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Abstract

This study aims to develop a composite biomarker that can accurately measure the sequential 

biological stages of Alzheimer's disease (AD) on an individual level. We selected 144 subjects 

from the Alzheimer's Disease Neuroimaging Initiative 2 datasets. Ten biomarkers, from brain 

function and structure, cerebrospinal fluid, and cognitive performance, were integrated using the 

event-based probabilistic model to estimate their optimal temporal sequence (Soptimal). We 

identified the numerical order of the Soptimal as the characterizing Alzheimer's disease risk events 

(CARE) index to measure disease stage. The results show that, in the Soptimal, hippocampal and 

posterior cingulate cortex network biomarkers occur first, followed by aberrant cerebrospinal fluid 

β-amyloid and p-tau levels, then cognitive deficit, and finally regional gray matter loss and 

fusiform network abnormality. The CARE index significantly correlates with disease severity and 

exhibits high reliability. Our findings demonstrate that use of the CARE index would advance AD 

stage measurement across the whole AD continuum and facilitate personalized treatment of AD.
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Introduction

Current literature regards sporadic Alzheimer's disease (AD) as a clinical entity arising from 

a series of pathophysiological events related to amyloidosis and neurodegeneration. These 

events, measured by corresponding AD biomarkers, are believed to occur in a temporally 

ordered manner along with disease progression [1]; however, a detailed sequence remains 
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ambiguous. Disentangling the temporal relationship among AD biomarkers provides insight 

into the evolution of AD pathogenesis. From a clinical perspective, an established AD 

biomarkers sequence would provide a template for defining an individual's AD stage and 

dictating stage-dependent therapeutic strategies, especially with regard to facilitating 

secondary prevention of AD [2]. Therefore, estimating the optimal temporal order (Soptimal) 

of AD biomarkers is essential in uncovering AD development processes and designing 

effective treatment strategies.

After decades of research, we now understand AD development to be complex in nature, 

with a series of causal sequences between pathologies and functions. An earlier concept 

recognized β-amyloid (Aβ) deposition as the earliest AD trigger, causing downstream 

neurodegeneration and cognitive deficit in turn [3]. However, this linear pathway concept 

appears to be flawed given that Aβ removal has proven ineffective in improving clinical 

outcomes [4, 5]. Recent studies indicate several neurodegenerative biomarkers arise 

upstream in AD. Specifically, neural dysfunction would induce Aβ pathologies [6], and the 

soluble Aβ peptides can further exacerbate neural dysfunction before fibrillar Aβ deposits 

[7]. This corroborates observations of aberrant hippocampal hyperactivity and default mode 

network (DMN) hypoconnectivity or hypometabolism in apolipoprotein E (APOE) ε4 

carriers without detectable Aβ deposition [8-10]. Tau pathology also is required in mediating 

Aβ toxicity [11]. These diverse pathophysiological events constitute the temporal-dependent 

process underlying AD development [4]. Our study focused on determining the Soptimal of 

those pathophysiological events represented by corresponding dynamic biomarkers, in order 

to accurately stage each individual across the whole AD spectrum.

Three major technical challenges impede the determination of the Soptimal among AD 

biomarkers. First, the conventional symptom-based group definition involves biologically 

heterogeneous populations and, therefore, poses a great challenge for disease staging [12]. 

Second, the dichotomizations of biomarker values by “cut-off point” thresholds appear to 

deviate from the continuous nature of insidious AD progression. Also, the cut-off points are 

difficult to standardize across laboratories [13]. Third, the Soptimal determination among 

multiple biomarkers generally requires a large cohort with a long follow-up period to link 

preclinical to advanced AD stages, complicating study design and significantly raising costs. 

System biology is an emerging strategy to unravel temporal relationships among biomarkers 

and predict disease progression related to AD by modeling approaches [14], thus exhibiting 

great potential in addressing the above challenges. Specifically, the event-based probabilistic 

(EBP) model can learn the temporal order of biomarkers to describe disease progression 

from large cross-sectional datasets based on the Bayesian theory [15, 16]. The EBP model is 

a decision-making tool that determines the order of a complex system of events by 

estimating the probabilities of occurrence and nonoccurrence of a series of events, rather 

than by dichotomizing biomarker status based on the cut-off point threshold.

Our study extended the EBP model innovatively by integrating functional, structural, 

biofluid, and cognitive biomarkers to determine the Soptimal, which links the appearance of 

any specific biomarkers in asymptomatic individuals to the subsequent emergence of clinical 

symptomatology across the whole continuum of the AD development process.
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Matertials and Methods

Subject Information

This study employed data from the Alzheimer's Disease Neuroimaging Initiative 2 (ADNI 2) 

database. ADNI initially was launched in 2003 by the National Institute on Aging (NIA), the 

National Institute of Biomedical Imaging and Bioengineering (NIBIB), the US Food and 

Drug Administration [17], private pharmaceutical companies, and nonprofit organizations, 

as a $60 million, five-year public-private partnership. Michael W. Weiner, MD, from San 

Francisco Veterans Affairs Medical Center and University of California-San Francisco, is the 

principal investigator of ADNI. On October 3, 2014, we downloaded ADNI 2 datasets from 

the Laboratory of Neuro Imaging (LONI), which included 225 subjects with four groups of 

clinical diagnoses (cognitively normal [CN], early mild cognitive impairment [EMCI], late 

MCI [LMCI], and AD). Specific inclusion and exclusion criteria of the four groups are 

described in detail in the ADNI 2 procedures manual (http://adni.loni.usc.edu/wp-content/

uploads/2008/07/adni2-procedures-manual.pdf). Specifically, the EMCI subjects exhibited a 

1–1.5 standard deviation (SD) decline in neuropsychological memory performance, whereas 

the LMCI subjects' decline was 1.5 SD or greater. Briefly, the EMCI inclusion criteria are 

described as follows: 1) subjective memory concern; 2) declined delayed recall scores in 

logical memory test (9–11 points for subjects with 16 or more education years, 5–9 points 

for subjects with 8–15 education years, and 3–6 points for subjects with 0–7 education 

years); 3) MMSE scores between 24 and 30; 4) Clinical Dementia Rating score=0.5; 5) 

normal general cognition. Of the 225 subjects total, we selected 144 subjects based on the 

following requirements: First, all subjects had at least one resting-state functional 

connectivity magnetic resonance imaging (R-fMRI) scan with corresponding anatomical 

scans. Second, all subjects had cerebrospinal fluid (CSF) Aβ and phosphorylated tau (p-tau) 

concentration values. Third, all subjects had scores on the Mini-Mental State Examination 

(MMSE), modified 13-item Alzheimer's Disease Assessment Scale-Cognitive Subscale 

(ADAS-Cog), and Rey Auditory Verbal Learning Test (AVLT) (immediate recall score, i.e., 

the sum of trials 1 to 5). Together, the 144 subjects consisted of 45 CN, 42 EMCI, 32 LMCI, 

and 25 AD subjects (Table 1).

Imaging Acquisition

The ADNI data acquisition process is described at http://adni.loni.ucla.edu/. Briefly, R-fMRI 

datasets were scanned on 3.0 Tesla (T) magnetic resonance imaging [18] scanners (Philips, 

Netherlands). During the resting-state acquisitions, no specific cognitive tasks were 

performed, and the participants were instructed to relax with their eyes open inside the 

scanner. Axial R-fMRI images of the whole brain were obtained in seven minutes with a 

single-shot gradient echo planar imaging (EPI) sequence. High-resolution magnetization-

prepared rapid gradient-echo (MP-RAGE) 3-D sagittal images also were acquired.

Resting-State Image Preprocessing

Conventional preprocessing steps were conducted using Analysis of Functional 

NeuroImages (AFNI) software (http://afni.nimh.nih.gov/afni/), SPM8 (Wellcome Trust, 

London, United Kingdom), and MATLAB (MathWorks, Natick, Massachusetts). The 

preprocessing allows for T1-equilibration (removing the first 15 seconds of R-fMRI data); 
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slice-acquisition-dependent time shift correction (3dTshift); motion correction (3dvolreg); 

detrending (3dDetrend); despiking (3dDespike); spatial normalization (original space to the 

Montreal Neurological Institute [MNI] space, SPM8); averaging white matter and CSF 

signal retrieval (3dROIstats) using standard SPM white matter and CSF mask in the MNI 

space; white matter, CSF signal, and motion effect removal (3dDeconvolve); global signal 

removal necessity check (the global signal will be removed if necessary) [19]; and low-

frequency band-pass filtering (3dFourier, 0.015-0.1Hz).

Biomarkers

We selected 10 well-studied AD biomarkers from only three examinations: 

neuropsychological assessment, MRI scan, and cerebrospinal fluid, each representing an 

event that occurs along with AD progression. These biomarkers include three region-based 

R-fMRI functional connectivity indices (FCI) from the hippocampus (HIPFCI), posterior 

cingulate cortex (PCCFCI), and fusiform gyrus (FUSFCI); two gray matter concentration 

indices (GMI) from the hippocampus (HIPGMI) and fusiform gyrus (FUSGMI); two CSF 

biomarkers of Aβ and p-tau levels; and three cognitive markers of MMSE, ADAS-Cog 

(ADAS), and AVLT scores. Detailed methods to extract FCI and GMI indices are provided 

in the Supplemental Methods S.1 and S.2.

Event-Based Probabilistic Model

The Soptimal is determined by the EBP model. The conceptual frameworks of the EBP 

model, initially developed and applied to study seriation in determining the temporal order 

of fossil occurrence in paleontology [20], were further developed to treat disease progression 

(e.g., AD) as a sequence of events in which different biomarkers become abnormal in a 

temporally ordered manner using cross-sectional datasets [16, 21]. The EBP model does not 

make any a priori assumptions about the sequence in which these biomarker events occur, 

except that the sequence is consistent for all subjects. Rather, the EBP model estimates the 

probability of the event sequences using real-world data. The mathematical detail of the EBP 

model is described in the Supplemental Methods S.3, S.4, and S.5. This study used 45 CN 

and 25 AD subjects to determine the Soptimal. Note that the EMCI and LMCI subjects were 

excluded in determining the Soptimal so that they could be used as an independent validation.

CARE Index and Individual AD Risk Stage

We numbered each of the 10 biomarker events by order of occurrence in the Soptimal; 

collectively, these events comprise the index for characterizing Alzheimer's disease risk 

events (CARE), or “CARE Index.” Each individual's AD risk stage is defined as that at 

which k had the highest likelihood value at the Soptimal in equation 6 (Supplemental Methods 

S.6). Each individual's k value corresponds to a score on the CARE index.

Statistical Analysis

We used one-way analysis of variance (ANOVA) to compare demographic information and 

clinical data among the four clinically defined groups (45 CN, 42 EMCI, 32 LMCI, and 25 

AD). Then, we applied ANOVA to detect differences in CARE index scores among the four 

groups. The sources of the among-group differences were further identified by post-hoc 
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multiple comparison procedure. (For ANOVA, the statistical significance level was set at 

p<0.05; for post-hoc comparisons, the statistical significance level was set at Tukey-Kramer 

corrected p<0.05.) In addition, Auditory Verbal Learning Test-30-min delayed recall 

(AVLT30min) scores were used to validate the association of the CARE index score with 

disease severity. Specifically, we employed multiple linear regression models to estimate the 

relationships between the CARE index score and AVLT30min score in EMCI and LMCI 

groups separately. We also examined such a relationship across the four groups using a 

logistic model (Supplemental Methods S.7).

Results

Subject Information

As shown in Table 1, the four groups had no significant difference in demographic 

information except education years (F=2.93, p=0.04). By contrast, the MMSE, ADAS-Cog, 

and AVLT scores, as well as the CSF Aβ and p-tau levels, exhibited significant differences 

among groups.

Distribution of Each Biomarker Value

In all 10 plotted and fitted biomarker event distributions (Fig. 1), we imposed the condition 

that distributions with lower values be abnormal (i.e., event occurred) and distributions with 

higher values be normal (i.e., event did not occur). Therefore, the values for those 

biomarkers that defined a higher value as abnormal in nature, including the ADAS-Cog 

score, p-tau level, HIPFCI, and FUSFCI, were multiplied by (-1).

Soptimal of Events

The Soptimal represented by the 10 biomarkers was obtained and is presented in Fig. 2A. The 

first two disease events are represented by the two functional biomarkers: increased HIPFCI 

(CARE index score 1) and decreased PCCFCI (CARE index score 2). The next two are CSF 

biomarkers: decreased Aβ (CARE index score 3) and increased p-tau (CARE index score 

4). The subsequent events are a mix of cognitive biomarkers (decreased MMSE score 

[CARE index score 5], increased ADAS-Cog score [CARE index score 6], decreased 

HIPGMI [CARE index score 7]), decreased AVLT score [CARE index score 8], and 

decreased FUSGMI [CARE index score 9]). The last event is increased functional biomarker 

FUSFCI (CARE index score 10). Note that the optimal order of biomarker events (i.e., 

Soptimal), calculated from the CN and AD groups, has a perfect diagonal pattern in the matrix 

(Fig. 2A). This result, obtained from application of the modified k-mean Gaussian mixture 

model fitting and our new greedy algorithm, minimized event uncertainty. To estimate the 

uncertainty in the obtained Soptimal, we performed the bootstrap procedure, wherein we 

resampled the data 500 times; for each bootstrap sample, we reestimated the optimal 

sequence Soptimal. The uncertainty in the estimated optimal sequence is illustrated in Fig. 

2B. We observed that the event sequence uncertainty primarily existed within three distinct 

event clusters: 1) the early event cluster, including HIPFCI and PCCFCI; 2) the middle event 

cluster, including CSF biomarkers, cognitive performance, and HIPGMI; and 3) the later 

event cluster, including FUSFCI and FUSGMI. Note that there is negligible overlap among 

these three event clusters.
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Association of the CARE Index with Clinical stages

Using the order of the EBP model-based biomarker events, we obtained a CARE index score 

for each subject regardless of the subject's clinical stage. As an example, we have selected 

four typical subjects, one from each of the CN, EMCI, LMCI, and AD groups, to illustrate 

the distribution of the normalized likelihoods at each position on the CARE index (Fig. 3A). 

The AD risk for each of the four subjects was determined by the position of the subject's 

highest likelihood value on the CARE index, where a score of 1 is associated with a CN 

subject, 4 with an EMCI subject, 7 with an LMCI subject, and 9 with an AD subject. 

Moreover, the curve provides likelihood values at other CARE index scores, showing each 

subject's risk of developing AD. For example, the LMCI subject had a relatively high 

likelihood value (close to 0.6) at CARE index scores 7, 8, and 9, in addition to the highest 

likelihood value (0.65) at CARE index score 6. This suggests that this LMCI subject has a 

high risk of progressing from LMCI to AD-type dementia. Information of this nature may 

facilitate individual clinical inference.

Specifically, we found that all but one of the CN subjects have a CARE index score less than 

or equal to 6, while all AD subjects have a CARE index score greater than or equal to 6 (Fig. 

3B). Similarly, the CARE index scores for EMCI and LMCI groups were between those of 

the CN and AD groups (Fig. 3C). With regard to CARE index score differences among 

groups (Fig. 3D), the median CARE index scores of the CN, EMCI, LMCI, and AD groups 

were 2, 4, 6, and 9, respectively. The CN group exhibited a lower CARE index score than 

the EMCI (p<0.005), LMCI (p<0.5×10-6), and AD (p<0.1×10-6) groups. The AD group 

showed a higher CARE index score than the EMCI (p<0.5×10-4) and LMCI (p<0.5×10-4) 

groups. In addition, the EMCI group showed a lower CARE index score than the LMCI 

(p<0.02) group. Note that the correspondence between CARE index scores and clinical 

stages exists across all groups, including EMCI and LMCI subjects who were not involved 

in the estimation of Soptimal. Such consistency makes it possible to use the CARE index to 

estimate biomarker-based AD stages for individual subjects.

AVLT30min Scores Correlated with CARE Index Scores

The degree of disease severity, represented by the AVLT30min score, was significantly 

correlated with the CARE index score (Fig. 4). With regard to individual clinical groups, 

regression lines are significant for the EMCI (p≤0.0042, R2 = 0.19) and LMCI (p≤0.0166, 

R2 = 0.18) groups, shown in the left and middle panels of Fig. 4, respectively. The full 

nonlinear regression model is also significant (p≤1.16×10-12), shown in the right panel of 

Fig. 4. The higher the CARE index score, the lower the AVLT30min score and the more 

severe the disease. This relationship is statistically valid across and within the subject 

groups. The curve fitting was estimated using a nonlinear least squares algorithm, yielding 

b0=2, A=15, b2=−0.33, b3=0.22, and b4=1.39 for the equation S.8. The F-statistic for the 

full exponential model fit was F[4,139]=19.3283, with a corresponding p-value=1.16×10-12.

Intrasubject Repeatability of CARE Index Measurement

Fig. 5 shows the relationship between each subject's CARE index score at baseline and at the 

second visit within six months. The stage consistency reached 89% with a slope of 1.04, 

indicating significant intrasubject repeatability (p<1.69e-016). This high degree of 
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intrasubject CARE index score consistency indicates that the biomarker-based CARE index 

system is very robust. For the method of repeatability, please refer to Supplemental Methods 

S.8.

Discussion

Our study demonstrated that, given the availability of multimodal biomarkers measured by 

only three examinations, neuroimaging (brain function and structure), biological fluid 

(CSF), and cognitive assessments, the real-world cross-sectional datasets from cohorts 

comprising the whole AD continuum could be used to determine the AD development 

sequence. This accomplishment is significant because such a study would otherwise require 

rich resources involving a large sample size and a longitudinal design with high costs and a 

protracted period. The major finding of this study is that when multiple AD biomarkers are 

temporally ordered, functional abnormalities in the HIP and PCC networks comprise the 

earliest event, even antedating detectable CSF Aβ and p-tau abnormalities. This finding 

sheds light on the link between preclinical AD status and symptomatic onset and can be 

applied to accurately identify progressive AD trajectories, given the condition that disease 

onset remains insidious and no single biomarker serves as a predictor for future cognitive 

decline.

Destabilized brain function can serve as a critical contributor to AD cognitive deterioration 

[22, 23]. Of the various brain networks, the DMN and the hippocampal functional 

connectivity network (HFCN) are closely associated with both AD pathologies and clinical 

symptoms [2]. With regard to the HFCN, major studies have observed hippocampal 

hyperactivity at the early AD stage [8, 24] and identified it as a potential indicator of 

impending cognitive impairment [25]. It is assumed that early-stage hippocampal 

hyperactivity may be related to Aβ-induced hippocampal synaptic excitotoxicity, tau 

accumulation [22], or mitochondrial dysfunction [26]. With respect to the DMN, it overlaps 

broadly with Aβ deposition, and the overlap is possibly attributed to continuously high 

neural activity in the DMN regions that advance Aβ accumulation [27]. Studies convergently 

demonstrate DMN hypoconnectivity and hypometabolism in AD-continuum subjects 

including asymptomatic APOE ε4 carriers [28], amnestic mild cognitive impairment (MCI) 

subjects [29], and AD-type dementia subjects [30]. Accordingly, current findings indicate 

that aberrant DMN and hippocampal connectivity strength could be among the earliest 

events to trigger AD and may represent initial disease targets.

An unresolved issue in evaluating AD biomarker utilities is how their changes influence the 

cognitive decline trajectory and clinical onset. Although earlier studies suggest amyloidosis 

impairment on cognitive function [31], this association remains weak and controversial [32]. 

This study observed that cognitive impairment, indexed by MMSE, ADAS-Cog, and AVLT 

scores, occurred following abnormal brain network connectivity, CSF Aβ levels, and p-tau 

levels. It indicates that clinical AD symptoms emerge as downstream events following brain 

amyloidosis and neurodegenerative changes. Also, this event sequence provides evidence to 

support a recent concept that neither amyloidosis nor neurodegeneration is sufficient in 

isolation to cause the AD pathophysiological and clinical cascade [33]; rather, the co-

occurrence of amyloidosis and neurodegeneration significantly advances gray matter atrophy 
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[34, 35], accelerates cognitive deterioration [36, 37], and increases MCI or dementia hazard 

in cognitively normal elderly cohorts [38]. Mechanistically, emerging biological studies 

indicate that Aβ and tau interaction is a driving force in AD development. Aβ accumulation 

advances tau disease progression in that both enhance tauopathy [39] and potentiate tau 

impairment on brain function [40]. Further, tau is a required factor in Aβ-induced 

neurotoxicity [11, 41]. Clearly, current findings regarding the Soptimal support the notion 

that, while amyloidosis and neurodegeneration arise independently, once both are present 

they interact to advance the AD pathophysiological cascade and are a key mechanism in 

transforming normal aging into AD [33, 42].

The conventional symptom-based AD staging system is limited in effectively facilitating 

disease prevention, diagnosis, and treatment. This limitation can be attributed to remarkably 

inter-subject biological heterogeneity within each stage and relatively low temporal 

resolution of the three stages (cognitive normal, MCI, and dementia) in illustrating 

continuous AD progression. The estimated Soptimal and derived CARE index discussed 

herein would address these attributions by characterizing the risk of the 10 AD events at the 

individual level through neither clinical diagnosis information nor a specific biomarker cut-

off point. This study demonstrates that the CARE index scores closely parallel disease 

severity through the whole AD continuum, as indicated by its gradual increase from CN to 

MCI to AD at the symptom-defined group level and close correlation with episodic memory 

performance. The higher the CARE index score, the more advanced and severe the disease. 

Accordingly, the CARE index may serve as a surrogate to indicate the AD development 

process and facilitate clinical trials by a) identifying AD-risk subjects who do not yet have 

any clinical symptoms; b) staging and categorizing patient populations based on their CARE 

index scores to enrich response rates, as has been demonstrated in oncology; and c) 

monitoring and evaluating treatment efficacy through individual subjects' changes in CARE 

index scores. This personalized medicine technique would be particularly beneficial in 

assessing the efficacy of promising secondary prevention interventions in patients at the 

earliest discernible stage of AD.

This study has four limitations. First, this is the first attempt to incorporate the resting-state 

functional connectivity HIPFCI and PCCFCI biomarkers into the EBP model. Future studies 

could integrate other functional and structural biomarkers, including the executive control 

network, salience network, and insular network, into the biomarker sequence to characterize 

the trajectory of the neural network changes with AD progression. Second, currently 

available datasets include only 45 CN and 25 AD subjects, which limits the representative 

probability distributions of biomarkers generated to accurately estimate the temporal order 

of biomarkers. The Soptimal determined from a larger sample size may be different from the 

current results. Third, this study relies on the assumption that all subjects follow a single 

optimal event sequence, despite heterogeneous pathways of sporadic AD development [1, 

43]. A recent study introduced a cluster of subjects that may follow different event 

sequences in their disease progression [44]. Fourth, the current-event-based model used a 

naïve Bayesian model that assumes the different biomarkers are independent measurements. 

The assumption is not always true. However, in practice, a naïve Bayesian system can work 

surprisingly well, even when the independence assumption is not true [45]. Therefore, 

further studies with larger sample sizes, additional biomarker events, and updated analysis, 
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are required to enhance our understanding of AD pathogenesis and improve detection of AD 

progression on an individual level.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Probability Distributions of Normal (Cyan) and Abnormal (Black) Events Measured by 
Biomarkers from the AD and CN Populations
The y-axis denotes the proportion of subjects, while the x-axis indicates the detected value 

of each biomarker measurement. The (-1) is employed to reverse the signs of the biomarker, 

indicating the left distribution is an event that occurred and the right distribution is an event 

that did not occur.
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Figure 2. Optimal Temporal Order, Soptimal, of the 10 AD Biomarkers Estimated by the EBP 
Model
(A) The y-axis shows the Soptimal and the x-axis shows the CARE index score at which the 

corresponding event occurred. (B) Bootstrap cross-validation of the Soptimal. Each entry in 

the matrix represents the proportion of the Soptimal during 500 bootstrap samples. The 

proportion values range from 0 to 1 and correspond to color, from white to black. The 

CARE index scores with their corresponding biomarkers follow: 1, increased HIPFCI; 2, 

decreased PCCFCI; 3, decreased Aβ concentration; 4, increased p-tau concentration; 5, 

decreased MMSE score; 6, increased ADAS score; 7, decreased HIPGMI; 8, decreased AVLT 

score; 9, decreased FUSGMI; 10, increased FUSFCI.
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Figure 3. CARE Index Associated with AD Clinical Stages
(A) Normalized likelihoods across the CARE index. The cyan, yellow, red, and black lines 

represent the likelihoods at each score on the CARE index for a CN subject, an EMCI 

subject, an LMCI subject, and an AD subject, respectively. (B) CARE index distribution in 

CN and AD groups calculated from the EBP model. The CARE index is ordered by the 

maximum likelihood event sequence. Each score on the CARE index corresponds to the 

occurrence of a biomarker event. CARE index score 0 corresponds to no events having 

occurred and CARE index score 10 corresponds to all events having occurred. Both CN and 

AD groups showed heterogeneous index distributions. (C) CARE index distributions in 

EMCI and LMCI groups. The proportion of EMCI (yellow) and LMCI (red) subjects at each 

CARE index score was plotted. (D) A box plot of the CARE index score differences 

between groups. The median CARE index scores for CN, EMCI, LMCI, and AD groups are 

2, 4, 6, and 9, respectively. The two-sample t-tests between CN and EMCI, CN and LMCI, 

EMCI and LMCI, and AD and LMCI showed significant differences. The red “+” denotes 

an outlier in the CN group.
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Figure 4. Correlations Between CARE Index Score and Episodic Memory Performance
Both the within-group linear regression model and across-groups nonlinear curve-fitting 

analysis demonstrated significantly negative correlations between the CARE index scores 

and AVLT30min scores. The higher the CARE index score, the worse the episodic memory 

function. Note that, since the data are discrete, many individual data points overlap; for 

clarity, we perturbed each of the individual plot points by adding a small random 

displacement in the horizontal and vertical directions. The linear regression analysis used 

only the original (nonperturbed) data as an input.
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Figure 5. Intrasubject Consistency of the CARE Index Score Between Repeated Measures
The x-axis is individual's baseline CARE index score, and the y-axis is the individual's 

CARE index score from a measurement repeated within six months. Circle size and the 

number next to the circle represent the number of subjects falling on the same data point. 

The correlation value between two CARE index scores from repeated measurements is 89% 

with a slope of 1.04 (p<1.69e-016).
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