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Abstract

Smallpox has shaped human history, from the earliest human civilizations well into the 20th 

century. With high mortality rates, rapid transmission, and serious long-term effects on survivors, 

smallpox was a much-feared disease. The eradication of smallpox represents an unprecedented 

medical victory for the lasting benefit of human health and prosperity. Concerns remain, however, 

about the development and use of the smallpox virus as a biological weapon, which necessitates 

the need for continued vaccine development. Smallpox vaccine development is thus a much-

reviewed topic of high interest. This review focuses on the current state of smallpox vaccines and 

their context in biodefense efforts.
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1. Introduction

Smallpox disease, the history of smallpox vaccination and eradication, and current concerns 

about smallpox are briefly reviewed and presented here. The authors refer readers to 

comprehensive works outside the scope of this review for more information on the history 

and eradication of this disease [1-8][9-13].

1.1 Smallpox disease

1.1.1 History—The origin of smallpox is lost to history, with signs of smallpox present for 

as long as human records are available. Phylogenic and historical studies suggest that 

smallpox may have first appeared before 10,000 B.C., or as recently as the 16th century 

B.C., in regions with large human populations such as Mesopotamia, east Africa, or the 

Indus valley [14-16]. As smallpox was an acute disease with no non-human reservoir, it was 

passed around the world in a chain of human infection following human movement until 

human populations became large enough to support the disease endemically. Descriptions of 

a disease resembling smallpox have been found in texts from ancient China and India, and 
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mentions of smallpox-like epidemics are found throughout Asia; for example, references are 

made to the Hittites (1350 B.C.), Egyptians (1157 B.C.), Carthaginians and Athenians (5th 

and 4th centuries B.C.) and Chinese (250 B.C.) [9,13].

Smallpox eventually spread into Europe; the first reliable description of smallpox in western 

Europe was recorded by Gregory of Tours in 581 A.D. [9,13]. The movement of Europeans 

between Europe and West Asia during the Crusades spread smallpox throughout Europe, 

where it became endemic during the medieval period. European explorers and colonists then 

spread the disease more widely to areas of the world where the disease was not yet endemic, 

resulting in devastating epidemics throughout the Americas in the 16th century onwards, and 

throughout Africa, Australia, and southeast Asia by the 19th century [9].

1.1.2 Pathophysiology—Smallpox is caused by the variola virus (VARV), a large, 

enveloped double-stranded DNA virus in the Orthopoxvirus genus of the Poxviridae family 

[17]. Natural smallpox infection typically spreads through close personal contact with ill 

persons through inhalation of droplets containing infectious virus or, less frequently, by 

direct contact [18]. There are indications that contaminated clothing or bedding can also 

transmit infection, though the details of this mode of transmission are less clear [9]. The 

virus can also enter through the skin, although this is uncommon outside of deliberate 

inoculation. The mode of transmission appears to affect the severity of the disease [18].

After initial infection with VARV, smallpox multiplies in the respiratory tract, then migrates 

to regional lymph nodes. Primary viremia is asymptomatic, and occurs 3-4 days after 

infection, further disseminating the virus to spleen, bone marrow, and distal lymph nodes. 

Secondary viremia occurs 7-11 days after infection, followed by the onset of fever, 

headache, backache, and extreme malaise. Maculopapular lesions develop on the mouth, 

face, and arms, spreading quickly to the trunk and legs. These lesions quickly ulcerate, 

become vesicular, and then pustular – typically with all lesions simultaneously in the same 

stage of development. Patients are most infectious during the first week of the skin rash. 

After 8-9 days, pustules become crusted, and scarring is typical [9].

1.1.3 Mortality—Two major forms of smallpox exist: variola major, a severe illness; and 

variola minor, a much less frequently fatal disease (mortality < 1%) that exhibits similar 

initial symptoms to variola major, but less severe and extensive. About 5-10% of people with 

the variola major strain develop either a hemorrhagic or a malignant (flat) variant of the rash. 

The hemorrhagic form is almost uniformly fatal. The malignant form classically exhibits 

confluent, flat, nonpustular skin lesions, and is also largely fatal [9]. Overall mortality is 

typically 30%, but can vary widely between outbreaks. Death typically occurs during the 

second week of illness, and likely results from a massive inflammatory response, shock, and 

major organ failure [9].

1.2 A brief history of smallpox vaccination

1.2.1 Variolation—Variolation is the deliberate introduction of infectious smallpox virus 

from the pustule of an infected person into a healthy, nonimmune person to induce a 

typically milder form of disease than normal. The practice of variolation appears to have 

arisen independently in several areas of the world in response to smallpox breakouts. In 
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India, variolation became a part of certain Hindu rituals and is described in early Sanskrit 

texts written as early as 1500 B.C. [13]. In the 10th century, Chinese physicians were known 

to inoculate smallpox from powdered scabs intradermally or intranasally to bolster immunity 

[9].

The practice of variolation was brought to Europe from Asia in the 18th century and quickly 

spread throughout European societies and from there to the American continent and 

worldwide. Variolation was a great medical advance, but had many shortcomings. While 

improving on the 30% mortality rate associated with natural smallpox infection, variolation 

still carried a risk of developing severe smallpox disease and had a resulting 1-2% mortality 

rate. The live virus could also spread to contacts of the variolated individual, causing 

smallpox cases that further contributed to outbreaks.

1.2.2 Jenner and early vaccines—In 1796, Edward Jenner, an English country doctor, 

examined a dairymaid with a cowpox infection. Interested in folklore suggesting that people 

infected with cowpox could not later be infected with smallpox, Jenner inoculated his 

gardener's eight-year-old son subcutaneously in the arm with cowpox, resulting in mild 

cowpox symptoms, and then variolated the boy a month and a half later. The boy did not 

develop any signs of smallpox and proved resistant to smallpox in the future. In 1798, Jenner 

published his research, including follow-up experiments, confirming that cowpox protected 

against smallpox infection, without the substantial dangers of variolation [19-21].

Jenner was not the first to have deliberately inoculated people with cowpox to produce 

protection against smallpox. However, Jenner's publication of his work and championship of 

cowpox inoculation as a safer replacement for variolation succeeded in sparking a major 

change in the accepted medical practice [21]. Despite early problems, some 100,000 people 

were vaccinated worldwide by 1801 [21].

Early smallpox vaccines were largely propagated by inoculation of cowpox material from 

one human to another with a wide variety of transfer techniques; however, concurrent 

transfer of bloodborne diseases became evident and, by the latter half of the 19th century, 

this process was converted in most places to propagation of cowpox virus in animals [9]. 

Typically, this involved calf lymph collected after infection of calf skin, although sheep, 

water buffalo, or other available animals were also used [9]. Contamination of vaccines was 

common and not well documented. By 1900, the poxvirus strains used for vaccination were 

no longer of cowpox derivation, having been contaminated by vaccinia virus (VACV), an 

orthopoxvirus closely related to, and possibly derived from, horsepox [9,22,23].

VACV was the basis of remarkably effective smallpox vaccines and remains the virus of 

choice for smallpox vaccines today. The widespread use of smallpox vaccine caused 

smallpox infections and outbreaks to start disappearing from large portions of the human 

population. The last known case of smallpox in the U.S. was in 1949.

1.2.3 Eradication—In 1959, the World Health Organization (WHO) launched a massive 

campaign to globally eradicate smallpox. At the time, an estimated 15 million annual cases 

were still occurring worldwide. As part of this campaign, teams of health workers traveled 
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throughout the world vaccinating large populations. The development of a freeze-drying 

technique rendered the vaccine heat-stable and transportable to remote regions [24], and the 

bifurcated needle that allowed simple, reliable, and efficient intradermal delivery of vaccine 

and resulted in formation of an easily-monitored pock indicating vaccine take [25]. These 

were advances that allowed effective vaccination of large populations by minimally trained 

health workers. Additionally, the fact that no natural reservoir for VARV exists outside of 

human populations greatly aided eradication efforts. The vaccination strategy for the final 

stages of eradication was termed “ring vaccination,” where disease surveillance teams traced 

smallpox patients and vaccinated their immediate contacts to prevent further disease spread. 

This strategy was highly effective. The last natural case of smallpox was reported in 1977. In 

1980, the WHO declared smallpox to be eradicated worldwide, the first eradication of a 

human pathogen.

1.2.4 Current concerns—Currently, the only known remaining stocks of VARV are in 

secure frozen storage in two locations – the U.S. Centers for Disease Control and Prevention 

in Atlanta, GA, and the State Research Centre of Virology and Biotechnology VECTOR, 

Koltsovo, Novosibirsk region, Russia. Destruction of these final stocks is a topic of much 

discussion in scientific and political circles [26].

With the rise in terrorism, concerns about the use of smallpox as a bioweapon have arisen. 

While the only registered stocks are in secure facilities, other sources of infectious VARV 

are possible, as was demonstrated by the recent discovery of misplaced VARV samples at 

NIH [27]. It is known that the Soviet government adapted smallpox for use as a bioweapon 

in the 1980s [28]. Little information is known about the results of this research, and what 

became of any viral stocks resulting from that effort.

Natural or synthetic sources of infectious smallpox virus are also possible. VARV has been 

shown to remain infectious for more than a decade in a temperate climate without special 

storage [29], raising the possibility that infectious virus could be found in old medical 

supplies or human remains from the pre-eradication era [30,31]. With appropriate advances 

in biotechnology, VARV may also be deliberately synthesized in a laboratory setting; the 

sequence of VARV has been publicly available since the early 1990s [32,33].

Outbreaks of related emerging and zoonotic poxviruses in human populations are also a 

public health concern [22]. Standard smallpox vaccines have been shown to induce strong 

cross-protection against other poxviruses, and outbreaks of zoonotic and emerging 

poxviruses represent an increasing threat, as immunity in human populations decreases due 

to the cessation of smallpox vaccination [34]. Human monkeypox outbreaks have occurred 

in Africa throughout the last 25 years, with case-fatality rates of 1.5-10% [34-40]. 

Monkeypox was transferred to the U.S. through importation of small animals, causing a 

multi-state outbreak in 2003 [34,35,41]. In the U.S. outbreak, prior vaccination was not 

found to be protective against monkeypox disease [42]. Some studies examining the 

protective efficacy of smallpox vaccination against human monkeypox have not found any 

evidence of a protective effect, while others have determined that smallpox vaccination does 

confer protection [42-45]. These reports examined individuals immunized at least 25 years 

before monkeypox exposure. Whether or not more recent vaccination, or even post-exposure 
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vaccination, is protective against MPXV is still an unanswered question. Similarly, cowpox, 

buffalopox, camelpox, and other orthopoxviruses have been known to overcome the species 

barrier and infect humans [35,46,47]. Vaccinia virus outbreaks in South American cattle and 

humans appear to be a result of emerging disease rather than escaped vaccine strains [35,48]. 

Recent reports of humans infected with a novel poxvirus in the U.S. underscore the potential 

of poxviruses as emerging human pathogens [49]. Safe and effective vaccines without 

significant safety contraindications designed to protect against smallpox would be highly 

useful in containing such outbreaks.

1.3 First-generation live vaccines used for eradication

During the WHO eradication program, vaccinia-based smallpox vaccines were 

manufactured worldwide by 71 independent manufacturers that used different production 

methods and viral strains [9]. Vaccines in the U.S. largely used the New York City Board of 

Health (NYCBH) strain, which was developed from seed virus obtained from England in the 

1850s. These vaccines have proven protective efficacy, but are no longer in production and 

are being replaced by second- and third-generation products. First-generation vaccines are 

not likely to play a major role in future biodefense activities, but are the gold standard for 

smallpox vaccines and are briefly discussed here for comparison purposes. For additional 

information, readers are referred to more comprehensive sources [9,10,17,50].

1.3.1. Dryvax—Dryvax, a vaccine produced by Wyeth Laboratories, is based on the 

NYCBH VACV strain and was first licensed in 1931 [9]. Produced by infection of the skin 

of calves, Dryvax was successfully used in the U.S. during the eradication era. However, rare 

but serious adverse events (AEs) were linked to large-sale immunization with this vaccine, 

resulting in 1-2 deaths per million vaccinees. Dryvax was used in the early 2000s to 

vaccinate large numbers of military personnel and select civilians with a high level of 

screening for contraindications to avoid inoculating those at highest risk of adverse 

reactions. During the U.S. Department of Defense (DoD) vaccination campaigns, there were 

fewer serious AEs than anticipated based on historical data, likely due to more rigorous 

screening and exclusion criteria; however, new findings of cardiac complications became a 

cause for concern [51-53]. Due to these findings and the development of more modern cell 

culture-based production methods, the FDA license for Dryvax was revoked as of February 

29, 2008.

1.3.2. Elstree (Lister)—The Elstree vaccine, based upon the Lister strain of VACV, was 

used extensively throughout Europe, Africa, and Asia during the WHO eradication 

campaign. It stimulated excellent protective immune responses, including long-term 

neutralizing antibodies to poxviruses [54,55]. Large-scale retrospective studies showed the 

Lister/Elstree vaccine strain induced a higher rate of serious adverse reactions than NYCBH-

based vaccines (approximately 8.4 deaths per million vaccinees relative to 1.4), but this 

number was significantly lower than various other VACV strains also in use at the time [9]. 

Lister vaccines, which have been stockpiled in many countries worldwide as a biodefense 

countermeasure, have been demonstrated to retain immunogenicity even if diluted 1:10 from 

the stored stock concentrations [55].
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1.3.4 Aventis Pasteur (APSV)—APSV, produced by Aventis Pasteur from 1956 to 1957, 

was a frozen vaccine preparation based on the NYCBH VACV strain, and some 85 million 

doses were stockpiled by the DoD. The APSV vaccine effectively induces neutralizing 

antibody levels and produces high take rates similar to Dryvax, even at a 1:10 dilution of 

frozen stock preparations. Later trials in the 2000s suggested that APSV has a higher 

reactogenicity (larger lesion size, higher incidence of fever) than Dryvax, and thus stockpiles 

APSV is unlikely to be used in future non-emergency vaccination efforts [8,56].

1.3.5 EM-63—The EM-63 vaccine was used widely in the USSR in the 1960s and 1970s, 

and appears to have originated from the NYCBH VACV strain. Large-scale use of the 

EM-63 vaccine resulted in low rates of serious AEs (17 per million doses) similar to Dryvax 

and similarly effective protection against smallpox disease [9]. Depending on remaining 

stockpiles, this vaccine may be utilized in biodefense preparations or in response to a 

smallpox outbreak.

1.3.6 Lancy-Vaxina—The Lancy-Vaxina Berna vaccine was based upon the Lister VACV 

strain and was manufactured on the skin of sheep. Lyophilized vaccine has been stockpiled 

by several European countries against the threat of bioterrorism. Efficacy, safety, and 

immunogenicity were tested in the early 2000s and found to be similar to the original Lister/

Elstree vaccine. Vaccine stored since the 1970s has been found to be still viable and retains 

immunogenicity at dilutions up to 1:10 [57].

1.3.7 Temple of Heaven/Tiantan—The Tiantan vaccine, from the Temple of Heaven 

strain, was developed and used heavily in China during the eradication era. It was originally 

derived from a smallpox patient, passaged several times in animals, and during this process 

was contaminated with the VACV it contains today [9]. This vaccine induces antibody 

responses similar to the Lister or NYCBH strains, but has a very high rate of AEs relative to 

Lister and NYCBH-derived vaccines, and is more pathogenic in animals than these other 

vaccines.

1.4 Immune Responses to First-Generation Vaccines

1.4.1 Cutaneous Responses—After successful primary vaccination, a pock forms at the 

vaccine site 3-4 days after vaccination; this pock forms a vesicle two to three days later, then 

pustulates. The pock reaches maximum size 8-12 days after vaccination, scabs over, and 

separates 14-21 days post-vaccination [9]. A lack of viremia after vaccination has been 

reported, suggesting infection remains localized to the vaccination site [58]. Vaccination also 

elicits strong immune responses that peak several weeks after immunization. A high-level 

overview of these responses are provide here. For more detailed descriptions of humoral and 

cellular immunity following smallpox vaccination, the readers are referred to the following 

references: [6,59-65].

1.4.2 Cytokine responses—Cytokine responses to smallpox vaccines begin shortly after 

primary vaccination. A strong inflammatory response occurs, with elevated serum levels of 

IFNγ, TNFα, IL-1, and IL-6 [66-68]. IFNγ serum levels clearly peak 8-9 days after 

vaccination [66]. Other cytokines relevant to induction of cellular responses are also present 
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at elevated levels, including IFN-inducible protein 10 (IP-10), monokine induced by IFNγ 
(MIG), granulocyte colony-stimulating factor (G-CSF) and granulocytomacrophage colony-

stimulating factor (GM-CSF) [66,67]. Levels of cytokine production have been shown to be 

affected by sex [69] and race [70].

1.4.3 Cellular responses—T cell responses are responsible for containing VACV 

infection in a naïve host after vaccination [71]. VACV-specific T cells are detected in 

humans by day 7 after primary vaccination, and peak at 14 days post-vaccination [72]. 

Strong CD4+ and CD8+ T cell responses peak and then contract to form a stable memory 

population [73]. Conberg et al. have demonstrated that memory CD8+ T cells alone play a 

major role in immunity to VACV [74], but CD4+ T cell memory populations have been 

shown to be better maintained over time [75] and have been shown in mice to be more 

critical than CD8+ T cell populations in fighting VACV infection [76]. The important role of 

T cell memory in containing initial vaccinia infection is also suggested by the fact that 

defects in subjects' cellular immunity allow for uncontrolled VACV infection [77]. VACV-

specific T-cell responses slowly wane over a period of decades, but appear to retain the 

ability to respond for up to 50 years [63,78].

1.4.4 Humoral responses—IgM neutralizing antibodies appear as early as 4 days after 

primary vaccination [79]. IgG responses appear later, typically after 10 days post-

vaccination [73,80]. For smallpox vaccination, IgG antibodies to poxvirus antigens are the 

immune measure most correlated with protection against smallpox disease. Four weeks after 

vaccination, VACV-specific IgG B cells expand to approximately 1.5% of the circulating 

IgG memory B cell compartment [64]. B cell responses are likely necessary for long-term 

protection regardless of the robustness of T cell responses, as demonstrated in mice [81]. 

Antibody responses initially decline in the first years after vaccination, followed by 

maintenance of long-term stable levels for 50 years or longer [63,64]. Full protection 

requires antibody responses to both of the major virions formed during infection: the 

intracellular mature virion (IMV) and extracellular virion (EEV) [82,83].

The rapid induction of cellular and humoral antibody by smallpox vaccines, and relatively 

long time required for disease development (secondary viremia and onset of full symptoms 

begin 7-11 days after infection), allow for successful post-exposure vaccination [9]. Primary 

vaccination within four to five days of exposure is typically at least partially protective; 

vaccination reduces the severity of disease if it develops at all. Revaccination in this 

timeframe typically prevents illness entirely, and attenuates disease to some degree even into 

the second week of the incubation period [84-87].

1.5 Adverse Events

VACV-based smallpox vaccines are associated with significant rates of AEs, resulting in a 

minimum of 1-2 deaths per million primary vaccines [88] and an overall higher chance of 

hospitalization across vaccinated populations in the year postvaccination [89]. Routine 

civilian smallpox vaccination has ceased due to these risks, risks that must be considered in 

any biodefense-related vaccination campaigns.
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Common non-serious reactions to smallpox vaccines include the development of 

inflammation and/or satellite lesions around the site of vaccination, localized edema, 

headache, fever, myalgia, lymphadenopathy, and erythema [9,90,91]. Autoinoculation, or the 

inadvertent transfer of VACV from the vaccination site to secondary locations on the 

vaccinee or close contacts, is also a common complication of smallpox vaccination [90].

More serious AEs resulting from smallpox vaccines (see Table 1) include generalized 

vaccinia (GV), eczema vaccinatum (EV), progressive vaccinia (PV), postvaccinial central 

nervous system disease, and fetal vaccinia. Treatments for adverse reactions to smallpox 

include vaccinia immune globulin (VIG) as the first-line therapy, and/or the potential use of 

cidofovir, an antiviral with broad-spectrum effects against DNA viruses. These drugs are 

available through Investigational New Drug protocols from the U.S. Centers for Disease 

Control and Prevention and the Department of Defense [90].

1.5.1 Generalized vaccinia—Generalized vaccinia is a generalized eruption of skin 

lesions that typically appear approximately a week after vaccination. This condition is 

usually benign and self-limiting, except in some immunosuppressed individuals who may 

require VIG. The underlying causes of generalized vaccinia are not fully understood. In 

some cases, it appears to be the result of VACV viremia after vaccination, often associated 

with an immunodeficiency [92]. In others, generalized erythematous rashes may be a result 

of hypersensitivity reactions [51].

1.5.2 Vaccinia keratitis—Ocular vaccinial infections are typically a result of 

autoinoculation of the eye area after touching the area of vaccination. Ocular vaccinia poses 

a risk to eyesight, particularly with infection of the cornea (keratitis). Prevention is the 

focus; topical antivirals may be used to treat the cornea during VACV infections to reduce 

scarring [90,93,94].

1.5.3 Fetal vaccinia—Fetal vaccinia is a rare complication of pregnancy after smallpox 

vaccination. Transmission of VACV from the mother to the fetus has been reported in a 

small number of cases (<50), usually resulting in stillbirth or death of the infant [90]. 

Pregnancy is a standard counter indication for smallpox vaccine. During recent smallpox 

vaccination campaigns, women inadvertently vaccinated during early pregnancy were 

tracked and no associations were found between vaccination and preterm delivery or birth 

defects [95].

1.5.4 Myopericarditis—DoD vaccine campaigns during the early 2000s identified 

myopericarditis as a possible AE resulting from smallpox vaccination [51,53]. Further 

investigation of possible cardiac AEs resulted in the identification of 59 carditis cases found 

in 492,671 predominantly male vaccines in a 2003 cohort, an estimated carditis incidence 

rate approximately 7.4 times higher than in an unvaccinated control cohort [96], a rate 

estimated to be closer to 214-fold in a recent prospective study [52]. The etiology of these 

side effects remains unclear. Cardiac pre-screening has been shown not to significantly 

reduce cardiac events [97].
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1.5.5 Eczema vaccinatum—Eczema vaccinatum (EV) is a rare, but serious, systemic 

complication of VACV inoculation in individuals with eczema/atopic dermatitis, regardless 

of the severity of the skin condition or whether the condition is active at the time of 

vaccination. It is characterized by a rash and severe systemic illness. Due to the heightened 

risk of EV, eczema/atopic dermatitis is a contraindication for smallpox vaccine. Many EV 

cases are, however, caused by contact of susceptible individuals with primary vaccines 

[98,99]. EV historically has a high mortality rate between 30-40% of those affected; 

however, VIG given in a timely manner has been shown to significantly reduce the mortality 

rate to less than 10% [100].

1.5.6 Progressive vaccinia—Progressive vaccinia (PV), also known as vaccinia 

necrosum, is a severe and often lethal complication of smallpox vaccination, generally in 

individuals with serious defects in cell-mediated immunity and underlying immune-related 

diseases such as leukemia and HIV/AIDs, conditions that are contraindications for the 

vaccine. Initially, the vaccination lesion necroses in a painless and progressive manner, 

eventually resulting in massive destruction of tissue. PV was universally fatal before VIG, 

though survivability has increased since VIG treatment became available [77,99].

1.5.7 Postvaccinial encephalitis—Postvaccinial encephalitis (PVE) is a rare adverse 

event that reflects cerebral damage. Symptoms include headache, drowsiness, coma, 

seizures, and other non-specific neurological symptoms occurring 6-10 days 

postvaccination. This AE has a case-fatality rate of approximately 15-30%, and 15-50% of 

survivors experience neurological damage [90,92,99]. It appears to have a higher incidence 

rate in infants <12 months, but may affect any age group. The pathology of PVE is not well 

understood, the low incidence rate makes causality difficult to investigate, and autoimmunity 

is suggested as a mechanism, though not definitively demonstrated. There are some 

indications that the incidence of PVE varies based on the VACV strain used for 

immunization [90]. Therapy is supportive.

1.5.8 Adverse Event Summary—Although proper screening for contraindications 

results in lower rates of significant AEs after smallpox vaccination, as demonstrated in the 

2002-2003 DoD vaccination campaign [51], large population-based immunization programs 

would result in some level of serious AEs, including death. Looking forward, the incidence 

of AEs may increase as an increasing fraction of the population are now immunosuppressed 

or have autoimmune skin conditions such as eczema.

2. Contemporary vaccines

Modern smallpox vaccines have been developed since the eradication era in attempt to 

improve vaccine manufacturing processes and safety profiles. These include tissue-culture-

based live vaccines, attenuated live-virus vaccines, and subunit vaccines. Currently marketed 

vaccines and promising vaccine candidates are discussed here and summarized in Table 2.

2.1 Tissue-culture-based live vaccines

2.1.1 ACAM2000—Acambis and Baxter labs created two new vaccines, ACAM1000 and 

ACAM2000, from a plaque-purified viral isolate of Dryvax (NYCBH), grown in Vero cell 
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culture. The ACAM1000 and ACAM2000 viral strains differed by only 7 passages in cell 

culture, were identical at the genomic level, induced similar responses and ACAM2000 was 

further developed [105]. ACAM2000 showed an improved safety profile in animal infection 

models [106]. ACAM2000 has been tested extensively in human clinical trials and 

demonstrated to have a similar take rate to Dryvax in primary vaccinees, and to induce equal 

levels of neutralizing antibodies and both T-cell and lymphocyte proliferation [105].

Revaccination with ACAM2000, however, was shown to be inferior to revaccination with 

Dryvax (84% vs. 98% take rates), possibly due to lower virulence of the viral vaccine strain 

[107]. Antibodies induced by ACAM2000 have epitope profiles distinguishable from 

antibodies induced by Dryvax, likely due to the monoclonal nature of the ACAM2000 

VACV strain relative to the highly polyclonal Dryvax [108,109]. The safety profile in 

humans has been shown to be similar to that of Dryvax in terms of cardiac and other AEs, 

though careful prescreening avoided most serious AEs [107]. ACAM2000 was licensed in 

the U.S. in 2007 and millions of doses have been produced for the U.S. national stockpile 

[106]. It should be noted that, in contrast to Dryvax, ACAM2000 did not retain full 

immunogenicity when diluted. This vaccine is a major component of the US Strategic 

National Stockpile and is being stockpiled in other countries as well.

2.1.2 CCSV—CCSV is a new cell-cultured vaccine developed by DynPort Vaccine 

Company, LLC, from the NYCBH vaccinia strain; it is produced in MRC-5 cells. In phase I 

clinical trials, CCSV was demonstrated to induce similar levels of neutralizing antibodies 

and T-cell responses, and was immunogenic at doses 50-times lower than approved Dryvax 

doses [110]. This study was underpowered to properly assess adverse events. This vaccine is 

no longer in development.

2.1.3 Elstree-BN—Elstree-BN is a Bavarian Nordic vaccine based on the Lister/Elstree 

strain and adapted for production in cell culture. The Elstree-BN vaccine induces 

comparable immune responses to the traditional Elstree vaccine in preclinical studies in 

macaques [111]. In a small clinical study in 2004, Bavarian Nordic reported similar safety 

profiles and efficacy to the traditional Elstree Lister-based vaccine. This vaccine is not being 

pursued for further development

2.1.4 CJ-50300—CJ-50300 is a cell-culture adapted derivative of the NYCBH strain of 

VACV developed in South Korea and produced in MRC-5 cells, which induces similar 

responses in mice to the Lancy-Vaxina strain. Lyophilized virus, given at two different doses 

in >100 subjects, showed a 99% take rate and cellular immunogenicity similar to that of 

other second-generation (tissue-culture based live) smallpox vaccines with one possible case 

of generalized vaccinia [112]. Further phase III studies conducted in Korea showed similar 

immune responses, and no occurrence of severe AEs [113]. It is unclear if there are any 

advantages to this vaccine strain relative to other, more-heavily studied vaccine strains such 

as ACAM2000 and CCSV.
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2.2 Attenuated vaccines

2.2.1 Modified Vaccinia Ankara—Modified vaccinia Ankara (MVA) is a highly 

attenuated strain of VACV formed by over 500 serial passages of a Turkish smallpox vaccine 

strain in primary chicken embryo fibroblast cells, during which 15% of its genome was lost 

[114]. MVA is largely replication incompetent in most mammalian cell lines and is 

considered safe for humans, including immunosuppressed individuals. It has been widely 

studied both as a potential smallpox vaccine and as a potential backbone vector for many 

recombinant non-smallpox vaccines. Over 120,000 people have been immunized by an 

MVA-based vaccine, with an excellent safety profile (i.e., no reported severe AEs). MVA is 

considered a strong candidate for a safer, well-tolerated modern smallpox vaccine. Several 

MVA-based vaccines are in development, most notably IMVAMUNE (Bavarian Nordic) and 

ACAM3000 (Acambis), which have each been through phase I and II clinical trials with 

similar results.

MVA-based vaccines administered in a prime-boost regimen have been shown to induce 

similar immune (neutralizing antibody and T-cell) responses to ACAM2000 in macaques 

[115], indicating strong immunogenicity. The safety profile of MVA-based vaccines has 

been well-characterized. Tests for myo-/pericarditis in several hundred people showed no 

such AEs, and that the vaccine was safe and well tolerated. Of particular note are studies of 

MVA vaccines in people with eczema/atopic dermatitis or under immunosuppressive 

conditions. IMVAMUNE has been tested in several hundred atopic dermatitis (AD) patients, 

including many with active disease. While the AD individuals showed somewhat higher 

levels of minor AEs, no major AEs were found and the levels of VACV-specific antibody 

titers were similar between AD and healthy groups [116,117]. Similarly, the vaccine was 

tested in HIV-infected patients and was demonstrated to be safe, immunogenic, and well 

tolerated, without cardiac complications [118]. Lyophilization of MVA-based vaccines for 

long-term stable storage has been shown not to affect immunogenicity, and intradermal 

injection of low doses has been demonstrated to have similar immunogenicity to the 

standard subcutaneous injection route typically used in smallpox vaccination [119]. As a 

result of such studies, IMVAMUNE was added to the U.S. National Strategic Stockpile in 

2010 for individuals with HIV and atopic dermatitis, and since has been approved for the 

entire adult population in Europe and in Canada for adults with immune deficiencies or skin 

disorders.

There is some concern about the protection provided by the MVA vaccines relative to the 

traditional smallpox vaccines. A single dose of MVA-based vaccine failed to protect 

macaques against aerosolized monkeypox in a recent trial, though protective effects and 

neutralizing antibody titers similar to ACAM2000 were induced by a prime-booster 

sequence [120]. MVA-vaccinated monkeys challenged with monkeypox also demonstrated 

higher levels of viremia than Dryvax or MVA/Dryvax vaccinated monkeys, and some 

developed self-resolving minor monkeypox lesions while remaining otherwise healthy. It is 

unclear if this difference is due to the method of inoculation or differences in vaccine 

immunogenicity [115].
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The necessity of such a prime-boost vaccination regimen suggests that MVA may be more 

suitable for long-term smallpox prevention strategies than in combating serious smallpox 

outbreaks or bioterror events. The delay in inducing full protective immunity with two doses 

of an MVA vaccine is a serious drawback relative to traditional smallpox vaccines in 

situations where time is of the essence.

2.2.2 LC16m8—The live, attenuated, cell-culture vaccine LC16m8 was created in Japan 

toward the end of the eradication effort in an attempt to create a safer vaccine with fewer 

AEs. This low-virulence, temperature-sensitive, but replication-competent, VACV strain was 

created by serial passage of the Lister VACV strain through rabbit kidney cells, with the loss 

of membrane protein B5R expression due to a frameshift mutation [121]. LC16m8 was used 

to vaccinate infants in Japan during the 1970s eradication era without serious AEs. In recent 

primate studies comparing the virulence of VACV vaccine strains, LC16m8 was shown to be 

less virulent than both NYCBH and Lister virus strains [122]. Despite lower virulence, 

LC16m8 successfully protected mice from fatal vaccinia challenge similarly to its parental 

Lister VACV strain, [123] and successfully protected monkeys from monkeypox [124]. 

Protection against fatal VACV infection has been demonstrated using LC16m8 even in 

immunodeficient mice lacking either CD4, MHC class I, MHC class II or MHC classes I 

and II [123].

Over 100,000 people have been vaccinated with LC16m8 in Japan, with no serious AEs, 

reported evidence of cardiac toxicity, or deaths, suggesting a possibly improved safety 

profile over Lister and NYCBH strains. A recent study has demonstrated that in macaques 

depleted of T or B cells prior to vaccination, LC16m8 vaccination did not result in AEs, 

while progressive vaccinia resulted from vaccination with Dryvax [71]. These results 

suggest that LC16m8 may be a safer and effective vaccine for immunocompromised 

individuals, or those with atopic dermatitis. Recent clinical studies demonstrated safety and 

efficacy in Japanese military cohorts (3221 and 268 subjects) [125,126] and U.S. volunteers 

(125 subjects); however, although LC16m8 was demonstrated to induce robust cellular 

immune responses, lower neutralizing antibody titers were found relative to volunteers 

immunized with Dryvax [127], possibly due to the lower virulence of the LC16m8 strain. 

The sample sizes of recent clinical studies in humans and rarity of AEs are small; hence, 

larger clinical studies should be done to better characterize the safety profile of LC16m8.

Observations have been made that the attenuated LC16m8 VACV strain could spontaneously 

revert to higher virulence [128], suggesting that the frameshift mutation nature of LC16m8 

attenuation is not genetically stable, which is a major potential issue for vaccine stability. A 

genetically stable version of the LC16m8 vaccine strain has been created by completely 

deleting the B5R gene (m8Δ), and has been demonstrated in mice to induce antibody 

responses and confer protective immunity at similar levels to the original LC16m8 strain and 

significantly higher than MVA-induced immunity at similar virus doses [128]. This is a 

potential genetically stable variant of the LC16m8 strain for further vaccine development.

LC16M8, currently licensed in Japan, is proposed as a candidate for bioterrorism prevention 

stockpiles. This smallpox vaccine is a promising candidate for future large-scale use, but 
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questions regarding its genetic stability and lower antibody responses than Dryvax must still 

be fully addressed.

2.2.3 NYVAC—NYVAC, a highly attenuated VACV strain, was derived from the 

Copenhagen vaccine strain by targeted deletion of 18 open reading frames from the viral 

genome that were suspected to affect pathogenicity and virulence [129]. NYVAC is highly 

immunogenic despite its attenuation, and is also being considered as a backbone vector for 

recombinant HIV vaccines [130]. Genetic comparisons of NYVAC and MVA have been 

conducted; they identified differences in the nature of replication attenuation between these 

virus strains [130]. NYVAC upregulates a largely different set of cytokines than MVA in in 
vitro studies on immature human dendritic cells, with MVA inducing a stronger overall 

cytokine response than the distinct NYVAC response [131]. NYVAC and MVA also trigger 

different cellular responses; NYVAC induces a predominantly CD4+ T-cell response, while 

MVA induces both CD4+ and CD8+ responses [132]. Immunization of humans with 

NYVAC induces significantly lower VACV-specific neutralizing antibody titers than both 

Dryvax and Lister strains, suggesting that NYVAC may not be an optimal smallpox vaccine 

strain, or may require multiple doses [133]. This vaccine has not been tested in clinical 

trials; however, NYVAC-vectored vaccines for other infectious agents have been tested in 

clinical trials and typically exhibit fewer local/systemic reactions than NYCBH.

2.2.4 dVV-L—dVV-L is a replication-incompetent VACV strain derived from the Lister 

vaccine strain. This virus was created by targeted deletion of the gene for the uracil-DNA-

glycosylase (UDG) enzyme essential for viral replication; the dVV-L virus retains, however, 

the ability to infect human cells and express early viral genes [134]. It is grown on a rabbit 

kidney cell line (RK-13) engineered to provide the missing UDG enzyme. Prime-boost 

immunizations induced robust cellular and long-term immunity in mice similar to MVA-

induced responses, and dVV-L was shown to be well tolerated, even by immunodeficient 

mice for which the normal Lister VACV strain is quickly fatal [134,135]. Data on human 

vaccinees is not available and this product is not likely to be utilized in biodefense efforts in 

the near future.

2.3 Subunit or other vaccines

Contemporary and future biodefense preparations have an increased emphasis on vaccine 

safety. In the following section, we briefly outline subunit vaccine approaches that avoid use 

of live, potentially pathogenic VACV currently under investigation.

2.3.1 Gene-based vectors—Various gene-based subunit vaccines are currently in 

development, with the goal of inducing lasting immunity without the risks of live virus. 

These vaccines consist of combinations of plasmids carrying individual VACV genes; and 

proteins from both the IMV and EEV virion forms were demonstrated to be necessary for 

complete protection in early efforts [136-138].

The 4pox-VRP (virus-like replicon particle) smallpox vaccine expresses VACV A33R, B5R, 

A27L, and L1R genes that successfully induce protective immunity in mice and nonhuman 

primates [139]. Studies of this vaccine, when combined with molecular adjuvants, show 
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protection in monkeys against severe monkeypox disease at levels at least as high as MVA, 

though vaccinated monkeys in both MVA and 4pox-VRP immunized groups developed 

some form of disease [140].

An obstacle in the development of gene-based subunit vaccines is the fact that vaccinia and 

variola viruses are different, and the cross-reactivity of VACV subunit-induced antibodies 

with smallpox (VARV) antigens may be diminished relative to whole virus vaccines. For 

example, the VACV B5 gene has 23 amino acid differences from the B6 VARV homologue, 

resulting in many polyclonal antibodies against B5 that do not cross-react against B6 [141]. 

Heterogeneity in VACV A33 protein also affects the efficacy of the vaccine [142], and as 

such careful design of subunit vaccines is necessary. As live virus is not used in subunit 

vaccines, use of VARV rather than VACV genes should be safe and may avoid these 

problems. Some efforts in this area have been made. For example, a DNA-based vaccine 

expressing three VARV antigens and their recombinant protein counterparts has been shown 

to induce high-titer, cross-reactive antibody responses in mice that protect against VACV 

infection [143]. Due to lack of replicating virus, adjuvants may be needed to boost immune 

responses to levels necessary to provide protective immunity; efforts to identify appropriate 

adjuvants are currently underway [144].

2.3.2 Protein-based subunit vaccines—Subunit vaccines based on viral proteins are 

also in development. Mice vaccinated with adjuvanted VACV proteins from both the 

intracellular mature virus and extracellular virus forms were protected from lethal VACV 

challenge [145]. A similar three-protein combination vaccine also protected mice against 

live VACV challenge when adjuvanted and given in three doses [146]. A four VACV protein 

vaccine (A33, B5, L1, A27, adjuvanted with alum) was shown to partially protect nonhuman 

primates from a lethal dose of monkeypox virus, and to protect fully when further 

adjuvanted with CpG [147]. Other similar protein subunit vaccines have been proposed and 

studied [148,149]. As with gene-based vector vaccines, cross-reactivity between poxviruses 

is a concern with protein-based subunit vaccines. Finally, a vaccine has been proposed that 

combines DNA and protein vaccine technologies with a DNA-prime, peptide-boost 

methodology that induces protective immunity in mice against VACV using T-cell epitopes 

alone [150].

The need for prime-boost regimens limits the use of gene- and protein-based vaccines in the 

early stages of reacting to a bioterror event or poxvirus outbreak where time is critical; 

however, such vaccines may be of great use in long-term prevention strategies.

3. Issues facing new vaccine development, testing, and regulation

3.1 Lack of variola virus infection models to prove efficacy

New smallpox vaccines face major challenges in their development, testing, and licensure. 

The absence of VARV and the seriousness of smallpox disease make human trials with 

VARV challenge ethically impossible. While safety can be demonstrated, the effectiveness 

of protection against smallpox disease cannot be directly tested. Correlates of protection 

may be used, such as observation of vaccine take and neutralizing antibody titers, and levels 

of poxvirus-specific immune cells. These may or may not be well related to protection 
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against smallpox challenge. The traditional observation of vaccine take, for example, cannot 

be used as an endpoint for highly attenuated or subunit vaccines that do not form classic 

vaccinia lesions.

Animal models of smallpox vaccination and infection are frequently used in vaccine 

development. Monkeypox virus challenge of nonhuman primates, such as macaques, is 

currently considered the gold-standard animal model for smallpox. Prior to nonhuman 

primate testing, smallpox vaccine candidates are often tested in rabbits by challenge with 

rabbitpox, and mice by challenge with ectromelia. Cross-reactivity between smallpox 

vaccines and diverse poxviruses allows for some confidence that smallpox vaccines tested in 

the monkeypox system will induce human protection against VARV.

3.2 Regulatory testing

In 2002, the U.S. FDA introduced a new “Animal Rule” (21 CFR 601.90) to guide testing 

and regulation of products, such as smallpox vaccines, whose efficacy cannot be field-tested 

in humans due to ethical or feasibility concerns. This rule allows for approval of products 

that have been established as safe in human trials and have a well-understood 

pathophysiological mechanism as “reasonably likely to provide clinical benefit in humans” 

based on appropriate animal studies conducted in more than one well-characterized animal 

model species. Licensure of smallpox vaccines for human use is currently based on an 

acceptable safety profile in humans, efficacy based on monkeypox virus studies in 

nonhuman primates, efficacy demonstrated in a second animal model such as mice or 

rabbits, and the “non-inferiority” of human immune responses relative to currently licensed 

vaccines. The appropriateness of the non-inferiority requirement is often debated, with the 

fear that this may incrementally decrease the efficacy and protection thresholds each time 

that it is applied to a new vaccine. One potential example is that, despite the relative 

similarities between ACAM2000 and Dryvax, only Dryvax retains full immunogenicity 

upon dilution. In this case non-inferiority does not equate with identical efficacy in some 

situations.

3.3 Uncertain markets

As smallpox is currently eradicated, no clear markets currently exist for smallpox vaccines 

outside of biodefense efforts. The high cost of developing a new vaccine, and the large size 

of clinical trials needed to demonstrate incidence of rare AEs, prove a significant challenge 

to current smallpox vaccine development efforts.

4. Promising developments in the field

New development of safer and more effective smallpox vaccines is progressing rapidly due 

to a better understanding of poxvirus virology allowing for new vaccine formulations, the 

introduction of new paradigms for both developing novel targeted vaccine candidates 

designed to maximize immunogenicity while minimizing adverse side effects (vaccinomics 

[151]), and identifying genetic markers of individuals predisposed for AEs (adversomics 

[152]) for vaccine personalization.
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4.1 Vaccine delivery and formulation advances

Better understanding of poxvirus virology and immunology may lead to improvements in 

vaccine formulations. Concurrent smallpox vaccination and antiviral drug administration, 

such as with the anti-poxvirus Tecovirimat (ST-246), may help reduce vaccine reactogenicity 

without affecting humoral or cell-mediated immune responses [153]. In the case of an 

epidemic or bioterrorist attack involving poxviruses, administration of both the vaccine and 

antiviral may be an appropriate dual treatment/prevention strategy for potentially exposed 

populations. Application of a povidone iodine ointment to smallpox vaccination sites has 

been demonstrated to reduce viral shedding without altering the immune response, thereby 

reducing the risk of contact transmission from the vaccination site [154]. Additionally, 

studies indicate that altering the smallpox vaccination schedule to include an initial 

vaccination with MVA, followed by a subsequent dose of a highly immunogenic smallpox 

vaccine such as Dryvax, may induce an ideal combination of low reactogenicity and high 

immunity [115].

4.2 Systems Vaccinology

Systems vaccinology – the application of systems biology tools to the study of vaccines – 

shows great potential for elucidating mechanisms of human responses to vaccines, which 

may result in an improved understanding of vaccine design factors that lead to greater 

vaccine efficacy [155]. Such approaches have been used to great effect in the study of other 

human vaccines. For example, a systems vaccinology approach to studying yellow fever 

vaccine discovered gene signatures that correlated with T and B cell responses with 90% and 

nearly 100% accuracy [156]. These signatures identified specific genes and proteins 

involved in yellow fever vaccine responses crucial to the development of protective 

immunity. Similarly, use of systems vaccinology approaches to the study of seasonal 

influenza vaccine identified novel genes that correlated with vaccine response, and identified 

baseline predictors of post-vaccination responses [157-160]. Application of systems 

vaccinology to smallpox vaccines may result in similar elucidation of the mechanisms of 

vaccine responses, and lead to more directed design of safe and effective vaccines.

4.3 Vaccinomics

The emerging field of vaccinomics – the holistic application of immunogenetics, 

immunogenomics, and systems biology to understanding vaccine-induced immune 

responses – allows for engineering of new viral vaccine candidates that optimize 

immunogenicity at the population or individual level [161,162]. For example, identification 

of SNPs associated with poor protective responses in smallpox-immunized individuals 

identifies genes important to the development of full cellular and humoral memory 

responses [163]. This information can be used to elucidate immune mechanisms, and predict 

individuals' responses to the smallpox vaccine.

Vaccinomics and systems vaccinology can also guide the design of safe and effective 

vaccines. Specific VACV proteins associated with virulence and pathogenicity can now be 

identified, and selective deletion of the corresponding genes from the VACV genome can 

occur; this leaves highly immunogenic proteins intact, which can create attenuated VACV 

strains with improved safety profiles retaining high levels of immunogenicity [164]. 
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Transcriptomic studies are similarly elucidating the key biological pathways involved in the 

generation and maintenance of poxvirus immunity [165]. Mass spectrometry has also been 

used to identify naturally processed VACV-derived peptides with high immunogenicity. 

Selection of a subset of these peptides conserved between VACV and VARV show great 

promise as components of new, safe, and highly effective subunit vaccines against smallpox 

[166].

4.4 Adversomics

With contraindications to the current smallpox vaccines existing in up to 30% or more of the 

population, safer smallpox vaccines are increasingly needed. Efforts to identify genetic 

markers associated with vaccine AE phenotypes are being made at the genetic level in such 

an attempt. For example, genetic factors associated with AEs are being identified [167], and 

the mechanisms underlying these AEs may then be studied. This emerging field of 

adversomics—using genomic and other information to predict the complex interactions that 

result in non-random AEs—may be used to establish and refine genomic-level counter 

indications for smallpox vaccines and reduce the future incidence of AEs, and/or design 

vaccines that bypass the mechanisms that trigger serious AEs [152].

5. Expert Commentary

By now, second-generation vaccines have largely replaced their first-generation 

counterparts. The new manufacturing processes offer greater control over the contents of the 

vaccines, lower levels of adventitious agents, and have allowed the removal of potentially 

dangerous strains and quasi-species. Development of third-generation vaccines provides 

potentially safer alternatives that may be more appropriate for today's populations with 

higher rates of immune deficiencies, skin disorders, and cardiovascular issues, and a lower 

risk of wild virus exposure/infection. Although immune reactivity seems to be lower with 

these attenuated vaccines, prime-boost strategies may be able to balance safety and immune 

protection. Work continues on protein and plasmid DNA vaccines and provides not only 

opportunities to reduce side effects, but also to explore the utility of poxvirus-based vaccines 

for other diseases.

6. Five-year View

We believe that the next 5 years will see significant advances in our understanding of 

poxvirus biology and host response. The following are just some of the developments that 

can be expected to occur:

1. The ability to manipulate poxvirus genomes will allow us to expand the 

use of poxvirus vectors as vaccine “backbones” for vaccines against other 

pathogens of interest.

2. Poxvirus immunomodulatory proteins possess remarkable capabilities that 

are beginning to be examined and tested for clinical utility.
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3. As more and more VACV genomes are sequenced, it becomes possible to 

identify correlations between virus genetic heterogeneity and safety/

efficacy of smallpox vaccines [168-170].

4. A large number of poxvirus genes remain uncharacterized. Further studies 

into poxvirus biology may yield important insights into viral pathogenesis 

and host responses.

5. Increasingly sophisticated immune monitoring and high dimensional 

technology, combined with integrated systems biology approaches, may 

identify more pertinent correlates of protection and predictive immune 

response biomarkers that can be applied toward the development of 

diagnostic tools and new vaccine development.

6. Advances in animal models of poxvirus infection will allow us to better 

characterize vaccine immunogenicity and protection, an area of particular 

importance given the absence of disease.

7. The discovery of genetic markers linked to AEs will improve 

contraindications for smallpox vaccines and guide the development of new 

vaccines that do not induce serious adverse reactions.

8. Continued research into third-generation (DNA, protein, or peptide-based) 

vaccines may allow for the development of products with greatly improved 

safety profiles.
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Key Issues

• Smallpox is a deadly debilitating disease with mortality rate of 30%

• Following a decade-long, worldwide effort involving vaccination and 

disease surveillance, smallpox was declared eradicated in 1980

• Despite its eradication, smallpox vaccine remains a public health issue 

due to concerns about bioterrorism and zoonotic orthopoxvirus 

outbreaks

• First-generation vaccines contained live vaccinia virus and elicited 

long-lasting, protective immunity against disease

• Current vaccines are second-generation vaccines (cell culture 

derivatives of 1st generation vaccines) and third-generation vaccines 

(containing attenuated vaccinia virus strains)

• Subunit-based (protein, peptide, and DNA) smallpox vaccines have 

shown promise in animal models

• Recent advances in adjuvants, “omics” technologies, and animal 

models, as well as vaccinomics and systems biology approaches, are 

yielding additional insights into poxvirus immunology and can be 

applied to developing novel vaccine candidates
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