
Genetic Variation among 82 Pharmacogenes: the PGRN-Seq 
data from the eMERGE Network

A full list of authors and affiliations appears at the end of the article.

Abstract

Genetic variation can affect drug response in multiple ways, though it remains unclear how rare 

genetic variants affect drug response. The electronic Medical Records and Genomics (eMERGE) 

Network, collaborating with the Pharmacogenomics Research Network, began eMERGE-PGx, a 

targeted sequencing study to assess genetic variation in 82 pharmacogenes critical for 

implementation of “precision medicine.” The February 2015 eMERGE-PGx data release includes 

sequence-derived data from ~5000 clinical subjects. We present the variant frequency spectrum 

categorized by variant type, ancestry, and predicted function. We found 95.12% of genes have 

variants with a scaled CADD score above 20, and 96.19% of all samples had one or more Clinical 

Pharmacogenetics Implementation Consortium Level A actionable variants. These data highlight 

the distribution and scope of genetic variation in relevant pharmacogenes, identifying challenges 

associated with implementing clinical sequencing for drug treatment at a broader level, 

underscoring the importance for multifaceted research in the execution of precision medicine.

Introduction

It is widely accepted that genetic variation impacts drug metabolism, efficacy, and adverse 

event risk (1–3). Several medical centers have begun to routinely offer genetic testing and 

clinical decision support for common variants in a small number of genes associated with 

drug dosing or adverse events (4–7). As whole exome and whole genome sequencing are 

increasingly used in the clinical setting, the number of variants in these genes (and the 

number of genes) that can be considered for patient care will undoubtedly increase. However 
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mechanisms to understand the relationship between these variants and drug response have 

not yet been put into global clinical practice.

The impact and interpretation of this potential deluge variants is currently unclear. While 

efforts such as the Pharmacogenomics Research Network (PGRN), the Pharmacogenomics 

Knowledge Base (PharmGKB), and the Clinical Pharmacogenetics Implementation 

Consortium (CPIC) have led the discovery and systematic documentation of some findings 

(8–10), it is clear that the bulk of variation in pharmacological response and metabolism 

currently remains unexplained (11–13). Low frequency variants that affect gene function 

may account for some unexplained differences in pharmacological response and 

metabolism. As a result, new studies of pharmacogenomic traits and novel initiatives that 

implement pharmacogenomics in clinical care are transitioning from intensity-based 

genotyping arrays (14,15) to next-generation sequencing technologies (16,17). While there 

is much enthusiasm for sequencing-based studies for precision medicine and 

pharmacogenomics (18–20), and for the potential to discover low frequency variants that 

influence drug-related traits (21), little is known about the location and distribution of 

genetic variation over genes with established pharmacological impact, much less their 

relationship to variable drug responses.

The documentation of observed variation within genes known to influence drug response 

and metabolism is essential to enable new molecular studies of potentially functional 

variants and to improve the understanding of how key pharmacogenes tolerate genetic 

changes. To document rare and common variation in key genes of pharmacogenomic 

relevance, the electronic Medical Records and Genomics (eMERGE) Network (22–24) 

sequenced 84 genes across 5,639 individuals from nine participating biorepositories linked 

to electronic health records (EHRs). We describe here the first iteration of the resulting 

dataset from the project, known as eMERGE-PGx (25), including processes for variant 

calling, annotation, and aggregate data access in the Sequence, Phenotype, and 

Pharmacogenomics Integration Exchange (SPHINX), a web-based tool for exploring 

eMERGE-PGx data for hypothesis generation with an emphasis on drug response 

implications of genetic variation (www.emergesphinx.org). We describe sequence variation 

within the key pharmacogenes captured by PGRN-Seq(26), explore the potential therapeutic 

impact of established pharmacogenomic variants, catalog the potential for ongoing 

pharmacogenomic discovery relative to frequently prescribed drugs (25), and provide 

example uses for the SPHINX resource. eMERGE-PGx data indicate that the vast majority 

of patients sequenced will harbor many genetic variants likely to impact currently prescribed 

drugs, highlighting the opportunities for improving drug response and the need for 

downstream functional studies, clinical application guidelines and continued drug 

development to ensure a diversity of treatment options given the genetic diversity of the 

patient population.

Results

Allelic Discovery in 82 Pharmacogenes

As of February 2015, a total of 5,639 samples have been sequenced from nine eMERGE 

sites (Table 1) using the PGRN-Seq targeted exome platform(26) (see Materials and 
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Methods). The PGRN-Seq platform was developed by the Pharmacogenomics Research 

Network (PGRN) to maximize their ability to assay important pharmacogenes across the 

PGRN. The gene selection was through nomination by PGRN sites and vetted through the 

network. For the design of each of the 82 genes, PGRN-seq included all exons (based on all 

transcript models) as well as 2kb upstream and 1kb downstream of their untranslated regions 

(UTRs) to allow for discovery and assessment of nearby potential regulatory variation. 

Details of this assay can be found in (26). In eMERGE-PGx, the PGRN-seq platform 

generated a total of 968,004 bp of sequence per individual. Variant sites were well-

sequenced with an average read depth of 200 reads per site (25th percentile = 152.64, median 

= 211.09, 75th percentile = 257.31). Sequencing PGx samples revealed 42,010 single 

nucleotide variants (SNVs), with 149 dropped due to allelic imbalance (ABFilter), 137 

dropped due to insufficient quality by depth, 22 dropped due to poor genotype call quality, 

and 696 failing two or more of these criteria; 41,006 SNVs passed all quality control filters. 

We further removed 447 variants having a genotype call rate less than 95%, and 10 variants 

were removed due to mismatches with the reference sequence. After all filtering, 40,549 

SNVs remained, and of these, 78 showed the reference allele at low frequency (< 0.5%).

Comparison of Annotation Methods (VEP versus SNPeff)

Of the 40,549 high quality SNVs, 27,965 were annotated by VEP to the canonical transcript 

for one of the PGRN-Seq targeted genes (Table 1). Of these annotated variants, 8,126 were 

coding (4858 missense, 3169 synonymous, 99 stop gained) and 19,923 were non-coding 

(5231 intronic, 5981 upstream variants, 3444 downstream variants, 4165 3'UTR variants, 

903 5'UTR variants, and 199 other).

Compared to dbSNP (build 141), 415 variants were previously observed (52 missense, 26 

synonymous, 58 intronic). We also performed comparisons to other large-scale sequencing 

projects; 15,163 variants were previously observed by the 1000 Genomes Phase 3 project 

(1446 missense, 1315 synonymous, and 2075 intronic), and 10,998 variants were reported in 

the ExAC dataset (3009 missense, 2137 synonymous, 773 intronic). Across all three 

reference sets, 20,886 (51.5% of the total 40,549 SNVs identified) variants from the 

eMERGE-PGx dataset were observed previously, and 19,663 (48.5%) are novel, including 

1445 missense, 769 synonymous, and 2848 intronic variants.

Relative to the Ensembl canonical transcript, VEP annotates 27,434 with SNPEff annotating 

19,895 variants, a complete subset of the VEP annotation calls. Comparing these 19,895 

variant annotations, results are highly concordant with 99.25% of variant consequence calls 

concordant between SNPEff and VEP. Of the 150 discordant annotations, 105 were 

considered “stop gained” by SNPEff, but “5'UTR variant” by VEP. There were only 44 other 

discordant annotations, 35 downstream – 3'UTR, 9 intron – splice region between SNPEff 

and VEP, respectively. More critically, 7901 annotations spanning 21 genes were made by 

VEP but not by SNPEff. These included 2050 intron variants, 1288 upstream variants, 1212 

downstream variants, 1138 3'UTR variants, 1097 missense variants, 864 synonymous 

variants, 253 5'UTR variants, and 134 others. These discordant annotations are likely due to 

subtle differences in the definitions of the canonical transcript used by the two software 

programs. Discordant annotations of predicted variant function is a known issue in the field 
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(27). Because of this issue, we have chosen to provide a single annotation, specifically 

SNPEff annotations, in SPHINX.

Molecular Characteristics of Variants in Pharmacogenes

As expected, the majority of these variants were diallelic (39,778, 98.1%), though 759 

(1.9%) were triallelic, and 12 sites showed all four alleles. Of the diallelic SNVs, there were 

2102 common, 1230 low-frequency, 9465 rare, 4606 doubleton, and 22,124 singleton 

variants identified; the full spectrum of allele frequencies for diallelic SNVs annotated to 

PGRN-Seq genes is shown in figure 1.

There was a significant linear relationship between gene length and the number of 

discovered low-frequency variants (MAF < 5%) (p < 0.0001), with an average increase of 

0.35 variants per kilobase of gene length (See Table S1). Nevertheless, there was variability 

in this relationship: RYR1, the gene with the second largest canonical transcript coding 

region (15,011 bp) has the largest number of variants, 667, with 409 of them (61%) 

singletons. SLC22A6 contains the fewest variants, 144, despite having a transcript length of 

2141 bp, three times larger than the smallest captured. We also see a significant and 

somewhat stronger association between the genic intolerance scores for these genes (based 

on the ExAC data) and the number of low frequency variants, with an estimated decrease of 

46.3 variants per intolerance score unit (p < 0.0001).

Variants in Multiple Ethnic Groups

We recalculated this frequency spectrum within administratively-reported African American 

(n=650), European (n=4373), Asian (n=112), and Hispanic/Latino (n=310) groups (Figure 

S1). Black or African American samples show the largest number of variants per person. 

European American samples (the largest sample set) show a much lower median number of 

variants per person, although this sample set has a great variability in both high and low 

variant counts. Cumulative minor allele frequencies over all variants are shown in Figure S2. 

In European descent samples, CMAFs range from 2.88% for SLC22A6 to 26.11% for 

NTRK2. African American samples had a much lower and narrower CMAF range from 

1.55% for CYP2R1 to 4.95% for ABCA1.

Potential Therapeutic Impact

Nearly every captured gene (95.12%) has one or more variants with a scaled CADD score 

above 20 (Figure 2). The RYR2 gene had the highest CADD scoring variant (56), while 

BDNF variants had the highest median scaled CADD Score (~10), with the calcium 

channels RYR1 and CACNA1S also harboring variants with high scaled CADD Scores, with 

24 variants in these genes scoring above 30. Importantly,96.19% (5424) of all samples had 

one or more CPIC Level A actionable variants, with the median being two actionable 

variants per individual over the entire sample (2318 individuals), and 1273 individuals 

having variants with only one. Notably, 1517 individuals had actionable variants within three 

genes, and 316 had actionable variants within four or more genes (293 with variants within 

four genes, 22 with five genes, and 1 with six genes). We also note other low frequency 

variants (< 5%) within the CPIC actionable genes; 1932 individuals (34.2%) have one or 

more missense variants in at least one of the seven CPIC genes examined, with the majority 
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(1616 individuals) having only one gene with missense variation. No individual had 

missense variants in more than four CPIC genes (6 individuals had 4 missense variable CPIC 

genes, 52 had 3, and 258 had two).

Using two sources of drug prescription activity in the US in 2013, 38 genes were found to 

have some level of evidence from PharmGKB implicating them in the metabolism of one of 

31 drugs. Within these 38 genes, 12,637 variants were identified, including 2,208 missense 

variants of which 458 were potentially damaging by CADD score. Selecting only these 458 

missense variants, we then calculated the cumulative minor allele frequency (the frequency 

of having one or more non-synonymous variants) by potentially impacted drug. Using this 

frequency as an estimate of the general US population CMAF, and assuming that the 

reported prescription counts are distinct individuals, we then estimated the proportion of 

prescriptions potentially affected for each drug (Figure 3). For example roughly 4 million of 

the 27 million prescriptions for rosuvastatin may be affected by one of 407 missense variants 

within 8 genes (ABCB11, ABCG2, CYP2C9, CYP3A5, HMGCR, SLCO1B1, SLCO1B3, 

SLCO2B1), which occurred in 17.8% of the eMERGE-PGx sample. When restricted to 

predicted damaging missense variants, there were 64 variants within genes for rosuvastatin 

with a CMAF of 9.84%, potentially influencing nearly 600,000 prescriptions in 2013, 

though their clinical impact is unknown and could range from no effect to severe myopathy. 

When we examine genes for drugs with a low therapeutic index like digoxin and warfarin, 

we observe very different results. CYP2C9 (a drug metabolizing enzyme) has 54 CADD-

damaging missense variants with a CMAF of 0.84%, VKORC1 (a drug target) has 11 

variants with a CMAF of 0.03%, or ABCB1 (a transporter in the case of digoxin), has 85 

variants with a CMAF of 0.35%.

Similarly, the 25 most dispensed medications encompass over 1.5 billion prescriptions in the 

US over 2013, of which seven drugs (fluticasone, albuterol, omeprazole, metoprolol, 

atorvastatin, and simvastatin) account for roughly 410 million prescriptions. These drugs are 

influenced by genes captured by PGRN-Seq according to PharmGKB. When computing 

CMAF of low-frequency missense variants by drug, an estimated 4% (fluticasone) to 34.6% 

(simvastatin) of individuals taking these prescriptions harbor one or more variants within 

genes that potentially influence their action, with an estimated impact on nearly 75 million 

prescriptions in 2013.

Accessing eMERGE-PGx data

As described, all of the summary data in eMERGE-PGx are being made publicly available in 

SPHINX (www.emergesphinx.org). This web-based portal to query information by gene, by 

pathway, or by drug can be used to generate descriptive data and/or hypotheses for future 

research based on these 82 pharmacogenes. Figure 4 shows an annotated home page for 

SPHINX. Queries can be made by entering a gene name/symbol, pathway name, or a drug 

name (full list of available genes, pathways, and drugs are available using the links on the 

top left corner of the home page). The resulting information is displayed on subsequent 

webpages organized based on the nature of the search. Searching SPHINX by gene will 

result in a table of all available variants identified in the eMERGE-PGx dataset, including 

chromosome and base pair location, rsID if available, type of variant according to SNPEff, 
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global allele frequency in the complete eMERGE-PGx dataset, and allele frequency 

stratified by self-reported ancestry. This type of query would be useful for individuals who 

have interest in particular genes or specific variants from these genes to obtain estimates of 

allele frequency in a large clinic population: for example, the situation where someone had 

identified a rare variant in their study in the gene ABCA1 and wondered if this rare variant 

was observed in other datasets. In considering all of the variants in ABCA1 shown in Figure 

S3, only four of these variants are cataloged in PharmGKB (as denoted by the rsIDs) and all 

of these have very low frequency in eMERGE-PGx. These types of queries become most 

important for variants that are not yet cataloged by other resources like dbSNP. The result 

enables a researcher to know if the variant has been observed and at what frequency in 

eMERGE-PGx. Because of the rich, longitudinal phenotypic data in eMERGE, another 

possibility for this query might include searching through the eMERGE-PGx dataset for all 

patients that have a particular variant in ABCA1 and then perform EHR chart review for that 

small set of patients to determine if there is any likely clinical significance to that variant.

Consider another use case in which a researcher is interested in all variation in genes from a 

particular pathway of interest, such as ABC transporters (shown in Figure S4). If the 

research question involves how much genetic variation exists in these genes and which genes 

would be appropriate targets for subsequent genotyping or sequencing, the pathway query 

capability may be of great utility. From this view, an investigator can view information about 

the specific gene and variant as shown in Figure S4. Finally, searching by drug will provide 

a list of all genes from PharmGKB linked to that particular drug. Figure S5 shows an 

example from 1,25 dihydroxyvitamin d3. An investigator who works on a particular drug/

compound can search for variant information for all genes linked to their drug of interest. 

These types of queries will enable researchers in the scientific community to search a public 

database resource of summary data cataloging all variation identified in the eMERGE-PGx 

project. Individual level DNA sequence data from this project with key pharmacologic 

response phenotypes available from electronic medical records will also be made available 

via dbGaP for the research community.

Discussion

In this study, we examined sequence variation within the key pharmacogenes in an 

eMERGE-PGx dataset, potential therapeutic impact of established pharmacogenomic 

variants, potential for ongoing pharmacogenomic discovery, and example uses for the 

SPHINX resource. By examining a diverse clinical population of over 5000 people, we 

report the largest targeted sequencing study of established pharmacogenes to date, with data 

queryable from the SPHINX database. Variation is frequent within these clinically relevant 

genes, with most individuals having multiple clinically actionable variants. Hundreds of 

additional variants with potential pharmacogenomic function were identified and made 

available online to the research community, setting the stage for future association studies 

within the eMERGE network.

Compared to other sequencing studies and variant repositories, nearly half of all variants 

identified were novel, illustrating that existing exome-based resources, even those from large 

studies, may not characterize genetic variation as well as the targeted methods used for 
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PGRN-Seq genes with a large sample size and very high depth of coverage (~200 reads on 

average). The majority of identified variants are singletons and doubletons, extremely low 

frequency variants that will require new analytic or high-throughput molecular strategies to 

fully elucidate their function. Future studies of these variants within eMERGE using EMR-

based phenotypes may improve our understanding of their function on a phenotypic level. 

Computational predictions of variant pathogenicity (such as the CADD algorithm) may also 

prove useful for variant prioritization, or for the exploration of specific phenotypes. For 

example, the RYR2 gene has been implicated with level 3 evidence from PharmGKB in 

rhabdomyolysis following cerivastatin treatment (28). This gene showed the highest score 

for any gene-annotated variant. The BDNF gene, inconsistently implicated in impacting 

drug efficacy for a variety of psychiatric disorder treatments, shows the highest median 

CADD score (29–32). In addition, a more thorough examination of the distribution of types 

of variation in different drug classes would be extremely valuable. Perhaps we would 

observe different patterns in transporters, Phase I enzymes, Phase II enzymes, channels, 

pharmacologic targets, and/or drugs with low therapeutic index that would highlight relevant 

biological or evolutionary hypotheses about these genes.

Considerable care must be taken, however, when interpreting such scores for clinical 

implementation. A recent eMERGE study of SCN5A and KCNH2 found that pathogenic 

classification of splice and missense variants within these genes can vary broadly, even from 

commercial laboratories that provide clinical testing for these specific genes (Van Driest et 

al.). Clearly, certain findings may warrant the re-contact of study participants to avoid 

potentially life-threatening conditions, and the complex ethical issues surrounding return of 

research results have been previously noted (33) and are a continual focus with the 

eMERGE network.

The eMERGE-PGx dataset is enriched for established pharmacogenomics variants; prior 

work by Van Driest et al. has shown that nearly all individuals (98%) have at least one 

known, actionable variant by current CPIC guidelines, which would either alter the dose of a 

prescribed drug or would suggest an alternative therapy. We recapitulate this result, showing 

a median of two actionable variants per person, with over 1,800 individuals having three or 

more actionable variants. As a result, there is a strong possibility that this information could 

influence the clinical care of a patient over his or her lifetime. This key finding highlights 

the importance and potential clinical impact of the cataloged genetic variation. Importantly, 

we also observed that genes with established CPIC guidelines harbor many more potentially 

deleterious missense variants that have not been previously characterized or reported.

To further explore the potential for pharmacogenomic discovery, we used resources from the 

PharmGKB database to build connections between PGRN-Seq captured genes and 

frequently prescribed drugs. While these drug-gene relationships are based on much weaker 

levels of evidence than CPIC recommendations, we estimate that missense variants within 

these genes have the potential to affect metabolism and efficacy of millions of US 

prescriptions annually. Based on using gene sets with annotations by drug in PharmGKB, we 

explored the relationships between types of variants in the genes indicated as relevant for 

each drug. Even when restricting this analysis to only predicted damaging missense variants, 

2.6% of individuals have a variant within the genes that affect rosuvastatin according to 
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PharmGKB (22 million prescriptions annually), and 9.8% of individuals have variants 

within genes that affect celecoxib (9 million prescriptions annually). While additional 

research will be required to establish clinical effects and guidelines, with 34% of individuals 

harboring multiple variants within CPIC-associated genes, there is great potential for 

pharmacogenomic discovery within eMERGE-PGx. To encourage the similar use of 

eMERGE-PGx data in the broader pharmacogenomics community, variant-level data is 

viewable on SPHINX with each data release through the online SPHINX portal (http://

www.emergesphinx.org). Through linkages with the PharmGKB database, variant data can 

be queried by gene, variant, pathway, and drug. SPHINX does not yet have any phenotypic 

data deposited, but this is an active area of development for eMERGE.

There are several limitations to this study. Participants were recruited from clinical settings 

and as a result may be enriched for alleles that influence disease or treatment. As described 

in Rasumussen-Torvik et al, 2014, each eMERGE site used a unique recruitment strategy for 

eMERGE-PGx. Some sites specifically ascertained participants who were prescribed 

medications with pharmacogenes of interest on the gene panel. Others recruited based on 

disease. As a consequence of this ascertainment strategy, the study sample (while multi-

ethnic) has limited population diversity, which limits our ability to detect rare alleles isolated 

to non-European descent populations. With respect to variant annotation, for simplicity our 

strategy examined variant consequences in the context of the Ensembl canonical transcript 

only; many variants will have different consequences relative to different transcripts, so 

assessments of variant consequences are likely underestimates of their most severe impact.

While it is unclear specifically how many of the identified variants influence clinical 

outcomes, it is clear that surveys of these critically important genes using sequencing 

technologies will reveal large numbers of rare variants, each with the potential to impact 

pharmacogenomic traits. Future studies within the eMERGE-PGx project will explore these 

relationships with the ultimate goal of informing clinical care with genetic variation.

Subjects and Methods

Sequencing and Quality Control

As of February 2015, a total of 5,639 samples have been sequenced from nine eMERGE 

sites (Table 1) (more details in Supplemental Material). Samples were sequenced by the 

Center for Inherited Disease Research (CIDR), University of Washington, Mayo Clinic, 

Icahn School of Medicine at Mount Sinai, or Children's Hospital of Philadelphia (CHOP). 

Sequencing was performed using the PGRN-Seq targeted exome platform, using 100bp 

paired end runs on a HiSeq2500, and aligned to the GRCh37 reference with decoy 

sequences with Burrows-Wheeler Aligner (BWA) (35). Reads were further processed using 

GATK HaplotypeCaller version 3.3-0 according to the GATK best practices (36) with multi-

sample calling. Reads for the two targeted HLA genes (HLA-B and HLA-DQB3) were 

excluded due to general poor alignment, thus all further results refer to 82 pharmacogenes. 

Although both insertion/deletions (INDELs) and SNVs were called, only SNV calls were 

used for subsequent analyses and are currently provided in SPHINX. Raw variant calls 

failing any of the following filters were dropped: QUAL < 50; ABHet > 0.75; QD < 5.0. 
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Raw genotype calls failing any of the following filters were also dropped: GQ < 50; 

Heterozygous call with AB > 0.75.

Variant Frequencies

Variants were partitioned into five mutually exclusive frequency classes: common (MAF> 

0.05), low frequency (> 0.01, 0.05], rare (< 0.01], doubleton (observed only twice), and 

singleton (observed only once). For all variants, we required at least 10,714 chromosomal 

observations (non-missing genotype calls), equivalent to 95% genotyping efficiency. 

Consistent with the use of rare-variant burden tests, we computed a cumulative minor allele 

frequency (CMAF), indicating the frequency at which individuals have one or more non-

reference alleles at low frequency (< 0.05) within a gene. We considered loci showing non-

reference alleles at high-frequency (> 0.95) as likely errors in the reference sequence and 

included the reference allele as the minor allele for CMAF calculations. Residual Variation 

Intolerance Scores (RVIS) for captured genes relative to the ExAC release 0.3 were accessed 

online (http://chgv.org/GenicIntolerance/). Linear regression examining the relationship 

between gene length and the number of identified variations was performed using STATA 

12.0 (STATA Corp, College Station, TX).

Variant Annotation

We performed variant annotation using the Ensembl Variant Effect Predictor (VEP) version 

74, build 37 (38) and SNPEff (39) version 3.5c (build 2014-02-21), annotated against the 

GRCh37.71 database, and restricted annotations to the Ensembl canonical transcript of 

PGRN-Seq captured genes only. Combined Annotation-Dependent Depletion (CADD) (40) 

PhRED-normalized scores were retrieved online and mapped to variants by chromosome, 

position, and alternate allele. On the PhRED scale, substitutions are assigned scores 

according to percentile, where the highest 10% of all scores are assigned values ≥C10, the 

highest 1% are assigned values ≥C20, etc. (40). We also compared identified variants to 

other established catalogs of genetic variation, including dbSNP build 141 (accessed online 

in VCF format 3/4/2015), 1000 Genomes Project phase 3 data (accessed online in VCF 

format 2/19/2015), and the Exome Aggregation Consortium (ExAC) dataset release 0.3 

(accessed online in VCF format 1/13/2015).

To annotate variants by pharmacogenomics impact, recommendations were accessed for 

nine genes with CPIC ‘Level A’ evidence, which provide specific clinical actionability 

(Table 3). CPIC Level A indicates that “Genetic information should be used to change 

prescribing of affected drug”(8) and can be found at https://www.pharmgkb.org/page/cpic. 

Variants were mapped to CPIC alleles by chromosome, base pair position, and alternate 

allele. Defining the star (*) alleles (10) for all of the relevant genes is currently ongoing.

To further examine the implications for pharmacogenomics discovery, we accessed two 

sources of prescription activity in the US from the IMS Institute for Healthcare Informatics, 

a National Prescription Audit listing the 100 most frequently prescribed brand name drugs 

with nationwide prescription numbers from April 2013 to March 2014 (41), and a 

subsequent review of medication use in 2013 which lists the 25 most dispensed medications 

(42). Brand names and/or active ingredients of these drugs were matched to brand names 
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and/or active ingredients listed in PharmGKB (43). PharmGKB reports gene-drug 

interactions with multiple levels of supporting evidence, including clinical annotation, 

variant annotation, “very important pharmacogenes,” and pathways. Using PharmGKB, we 

extracted reported interactions between these drugs and genes captured by the PGRN-Seq 

platform with any level of evidence as a potential pharmacogene for a given drug.

Data Availability

Summary level data from the most current version of the eMERGE-PGx project data are 

viewable in SPHINX. First released in December 2013, SPHINX provides allelic variation 

identified by the sequencing and variant calling pipelines reported here. Users can search 

identified variants by a variety of criteria, including basic attributes such as gene symbol. 

More advanced searches use data from PharmGKB and other public data sources to enable 

queries by drug and metabolic pathway, allowing higher-level hypotheses to be investigated. 

Variant information includes chromosome, position, SNP ID (if known), SNPEff (39) 

annotated consequence (e.g. Downstream, 3'UTR , non-synonymous, etc.), and allele 

frequencies calculated globally across the entire cohort and by population for European and 

African descent groups.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Allelic spectrum of eMERGE-PGx variants. Counts of genomic variants mapping to the 

canonical transcript of PGRN-Seq captured genes are plotted by frequency class (over all 

samples) by gene (x-axis) in ascending order. Gold horizontal lines indicate the size of the 

canonical transcript in base pairs. The inset line plot is a percentile rank of genic intolerance 

(RVIS) scores computed using the ExAC dataset.
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Figure 2. 
Box Plot of Scaled (Phred) CADD score annotations for alleles by gene. Genes are ranked 

from top to bottom by ascending median CADD score.
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Figure 3. 
Estimates of prescriptions impacted by rare missense variants within pharmacogenes 

impacting the metabolism of frequently prescribed drugs.
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Figure 4. 
Screenshot of SPHINX website (http://emergesphinx.org)

Bush et al. Page 17

Clin Pharmacol Ther. Author manuscript; available in PMC 2016 September 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://emergesphinx.org


A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bush et al. Page 18

Table 1

Demographics of the eMERGE-PGx project.

Female (N=2958) Male (N=2674) Combined (N=5632
**

)

AGE
* 57/61/71 57/64/71 57/63/71

RACE

American Indian or Alaska Native 1% (15) 0% (7) 0% (22)

Asian 2% (72) 2% (41) 2% (113)

Black or African American 14% (414) 9% (246) 12% (660)

Native Hawaiian or other Pacific Islander 0% (4) 0% (1) 0% (5)

Other 0% (2) 0% (3) 0% (5)

Unknown 8% (227) 6% (152) 7% (379)

White 75% (2224) 83% (2224) 79% (4448)

ETHNICITY

Hispanic or Latino 7% (195) 4% (113) 5% (308)

Not Hispanic or Latino 89% (2639) 91% (2433) 90% (5072)

Unknown 4% (124) 5% (128) 5% (252)

CLINICAL ATTRIBUTES

Avg Record Length in years (s.d.) 17.1 (9.14) 16.21 (9.36) 16.66 (9.25)

Avg Distinct ICD9 Codes (s.d.) 106.7 (69.99) 83.93 (58.54) 95.5 (65.60)

Avg Medication Count (s.d.)
*** 9.0 (8.09) 9.20 (8.49) 9.09 (8.27)

*
birth year was collected, so age is an approximation. Ages are given as lower quartile range, median, and upper quartile range.

**
demographic information missing on some samples

***
Medications were restricted to a list of most prescribed medications (see methods).

Clin Pharmacol Ther. Author manuscript; available in PMC 2016 September 04.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bush et al. Page 19

Table 2
Counts of Ensembl consequence type for variants mapped to canonical transcripts of 
PGRN-Seq captured genes

The In PGX column refers to the number of variants observed in the PGx dataset. The counts of those variants 

which were previously discovered in the 1000 Genomes Project (1KG), the Exome Aggregation Consortium 

(EXAC) are shown in columns 3 and 4, and novel variants which were not observed in 1KG and EXAC but 

were detected in the eMERGE PGx project (PGx) are also shown in the last column.

ENSEMBL CONSEQUENCE TYPE IN PGx IN 1KG IN EXAC NOVEL

Upstream Gene Variant 6094 2122 23 3924

Intron Variant 5542 2016 460 3038

Missense Variant 4806 1485 1792 2212

3 Prime UTR Variant 4245 1539 65 2629

Downstream Gene Variant 3574 1239 44 2219

Synonymous Variant 3147 1335 1255 1163

5 Prime UTR Variant 931 287 59 597

Missense Variant, Splice Region Variant 147 48 62 60

Splice Region Variant, Intron Variant 142 60 49 54

Stop Gained 97 20 31 54

Splice Region Variant, Synonymous Variant 90 - 36 40

Splice Acceptor Variant 18 5 3 1 2

Splice Donor Variant 15 3 6 8

Splice Region Variant,5 Prime UTR Variant 14 3 3 10

Initiator Codon Variant 11 2 2 7

Stop Gained, Splice Region Variant 3 1 1 2

Stop Lost 2 - - 2

Stop Retained Variant 1 1 - -

Splice Region Variant, 3 Prime UTR Variant 1 1 - -

TOTAL 28880 10167 3891 16019
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Table 3

Clinical Pharmacogenetics Implementation Consortium (CPIC) Actionable Variants for selected genes

GENE CPIC PUBMED IDS RS NUMBER Number of eMERGE PGx samples with at least one non-reference allele

CYP2C19 23486447;21716271; 4244285 1578

CYP2C19 23698643 4986893 20

CYP2C19 12248560 2087

CYP2C19 28399504 37

CYP2C19 41291556 19

CYP2C19 72552267 3

CYP2C9 25099164; 21900891 1057910 635

CYP2C9 1799853 1186

CYP2D6 16947 4767

CYP2D6 1065852 2061

CYP2D6 1135840 3686

CYP2D6 3892097 1783

CYP2D6 28371706 238

CYP2D6 28371725 926

DYPD 23988873 3918290 54

DYPD 55886062 8

DYPD 67376798 53

G6PD 24787449 (Table S4) 1050828 144

G6PD 1050829 349

G6PD 5030868 2

G6PD 137852339 2

SLCO1B1 22617227;24918167 2306283 3940

SLCO1B1 4149015 599

SLCO1B1 4149056 1486

TPMT 21270794;23422873 1142345 481

TPMT 1800460 383

TPMT 1800462 22

TPMT 1800584 1

VKORC1 21900891 9923231 3280

CYP2C19 23486447;21716271; 4244285 1578

CYP2C19 23698643 4986893 20

CYP2C19 12248560 2087
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