subjects with real data at 6-months-old as the training subjects to 

train a set of decision trees, by taking the data at 6-months-old as the regression target and 

the data at 1-, 3-, 9-, and 12-months-old as the inputs. After training, for each subject with 

missing data at 6-months-old, the trained decision trees can be dynamically/locally 

assembled as forests to estimate the missing data. Note that we do not require each training/

testing subject to have real data at 1-, 3-, 9-, and 12-months-old, since we already recovered 

them in Stage 1 for all subjects with missing data at any time point. Similarly, for the 

missing data at other time points, the same process can be conducted to obtain their final 

estimations. It is worth noting that, using the above two stages (Stage 1 and Stage 2), our 

method leverages information from all time points of all available training subjects for the 

missing data estimation.

3.2 Quantitative Evaluation

To quantitatively evaluate the estimation results, we employed three metrics: NMSE 

(normalized mean squared error) (Faramarzi, et al., 2013), MAE (mean absolute error), and 

MRE (mean relative error). These metrics are respectively computed as follows:

(4)

(5)

(6)

where TTrue and TEst are respectively the vectors of ground truth and estimated results, and 

N is the number of vertices.
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4 Results

To evaluate our proposed missing data estimation method, we tested the method by 

recovering cortical thickness maps at 5 missing time points. Specifically, from the 

incomplete dataset (Figure 1), we selected 16 subjects with complete data at all 5 time points 

as the reference subjects. Then, we manually selected one of these 16 subjects, deleted its 

data at a certain time point, and put it back to the dataset. The deleted data is then recovered 

using our missing data estimation method. After recovering the missing data, we compared 

the recovered result with the real data. This experiment was repeated for each of those 16 

subjects at each of 5 time points.

Figure 5 shows the error map of our proposed method at each stage for estimation of missing 

cortical thickness at 9-months-old on a randomly selected infant. Figure 6 further shows the 

averaged errors for all reference subjects in each step of estimation. From these two figures, 

we can see that using the data at 6- or 12-months-old as inputs to estimate the cortical 

thickness at 9-months-old is better than using the data at 1- or 3-months-old. A possible 

explanation is that the cortical thickness at 9-months-old is more similar to that at 6- and 12-

months-old than to that at 1- and 3-months-old. Figure 6 also shows that the result of joint 

refinement is generally better than all the results in the previous stage (Stage 1), indicating 

the effectiveness of joint refinement stage (Stage 2). Figure 7 illustrates the average 

estimation errors of vertex-wise cortical thickness at all 5 time points. We found that the 

estimation precision is region-specific, with high precision in the unimodal cortex while 

relatively low precision in the high-order association cortex. A possible explanation is that 

the unimodal cortex may have less variable cortical thickness patterns across individuals 

than the high-order association cortex during infancy. Hence, our method can better capture 

patterns of the unimodal cortex than those of the high-order association cortex, thus 

producing more accurate prediction in the unimodal cortex. Note that, among all time points, 

the estimations were relatively less accurate at around 6 months of age. The reason is that, 

during this development stage, the cortex develops exceptionally rapid (Li, et al., 2014a) and 

the image contrast is also extremely low. All of the above observations are further proved by 

the quantitative evaluation given in Tables 1, 2, and 3. From these tables, we can further 

conclude that our method is able to effectively recover the missing cortical thickness, with 

the average absolute error of less than 0.23 mm and the average relative error of less than 

9.24%. Moreover, we also performed paired t-test to statistically compare between results of 

pairwise estimation and joint refinement. All p-values are much less than 0.01, indicating 

that the performance improvement by the joint refinement over the pairwise estimation 

(reported in Table 1, 2, and 3) is statistically significant. The estimation error by our method 

is about 10% of cortical thickness. Considering that the MRI resolution is 1mm and the 

average cortical thickness is around 2 mm in infants, our estimation error is just around 0.2 

mm, which is much less than the resolution of a half voxel. Meanwhile, around 96.5%, 

95.2%, 85.3%, 91.4%, and 92.0% vertices on the cortical surface have the absolute errors 

less than 0.5mm (half voxel) for 1st, 3rd, 6th, 9th, and 12th month, respectively. These results 

indicate that our prediction is accurate and acceptable. We further computed the estimation 

errors in each of 36 ROIs. Figure 8 shows both the mean absolute error and the mean relative 

error in each of 36 ROIs for estimation of the missing cortical thickness at 9-months-old. We 
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can see that, in all ROIs, the use of joint refinement led to obvious improvements over the 

use of only the pairwise estimation. Figure 9 shows error measures in each ROI for 

estimation the missing cortical thickness at all 5 time points. We can see that the joint 

refinement consistently improved the result of the pairwise estimation in some challenging 

ROIs, such as caudal anterior-cingulate cortex (ROI 3), cuneus cortex (ROI 6), lateral 

orbitofrontal cortex (ROI 13), middle temporal gyrus (ROI 16), pars orbitalis (ROI 20), 

pericalcarine cortex (ROI 22), posterior-cingulate cortex (ROI 24), and superior frontal 

gyrus (ROI 29).

To demonstrate the advantages of DARF, we compared it with other four representative 

methods, including mixed effect model (MEM) in FreeSurfer (Bernal-Rusiel, et al., 2013), 

polynomial regression (PR), conventional regression forest (CRF), and sparse linear 

regression (SLR). MEM, which explicitly models fixed effects and random effects, is a 

powerful method for analyzing longitudinal neuroimaging (Bernal-Rusiel, et al., 2013). In 

our comparison experiments, MEM assumes that the development of cortical thickness 

increases with age (fixed effect) during the first year, while each subject has individual 

variant due to personal reasons (random effect), such as genetic and environmental 

influences. PR method assumes that the development of cortical thickness at each vertex has 

a two-order polynomial relationship with age. CRF trains a single forest for the entire 

surface with the spherical location of each vertex as additional features (in addition to the 

Haar-like features). SLR is an effective method for high-dimensional data analysis 

(Tibshirani, 1996), which can extract the most “useful” features from a high-dimensional 

feature representation by setting zero coefficients for irrelevant features. Specifically, given a 

target vector y = [y1, y2, …, yn]T ∈ ℝn and the feature matrix X = [x1, x2, …, xn] ∈ ℝd×n, 

SLR method finds the optimal coefficients α = [α1, α2, …, αd]T ∈ ℝd by solving Eq. 7 

below, with the constraint that the number of non-zero elements in α is no more than L.

(7)

where L and λ were optimally set to 12 and 0.001 respectively in our experiments based on 

a grid search, which was performed on a subset of the training data.

Figure 10 provides a comparison among MEM, PR, CRF, SLR and DARF for estimation of 

vertex-wise cortical thickness at 9-months-old for a representative subject. As we can see, 

DARF estimated cortical thickness map more precisely than other four methods. Figure 10 

also shows that the error map of CRF is very spotty compared with the error maps of other 

methods, which indicates that the estimation result of CRF is not as smooth as the real 

cortical thickness map. Table 4 reports the complete quantitative evaluation for five methods 

based on leave-one-out cross-validation. It shows that DARF outperforms all other methods. 

An interesting observation is that PR performs much worse at the first and last time points, 

but it does relatively better at the intermediate time points. This means that when using a 

quadratic curve to fit the development trajectory of cortical thickness, it is relatively difficult 

to precisely estimate the two ends of the curve. We further performed paired t-test between 

Meng et al. Page 11

Hum Brain Mapp. Author manuscript; available in PMC 2017 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



our method and all other methods, and obtained all p-values less than 0.001, demonstrating 

the significant advantage of our method.

5 Discussion

Parameter Selection and Robustness

The performance of the proposed method can be affected by several parameters, e.g., 

maximal depth of trees and the neighborhood size for computing Haar-like features. We 

chose these parameters by searching their optimal values based on leave-one-out cross-

validation on the training data, which could effectively prevent DARF from over-fitting the 

training data. Specifically, to search the optimal value for the maximal depth of trees, we 

fixed all other parameters, and then tried all possible values from 10 to 120 with each 10 

increment. As shown in Figure 11(a), when the maximal depth is less than 60, the accuracy 

is improved with increase of the maximal depth; but when the maximal depth is larger than 

60, the accuracy is relatively steady. Therefore, we chose 70 as the maximal depth of trees. 

Figure 11(b) shows the relationship between the minimal sample number in each leaf node 

and the mean absolute error. It can be seen that the mean absolute error fluctuates slightly 

when the number is less than 8; however, when the number is larger than 10, the error starts 

increasing. This is because increasing samples in each leaf node could make more training 

samples with different target values fall into the same leaf node and thus lead to more rough 

regression results. Accordingly, we chose 3 as the minimal sample number in each leaf node 

in all our experiments. For the Haar-like features, four parameters uσ, vσ, r1, and r2, as 

shown in Figure 3, controls their computations. In our experiments, we simply set uσ = vσ, 

as there is no specific reason to treat them differently. Assuming the radius of the spherical 

surface is 100, when uσ and vσ are in (7,13), the highest accuracy can be achieved (Figure 

11(c)). The main reason is that, when uσ and vσ are too small, less neighboring information 

could be effectively encoded by the Haar-like features; however, when uσ and vσ are too 

large, Haar-like features might fail to precisely describe local information. Thus, we chose 

10 for uσ and vσ. For r1, which is the lower bound for the size of a Haar-like feature block, 

we simply set it 0, which means that the minimal region described by a Haar-like feature 

could be of the size of a single vertex. For r2, which is the upper bound for the size of a 

Haar-like feature block, we tested the value from 0.3 to 12.6. As shown in Figure 11(d), the 

best accuracy can be achieved when r2 is in the range of (0.9,2.5). When r2 is larger than 3.1, 

the estimation error increases with the increase of r2. In our experiments, we chose 1.6 for 

r2. Figure 11(e) shows how the estimation error changes with the number of Haar-like 

features. It can be seen that, when the number of Haar-like features is larger than 500, 

further increasing does not benefit much. In fact, increasing the number of Haar-like features 

will lead to high computational cost. Thus, we chose 500 as the number of Haar-like features 

in all our experiments. In the training process, to maximize the objective function Eq. 1, all 

dimensions of the feature vector were tested one after another. For each dimension, a certain 

number of thresholds was selected randomly between the minimum and maximum feature 

values of all training samples, as suggested in (Criminisi, et al., 2012). We tested different 

sample numbers for selecting threshold θ. As shown in Figure 11(f), increasing the number 

of sampled thresholds could improve the accuracy. But, when the sample number is larger 

than 10, the accuracy could no longer be improved if further increasing the sample number. 
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Moreover, larger sample number could also cause high computational overhead. Thus, we 

chose 20 in our experiments. In summary, we can see from Figure 11 that all the parameters 

are selected in a relatively stable range, which means that the slight adjustment of 

parameters will not affect the estimation accuracy, indicating robustness of our method to 

the parameter configuration.

Smoothness

DARF can obtain very smooth estimations because of the following two reasons. First, 

DARFs of neighboring vertices are very similar, as they share a large number of same 

decision trees. Second, features of neighboring vertices are also similar. Thus, by feeding the 

similar DARFs with the similar input features, the outputs at neighboring vertices generally 

have small differences, and thus the estimated cortical attributes for the whole surface are 

smooth.

Computational Cost

To achieve the similar smooth estimation results, DARF significantly saves the 

computational cost, compared to CRF with highly-overlapped ROIs. For example, if the 

number of ROIs is NROI, the total number of trees we need to train for CRF is NROI × NTree, 

where NTree is the number of trees in each forest. Based on our experiments, a well-trained 

forest needs approximately 100 decision trees. Besides, in order to make the estimation as 

smooth as the real data, NROI needs to be close to N/5, where N is the number of vertices on 

the spherical surface. So the total number of decision trees for the whole surface is about 

N/5 × 100 = 20N. If using DARF, the total number of trees to train is N, since we need to 

train only one decision tree at each vertex. As a result, DARF reduces the computational cost 

by approximately 20 times.

Performance on Large Portion of Missing Data

We randomly removed some existing data, and tested the proposed method with different 

portions of missing data. Of note, the original missing data in our dataset (enclosed by the 

red rectangle in Figure 1) is 12%. By randomly removing some existing data the entire 

dataset, we can get the datasets with 13%, 20%, 40%, and 60% missing data, respectively. 

From Figure 12, we can see that the estimation errors increase with the portion of missing 

data increasing. However, even the missing data reaches 40%, the proposed method is still 

able to produce the average estimation error to less than 0.23 mm. Note that, like most 

machine learning methods, the estimation precision of DARF depends on the quantity and 

quality of training data. As long as we have enough quality training data, DARF is able to 

estimate the missing data precisely. Figure 12 also shows that joint refinement consistently 

improves the result of pairwise estimation.

Estimation of Abnormal Cortical Attribute Maps

Our current study focuses on the normal early brain development. Note that the abnormal 

cortical attribute map could have much larger variability across subjects/diseases than the 

normal ones, thus needing larger-scale datasets to train our estimation model for effectively 

covering all the possibilities. If training DARF by the normal subjects and then directly 
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using it to estimate the abnormal cortical attributes, the estimation results may not reflect the 

true abnormal development. However, this can indirectly benefit the detection of abnormal 

brain development. For example, given a new subject, we can first estimate its cortical 

attribute maps using DARF, which has been trained by the normal subjects. Then, the 

estimated maps can be compared with the real maps. If their difference is significantly larger 

than the estimation errors reported in Table 2, this may indicate an abnormal brain 

development in this subject. Moreover, for a certain disease, if DARF could be trained by 

subjects with this disease, the estimation accuracy would likely be better than the results 

estimated by DARF that is trained with a general dataset.

Potential Applications

After recovering the missing cortical attribute maps in a longitudinal dataset by our method, 

the “completed” dataset could be used for studying early brain development. For example, 

the recovered dataset can be used to better build longitudinal cortical surface atlases. Note 

that, before recovering the missing data, building such atlases could introduce different 

biases for different time points since the atlas at each time point is constructed by a different 

number of subjects. While, after recovering the missing data, the atlases at all time points 

can be constructed based on the same subjects, thus introducing less bias and leading to 

more accurate and longitudinally-consistent atlases. Another application example is that the 

recovered dataset can be used to carry out less biased and longitudinally more consistent 

groupwise comparisons of cortical attributes across ages, since each pair of ages will have 

the same subjects. Also, the recovered dataset can be used for more accurate modeling of 

early brain developmental trajectories.

6 Conclusion

There are two major contributions in this paper. First, we proposed a Dynamically-

Assembled Regression Forest (DARF). By independently training one decision tree at each 

vertex on the spherical surface and also dynamically grouping trees in the local 

neighborhood as a forest, the smoothness of regression results can be guaranteed, and also 

the computational cost can be largely reduced, compared with using the conventional 

regression forests with highly-overlapped ROIs. Second, we proposed a novel two-stage 

method to recover the missing data of vertex-wise cortical morphological attributes in an 

incomplete longitudinal dataset. The proposed method can effectively exploit all available 

information in the incomplete dataset to help estimate the missing information. Specifically, 

in the stage of pairwise estimation, as many training subjects as possible are used in the 

training process, thus better learning the huge diversity among subjects by the regression 

model; in the stage of joint refinement, all time points are taken into account simultaneously, 

thus better capturing longitudinal information. Our proposed missing data estimation method 

has been extensively tested on an incomplete dataset with 31 infants, each having up to 5 

time points in the first postnatal year, and obtained promising performance for estimation of 

the cortical thickness maps. In our future work, we will test our method for estimation of 

other cortical morphological attributes, such as sulcal depth, surface area, cortical folding, 

and cortical local gyrification.
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Figure 1. 
Illustration of the longitudinal infant dataset used in our study. Each block indicates the 

cortical morphological attributes of all vertices of the entire cortical surface for a specific 

subject (column) at a specific time point (row). The black blocks indicate the missing data at 

the respective time point. The blocks enclosed by the red rectangle indicate the dataset used 

in this paper.
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Figure 2. 
Training stage (a) and testing stage (b). (a) The red region is the neighborhood, where all the 

vertices on the spherical space are used as training samples. (b) The green region is the 

neighborhood, where all the individual trees are combined together to form a forest in the 

testing stage. Note that the red and green regions in (a) and (b) could have different sizes.
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Figure 3. 
Computation of Haar-like features on a resampled spherical surface atlas. The horizontal and 

vertical lines in the rectangular patch denote for latitude and longitude directions, 

respectively. The blocks A and B are the two randomly selected regions. The value of Haar-

like feature is defined as 1) the mean value of the cortical attributes in the block A, or 2) the 

mean value of the cortical attributes in the block A subtracting that in the block B.
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Figure 4. 
Overview of the proposed method for estimation of missing data. The box with number 

stands for the data at the corresponding time point. The directed edges represent the 

processes of estimation of the missing data at the target time points (as pointed by the 

arrowhead) based on the data at the available time points (at the tail side). In Stage 1, the 

edges are bidirectional, which means that the estimation is performed twice by exchanging 

between the input and the output time points. The circles in Stage 2 denote the use of 

multiple time points jointly.
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Figure 5. 
Estimations of the vertex-wise missing cortical thickness at 9-months-old for a randomly 

selected infant. The first two columns show the maps of ground truth and the estimation of 

cortical thickness at each step. The last two columns show the maps of estimation errors at 

each step.
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Figure 6. 
Vertex-wise average estimation errors (mm) of missing cortical thickness at 9-months-old 

for all subjects at each step of estimation.
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Figure 7. 
Vertex-wise average estimation errors (mm) of missing cortical thickness at 5 time points for 

all subjects by using the proposed method.
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Figure 8. 
Error measures in 36 ROIs for estimation of missing cortical thickness at 9-months-old. 

ROIs 1 and 5 are excluded as there is no definition of cortical thickness for these two 

regions.
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Figure 9. 
The accuracy of each step in estimating the missing cortical thickness at 1-, 3-, 6-, 9- and 12-

months-old in 36 ROIs.
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Figure 10. 
Estimation of the vertex-wise cortical thickness map (mm) of a randomly selected infant at 9 

months of age by five different methods. The first row shows the ground truth and the 

estimation of cortical thickness map. The second row shows the estimation error maps (mm).
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Figure 11. 
The influence of 6 parameters to the estimation accuracy (mm).
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Figure 12. 
Relationship between estimation errors and the portions of missing data.
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