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Abstract
The spiking activity of cortical neurons is correlated. For instance, trial-to-trial fluctuations in
response strength are shared between neurons, and spikes often occur synchronously. Understanding
the properties and mechanisms that generate these forms of correlation is critical for determining
their role in cortical processing. We therefore investigated the spatial extent and functional specificity
of correlated spontaneous and evoked activity. Since feedforward, recurrent, and feedback pathways
have distinct extents and specificity, we reasoned that these measurements could elucidate the
contribution of each type of input. We recorded single unit activity with microelectrode arrays which
allowed us to measure correlation in many hundreds of pairings, across a large range of spatial scales.
Our data show that correlated evoked activity is generated by two mechanisms that link neurons with
similar orientation preferences on different spatial scales: one with high temporal precision and a
limited spatial extent (roughly 3 mm), and a second which gives rise to correlation on a slow time
scale and extends as far as we were able to measure (10 mm). The former is consistent with common
input provided by horizontal connections; the latter likely involves feedback from extrastriate cortex.
Spontaneous activity was correlated over a similar spatial extent, but roughly twice as strongly as
evoked activity. Visual stimuli thus caused a substantial decrease in correlation, particularly at
response onset. These properties and the circuit mechanism they imply provide new constraints on
the functional role that correlation may play in visual processing.
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Introduction
The spiking activity of pairs of cortical neurons is correlated on a range of time scales. Two
forms of correlation have received extensive theoretical and experimental attention. The first
is shared trial-to-trial fluctuations in response strength (henceforth correlated variability),
typically measured over hundreds of milliseconds. Correlated variability strongly influences
population coding, but whether it is detrimental or beneficial depends on its properties,
particularly its relationship to the tuning similarity of the neuronal pair (Zohary et al., 1994;
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Shadlen and Newsome, 1998; Abbott and Dayan, 1999; Averbeck et al., 2006). The variability
of nearby neurons with similar tuning is known to be correlated (e.g., Zohary et al., 1994; Kohn
and Smith, 2005), but visual stimuli activate neurons distributed over several millimeters of
cortex (Van Essen et al., 1984; Tootell et al., 1988; Grinvald et al., 1994; Das and Gilbert,
1995). The extent and structure of correlated variability in such a distributed population is
unknown. The second form of correlation – firing synchronized on a millisecond time scale,
or synchrony – has a controversial history as a proposed code to bind the distributed
representation of visual objects (Gray, 1999; Shadlen and Movshon, 1999), but is also known
to affect rate-based population coding on brief time scales (Bair et al., 2001; Mazurek and
Shadlen, 2002). The impact of synchrony on coding also depends on its extent and specificity
in a distributed population, which are similarly unclear.

In addition to clarifying its effect on coding, measuring the structure of correlation is a way to
elucidate the underlying mechanisms. Correlation arises from shared excitatory and inhibitory
input (Moore et al., 1970; Lytton and Sejnowski, 1991; Morita et al., 2008), either from other
stimulus-driven neurons or from ongoing activity (Arieli et al., 1996; Tsodyks et al., 1999;
Chiu and Weliky, 2001; Kenet et al., 2003; Fiser et al., 2004). The circuitry relaying this shared
input, however, is unclear. In primary visual cortex (V1), there are three obvious sources: (1)
Feedforward, thalamocortical axons which extend tangentially in layer IV for less than 1 mm
(Blasdel and Lund, 1983); (2) Recurrent, horizontal connections which target neurons with
similar orientation preference over distances of several millimeters but are locally (< 0.5 mm)
non-specific (Gilbert and Wiesel, 1983; Ts'o et al., 1986; Gilbert and Wiesel, 1989; Malach et
al., 1993; Bosking et al., 1997); and (3) Feedback connections from extrastriate cortex, which
are far-reaching and weakly clustered (Angelucci et al., 2002; Shmuel et al., 2005; but see
Stettler et al., 2002). Since each of these pathways has a distinct spatial extent and functional
specificity, measuring correlation structure should elucidate the relative contribution of each
source (see also Series et al., 2004).

To determine the structure of correlation in a distributed population, we recorded from single
neurons in V1 of macaque monkeys, with several innovations compared to previous studies.
First, we used an array of 100 microelectrodes (Figure 1A) to record from tens of neurons
simultaneously, allowing us to compute correlation between many pairings separated by a
range of distances and providing substantial power to detect even subtle trends. Second, we
used a standard set of stimuli rather than optimizing for each pair of cells, providing more
unbiased measurements of correlation. Finally, we used a recently developed analysis for
isolating synchronous spiking from slower covariations in firing rate.

We find that correlation of evoked activity has a distinct spatial extent, depending on the time
scale on which it is measured. Synchrony is evident between nearby neurons (separated by 3
mm or less) and is stronger between cells with similar orientation tuning, suggesting a
prominent contribution from horizontal cortical connections. Correlated variability, on the
other hand, decreases slowly with distance and is still significant between neurons separated
by 10 millimeters, suggesting an important contribution from feedback connections.
Correlation of spontaneous activity has similar spatial properties but is roughly twice as strong
as that of evoked activity. These properties, and the circuit mechanisms that they imply, place
new constraints on the functional role of correlation in visual processing.

Materials and Methods
We made 7 array implants in 7 hemispheres of 4 cynomolgus (Macaca fascicularis) and one
pig-tailed (Macaca nemestrina) adult male monkeys. The animals ranged in weight from 3.6
to 5.0 kg.
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The techniques we use to record from the visual cortex of anesthetized, paralyzed macaques
have been described in detail elsewhere (Cavanaugh et al., 2002). Briefly, animals were
premedicated with atropine sulfate (0.05 mg/kg) and diazepam (Valium, 1.5 mg/kg) 30 minutes
prior to inducing anesthesia with ketamine HCl (10.0 mg/kg). Anesthesia was maintained
throughout the experiment by a continuous intravenous infusion of sufentanil citrate (typically
6–18 μg/kg, adjusted as needed for each animal). To minimize eye movements, the animal was
paralyzed with a continuous intravenous infusion of vecuronium bromide (0.1 mg/kg/hr). Vital
signs (EEG, ECG, blood pressure, end-tidal PCO2, temperature and lung pressure) were
monitored continuously. The pupils were dilated with topical atropine and the corneas
protected with gas-permeable hard contact lenses. We used supplementary lenses to bring the
retinal image into focus by direct ophthalmoscopy. We later adjusted the refraction further to
optimize the response of recorded units. Experiments typically lasted 4–5 days. All
experimental procedures complied with guidelines approved by the Albert Einstein College of
Medicine of Yeshiva University and New York University Animal Welfare Committees.

We recorded neural activity using the Cyberkinetics “Utah” Array (Cyberkinetics
Neurotechnology Systems, Foxborough, MA; Figure 1A), using methods reported previously
(Kelly et al., 2007). The array consists of a 10×10 grid of silicon microelectrodes (1 mm in
length) spaced 400 μm apart, thus covering 12.96 mm2. We placed the array flush to the surface
of the brain and inserted it 0.6 mm into cortex using a pneumatic insertion device (Rousche
and Normann, 1992), resulting in recordings confined mostly to layers 2–3. The impedance of
microelectrodes in the array ranged from 200-800 kΩ with an average of 400 kΩ (measured
with a 1 kHz sinusoidal current). Signals from each microelectrode were amplified and
bandpass filtered (250 Hz–7.5 kHz). Waveform segments that exceeded a threshold
(periodically adjusted using a multiple of the rms noise on each channel) were digitized (30
kHz) and sorted offline.

The array was implanted in a 10 mm diameter craniotomy, centered 10 mm lateral to the mid-
line and 8–10 mm posterior to the lunate sulcus, where neuronal receptive fields are within 5°
of the fovea. We extended the craniotomy as necessary to position the recording equipment.
In two cases, we recorded simultaneously with a group of seven linearly arranged (2 mm extent)
platinum-tungsten microelectrodes or tetrodes (Thomas Recording, Giessen, Germany;
impedance range of 1–3 MΩ), positioned so that the nearest electrode was approximately 5
mm anterior to one edge of the multielectrode array. In this configuration, the distances between
these electrodes and the array ranged from approximately 5 to 10 mm.

Spike sorting and analysis criteria
Waveform segments were sorted offline with an automated sorting algorithm, which clustered
similarly shaped waveforms using a competitive mixture decomposition method (Shoham et
al., 2003). We refined the output of this algorithm by hand with custom time-amplitude window
discrimination software (written in MATLAB; Mathworks, Natick, MA) for each electrode,
taking into account the waveform shape and interspike interval distribution. To quantify the
quality of the recording, we computed the signal to noise ratio (SNR) of each candidate unit
as the ratio of the average waveform amplitude to the SD of the waveform noise (Nordhausen
et al., 1996; Suner et al., 2005; Kelly et al., 2007). Candidates which fell below a SNR of 2.75
were discarded as multi-unit recordings. We also eliminated neurons for which the best grating
stimulus did not evoke a response of at least 2 spikes/s (62 units removed), or for which the
variance-to-mean response ratio exceeded 10 (1 unit removed). The remaining candidate
waveforms were deemed to be single units of sufficient quality and visual responsiveness to
warrant further analysis. This procedure yielded a total of 246 cells recorded from 202 distinct
electrodes (20–47 neurons per implant). Each neuron was then paired with all of the other
simultaneously recorded neurons, excluding pairs from the same electrode because of the
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difficulty of detecting simultaneous spikes at a single site. Two pairs were dropped from our
analysis because their spike pattern resulted in artifacts in the CCGs with large peaks more
than 100 ms away from the zero bin. With these restrictions, our final data set consisted of
4488 pairs. We examined the effect of changing our criteria for SNR and response rate on our
results, and found no substantive differences.

Visual stimuli
We displayed all visual stimuli at a resolution of 1024×768 pixels and a video frame rate of
100 Hz or 120 Hz on a CRT monitor. We used look-up tables to correct for nonlinearities in
the relation between input voltage and phosphor luminance in the monitor. Stimuli were
generated with custom software based on OpenGL, running on an Apple Macintosh G4
computer (EXPO, written by Peter Lennie, University of Rochester) or on a Silicon Graphics
workstation. The mean luminance of the display was approximately 40 cd/m2. All of the stimuli
were presented in a circular aperture surrounded by a gray field of average luminance.

For each array, we mapped the receptive fields of many single neurons on a tangent screen by
hand. We determined the location of a group of receptive fields for each eye separately, and
used a front surface mirror to center these fields on a monitor placed 110 cm from the animal,
where it subtended 20° of visual angle. We then proceeded with experiments under computer
control.

We presented full-contrast drifting sinusoidal gratings at 12 orientations spaced equally (30°).
The spatial frequency (1.3 cpd) and temporal frequency (6.25 Hz) values were chosen to
correspond to the typical preference of parafoveal V1 neurons (DeValois et al., 1982; Foster
et al., 1985; Smith et al., 2002). The position and size (8–10°) of the grating were sufficient to
cover the receptive fields of all the neurons. Stimuli were presented binocularly, for 1.28 s,
and separated by 1.5 s intervals during which we presented an isoluminant gray screen.
Stimulus orientation was block randomized, and each stimulus was presented 100-200 times.

Measures of correlation
A detailed discussion of the methods and equations we use to characterize correlation can be
found in Kohn and Smith (2005). Here, we describe the measures in brief.

The rsc, or spike count correlation, is the Pearson correlation coefficient of the evoked spike
counts of two cells to repeated presentations of a particular stimulus – it captures shared trial-
to-trial variability. For each stimulus orientation, we normalized the response to a mean of zero
and unit variance (Z-score), and calculated rsc after combining responses to all stimuli. We
removed trials on which the response of either neuron was > 3 SDs different from its mean
(Zohary et al., 1994) to avoid contamination by outlier responses. We used Fisher's r-to-Z
transformation before performing statistical evaluation of rsc values:

(1)

To measure the relative spike timing of two neurons, we computed the spike train cross-
correlogram (CCG; Perkel et al., 1967) as:

(2)
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where M is the number of trials, N is the number of bins in the trial,  and  are the spike
trains of the two neurons on trial i, τ is the time lag, and λ1 and λ2 are the mean firing rates of
the two neurons. θ(τ) is a triangular function which corrects for the amount of overlap in the
two spike trains at each time lag. We normalized the CCG by the geometric mean spike rate
because it is the most commonly used normalization and provides results that are most easily
compared to spike count correlation (see Kohn and Smith, 2005, for further discussion). We
smoothed the corrected CCGs with a 5 ms kernel ([0.05 0.25 0.40 0.25 0.05]) before using
them in further analysis. We computed a separate corrected, normalized CCG for each of the
12 stimulus orientations, and then took the mean value at each time lag to produce the average
CCG for each pair.

We corrected the CCG of each pair and stimulus condition for slow temporal correlations, as
well as stimulus locked correlations, using a jitter correction method (Harrison et al., 2007;
Geman et al., 2008 – see Furukawa and Middlebrooks, 2002; Maldonado et al., 2000; Shmiel
et al., 2006 for related approaches). The standard shuffle-corrected CCG, created by subtracting
the expected value of CCGs produced from the same data set but with non-simultaneous trial
pairings, removes correlations that are locked to the stimulus. However, the resulting CCG
reflects correlation on a range of time scales, including precisely aligned spike times and slow
covariations in firing rate. The jitter-corrected CCG is created by subtracting the expected value
of CCGs produced from a resampled version of the original data set with spike times randomly
perturbed (jittered) within a small temporal window (the jitter window). The correction term
is the average over all possible resamples of the original data set (i.e., the true expected value),
and is subtracted from the raw CCG. The resulting jitter-corrected CCG is normalized by the
geometric mean rate as in Equation 2 above.

This method is shown schematically in Figure 2A. The data from each neuron is divided into
bins based on the jitter window (indicated with dashed vertical lines), starting at the stimulus
onset. For each spike on each trial, a new spike is chosen randomly with replacement from the
set of all spikes in the same jitter bin on all of the trials. In this way, the spike count in each
bin and the neuron's PSTH are preserved in the resampled data. In Figure 2B, a raw CCG (red
line, normalized as in Equation 2) is shown for an example pair of neurons, averaged across
all 12 orientations of the stimulus, together with the correction terms produced by trial shuffling
(dashed line) and the jitter method (gray lines for different jitter windows). The corrected
CCGs, shown in Figure 2C, are produced by subtracting the correction term from the raw CCG
for each stimulus orientation, and then averaging the resulting 12 CCGs. The shuffle correction
(dashed line) removes correlation locked to the stimulus, but preserves correlation on a broad
range of time scales. Jitter correction (solid lines in Figure 2C) removes correlation in the CCG
on a time scale greater than the jitter window. Because it preserves the PSTH shape, jitter
correction also removes any correlation due to stimulus-locked firing rate modulation. The
advantage of this method is that it helps to disambiguate short- from long-temporal correlations
in the CCG. In the example pair shown (Figure 2C), the progressively smaller jitter windows
remove more of the long time scale correlation between the neurons (the broad peak in the
CCG) while preserving short time scale correlation (the narrow peak, still evident with a jitter
window of 50 ms). In the limit, shortening the jitter window removes all temporal correlation
between neurons (not shown). In our analysis, we used a jitter window of 50 ms (thus dividing
the 1.28 s stimulus period into 256 bins, starting at stimulus onset), but our results were not
sensitive to the size of this window within a broad range (25 to 100 ms).

To relate our measures of timing (CCG) and count (rsc) correlation, we calculated the metric
rccg (introduced by Bair et al., 2001) which is the integral of the CCG divided by the geometric
mean area of the autocorrelograms (ACG) of the two neurons:
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(3)

The CCG is calculated as shown in the numerator of Equation 2 and is corrected by the all-
way shuffle predictor; ACGs are calculated similarly but by correlating each neuron's activity
against itself. We calculated rccg over different windows of integration, from 1 ms up to the
length of the trial (1.28 s), to reveal the time scale over which correlated variability arises.

Finally, we compared our measures of response correlation to the tuning similarity of the two
neurons, which we calculated as the Pearson correlation between the mean response of each
cell to each of the tested orientations (termed rsignal). For neurons with similar orientation
tuning rsignal is near 1, for neurons with dissimilar tuning rsignal approaches −1.

Fisher information
To evaluate the impact of the correlation structure we observe on the accuracy of a population
code, we calculated the Fisher information of a population of V1 neurons. We used the
analytical expression for Fisher information, derived for Gaussian distributed variables (an
approximation for neuronal response distributions):

(4)

where Q′ (θ) and f′ (θ) are the derivatives of the covariance matrix and the tuning curves with
respect to orientation, respectively; Q−1(θ) is the inverse of the covariance matrix; and Tr stands
for the trace operation (Kay, 1993; Abbott and Dayan, 1999).

The tuning of each cell, f(θ), was defined as:

(5)

with m=3, a=30, b=7 (for a tuning bandwidth of 52°). We created multiple pools of 100 neurons,
with θPREF spaced equally across orientations, and pools separated from each other by 0.5 mm.

The entries of the covariance matrix were defined as:

(6)

That is, the variance of each cell was set equal to its mean response (defined by f(θ)). To explore
the impact of different correlation structures, we set rsc to zero (independent neurons), a fixed
value (0.176), or allowed rsc to decay with increasing distance or difference in tuning or both,
as defined by the equation (7) and the data presented below. When only the dependence on
rsignal was considered, the distance in equation 7 was set to zero; similarly, when only the
distance-dependence of rsc was considered, rsignal was set to zero.
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Mean and error values
For all mean values below, the errors are reported as ± one SEM.

Results
We recorded single unit neuronal activity from V1 in 7 array implants performed in 5 macaque
monkeys (Figure 1). We measured the correlated variability and synchrony of spontaneous
activity and activity evoked by drifting sinusoidal gratings whose parameters were chosen
based on typical V1 preferences. We presented each stimulus a large number of times (100–
200) to obtain accurate measurements of correlation and to record a sufficient number of spikes
to compute spike-train cross-correlograms (CCGs). Using an offline spike sorting procedure
(see Methods), we identified 246 well isolated single units on 202 distinct electrodes. We
computed correlation by pairing each neuron with all cells recorded simultaneously (excluding
those on the same electrode), yielding a total of 4488 pairs.

Dependence of rsc on distance and tuning similarity
Trial-to-trial fluctuations in response strength are shared by pairs of cells. We measured this
correlated variability with the Pearson correlation of the evoked spike count (termed rsc) over
a 1.28 s period of visual stimulation. This analysis is based simply on count statistics and
ignores the temporal structure of the two spike trains. Across the entire population of 4488
pairs, the average value of rsc was 0.176 ± 0.002, similar to previous measurements in V1
(Gawne et al., 1996; Reich et al., 2001; Kohn and Smith, 2005), MT/V5 (Zohary et al., 1994;
Bair et al., 2001) and inferotemporal cortex (Gawne and Richmond, 1993).

We investigated how the strength of correlation depends on the distance between the neurons,
estimated from the physical distance between the recording electrodes. We found a significant
relationship between rsc and distance (r=−0.20, p<0.0001), with the activity of widely separated
neurons being less correlated than nearby cells. This is illustrated in Figure 3A, in which we
plot the decay of rsc with distance for groups of pairs formed on the basis of their similarity in
orientation tuning. Specifically, we measured tuning similarity using the metric rsignal which
ranges from −1 for dissimilar tuning to 1 for perfectly aligned tuning curves. Regardless of
whether neurons had similar (thick line) or different (thin line) tuning, correlation decayed as
the distance between neurons increased.

The maximum distance between electrodes of the array is 5.1 mm, but we rarely recorded
neurons separated by this distance. At the maximum distance at which we could make reliable
measurements (4 mm), we found that rsc had declined to roughly half its peak value. From the
array recordings, it is unclear whether this represents an asymptotic value or the truncation of
a trend for rsc to decay steadily toward zero for more widely separated neurons. This distinction
is important for elucidating the spatial scale of the mechanisms that generate correlated
variability.

To extend the range of our measurements, we performed additional recordings (in two array
implants) in which we inserted a set of single electrodes or tetrodes into the superficial layers
of V1 using an independent multielectrode system. These electrodes were placed at least 5 mm
away from the nearest array electrode. By pairing neurons recorded with this system (n=13)
with those from the array, we were able to measure the value of rsc over longer distances.
Because we were unable to reconstruct the location of every electrode histologically, we
collapsed the data from the 567 neuronal pairs recorded in this manner to a single bin which
extended over distances ranging from 5 mm to 10 mm. We noticed no trend for rsc to decrease
with distance within the 5–10 mm data before collapsing (in fact, there was a slight positive
trend; r=0.11, p=0.008). Figure 3A (rightmost points) shows the results of these measurements.
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At these large distances, the value of rsc was substantially weaker than that of most distant
neurons sampled by the array but it remained significantly above zero (0.064 ± 0.004;
p<0.0001). Thus, correlated variability is shared over a substantial swath of cortex, at least 10
mm in extent.

In addition to its dependence on distance, the value of rsc reflected the similarity of the neurons'
orientation tuning (rsignal). Figure 3B shows the dependence of rsc on rsignal for pairs grouped
by spatial separation. For neurons separated by either small (thickest lines) or large (thinnest
lines) distances, there was a strong dependence of rsc on tuning similarity: correlation was
strongest for similarly tuned neurons and weakest between cells with opposite preferences.
Thus, correlation on spatial scales extending up to 10 millimeters reflects circuitry that links
neurons with similar preferences.

We summarize the relationship between rsc, rsignal, and distance in Figure 3C. The largest
values of rsc (red regions) are in the upper left corner of the plot, for neurons that are close
together and have a similar preference for orientation. We found that the data of Figure 3C
(and the synchrony data presented below) were well fit by a product of two functions, a linear
decay with distance and an exponential decay with rsignal:

(7)

where []+ indicates that negative values of the linear term are set to 0. The linear decay had an
intercept (a) of 0.225 ± 0.026 (95% confidence interval) and slope (b) of 0.048 mm−1 ± 0.008.
The exponential had a decay constant (τ) of 1.87 ± 0.67 (unitless). The baseline added to the
product of these functions (c) had a value of 0.09 ± 0.03. This function – with 4 parameters –
accounted for 89.4% of the variance in the data (72 combinations of distance and rsignal for the
data recorded within the array).

Time scales of correlation
Correlated trial-to-trial variability can arise from shared input that generates tightly
synchronized firing or activity that is more loosely coordinated in time. Our measurements of
rsc were made on a fixed time scale (the length of the trial) and ignored the relative temporal
structure of the two spike trains. To extend these measurements, we calculated the metric
rccg, which is equal to the integral of the CCG normalized by the area under the
autocorrelograms of the respective neurons (see Methods). When integrated over a time lag
equal to the duration of the trial, rccg is mathematically equivalent to rsc (Bair et al., 2001).
Integrating over smaller windows reveals the strength of correlation arising from increasingly
precise coordination of timing in the neurons' spike trains.

The value of rccg, computed over a range of temporal integration windows and for neurons
separated by different distances, is shown in Figure 4A. Cross-sections of this surface (Figure
4B) illustrate the behavior of rccg for four distance groups (0.0 to 4.0 mm in 1.0 mm steps, as
in Figure 3B), with the thickest lines representing pairs separated by the smallest distance. At
each distance, the strength of rccg increases with the size of the integration window, up to a
time scale of 200-300 ms where it reaches a plateau. The rightmost data point on each curve
(arising for integration windows of 1.28 s) is equivalent to rsc; comparing these endpoints for
different distance groupings illustrates the previously described trend for rsc to decrease for
neurons that are more widely separated. This distance-dependence holds across shorter time
scales as well (discussed in more detail below). A similar analysis for the dependence of rccg
on tuning similarity is shown in Figure 4C, with the corresponding cross-sections shown in
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Figure 4D. Neurons with similar orientation preferences (thick line) exhibited higher
correlation across all time scales.

To test directly whether correlation decayed similarly across time scales, we normalized the
rccg curves of each distance group by the trend seen for the most widely separated neurons
(Figure 4E). That is, we divided each of the curves in Figure 4B by the data shown by the
thinnest line in that panel. These normalized values indicate, for each time scale, the scaling
factor needed to correct for the distance-dependence of correlation. If the decay of rccg with
distance were independent of the integration window, these normalized traces would appear
as a series of horizontal lines. Instead, the lines are sloped downward, particularly for
integration windows less than 100 ms. This indicates that correlation arising from activity
synchronized on time scales less than 100 ms decays more rapidly with distance than correlation
measured on longer time scales.

To confirm this conclusion with independent analysis, we computed shuffle-corrected CCGs
(see Methods) for each pair. Precisely synchronized spiking results in a sharp peak in the CCG,
while correlation on a longer time scale leads to a broad peak. The average CCGs, divided into
8 distance groups, are shown in Figure 4F. These CCGs also suggest the presence of two
processes that decay with distance at different rates: a broad peak that decays slowly with
distance; and a sharp peak, reflecting synchronous spiking, that decays more rapidly and is
prominent only between pairs of neurons separated by less than 2 mm.

Dependence of synchrony on distance and tuning similarity
The synchrony seen in the shuffle-corrected CCGs (Figure 4F) involves a sharp peak as well
as a broader component which reflects more loosely coordinated activity. To study the precise
synchrony in more detail, we turned to a novel analysis to isolate those events. Rather than
correcting each CCG by a shuffle predictor (as in Figure 4F), we subtracted a CCG computed
from a jittered version of the original spike train (see Methods and Figure 2). Briefly, the data
from each trial was divided into bins based on the size of the jitter window. For each spike in
each jitter bin, a new spike was chosen randomly, without replacement, from the set of all
spikes in the same jitter bin on all trials. Thus, the spike count on each trial and overall PSTH
shape are preserved. The correction term calculated from this resampled spike train removes
stimulus-locked correlation (like the shift or shuffle predictor) but also eliminates all
correlation occurring outside a temporal scale defined by the jitter window. This method thus
allows us to study the behavior of synchrony without contamination from more loosely
coordinated activity.

Average jitter-corrected CCGs (jitter window of 50 ms), grouped by the distance between
electrodes, are shown in Figure 5A. In these CCGs, a narrow peak centered on zero time lag
– capturing the prevalence of synchronous activity – was evident for nearby neurons, less than
1.0 mm distant. At longer distances (1–2 mm) the peak amplitude was substantially smaller.
For more distant neurons (> 3 mm), no central peak was detectable. To quantify the strength
of synchrony, we integrated the area under the CCG peak from ± 10 ms. A histogram of this
area is shown in Figure 5B and illustrates the rapid decay of synchrony with distance.

To facilitate a direct comparison between the structure of synchrony and correlated variability,
we plot the dependence of synchrony on both distance and tuning similarity in Figure 6 (to be
compared to Figure 3). Figure 6A shows the dependence of synchrony on distance for four
groups of neurons with different degrees of tuning similarity. In each case, the strength of
synchrony declines quickly with distance, reaching values not significantly different from zero
within 3.5 mm. To investigate the dependence of synchrony on tuning similarity, we grouped
pairs into four distance categories. For the closest pairs (< 1.0 mm; thick line in Figure 6B),
synchrony decayed quickly as the tuning of the neurons became increasing different (more
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negative values of rsignal). At intermediate distances (1.0–2.0 mm), synchrony was also
dependent on orientation tuning similarity but still present in neuronal pairs with widely
ranging preferences. For long distances (2–4 mm) synchrony was weak between all pairs of
neurons, regardless of whether their tuning was similar.

Figure 6C shows the full relationship between synchrony, rsignal, and distance. Compared to
the corresponding figure for rsc (Figure 3C), synchrony declined more quickly with distance
than rsc; it fell to zero at distances for which rsc remained significantly above zero. However,
synchrony and rsc showed a similar dependence on rsignal. We fit the synchrony data with the
same function used to describe the trends in rsc (Equation 7) and found a rapid decay with
distance (slope of 1.88 × 10−3 coinc*spk−1*mm−1 ± 0.19 × 10−3) and a weak dependence on
rsignal (decay constant of 2.47 ± 0.50). With an offset of 0.40 × 10−3 ± 0.07 × 10−3 and an
intercept of 4.19 × 10−3 ± 0.31 × 10−3, this function accounted for 95% of the variance in the
data.

The dependence of synchrony on distance and tuning similarity shown in Figure 6 is evident
after averaging across a large number of neuronal pairs. It is possible that this obscures the
presence of synchrony at long distances in a small number of pairs. We therefore determined
for each pair whether the CCG had a significant peak, defined as a bin within 10 ms of zero
lag that exceeded 5 SDs of the noise level (measured from time lags −250 to −200 and 200 to
250 ms). For nearby pairs of neurons (< 0.75 mm), roughly 13% of pairs had significant peaks.
The proportion of such pairs fell rapidly: at distances of more than 2.0 mm, it dropped more
than 15–fold to 0.75% (10 out of 1333 pairs). The area of the peak for significant CCGs (not
shown) decayed at a similar rate to the value computed across all pairs (Figure 5B). Thus, we
found little evidence for the existence of significant synchrony over long distances (> 2 mm),
either among individual pairs or in the population average. It is important to note, however,
that these measurements were made with a single type of stimulus (sinusoidal gratings), and
synchrony is known to depend on stimulus parameters (Gray and Viana Di Prisco,
1997;Friedman-Hill et al., 2000;Frien et al., 2000;Kohn and Smith, 2005;Zhou et al., 2008).
We cannot rule out, therefore, that long-range synchrony may arise for other visual stimuli.

Correlation of spontaneous activity
A potentially important source of evoked response variability is the influence of ongoing or
spontaneous activity, which is highly structured in space and time (Arieli et al., 1996; Tsodyks
et al., 1999; Chiu and Weliky, 2001; Kenet et al., 2003; Fiser et al., 2004). Arieli et al.
(1996) showed, for instance, that trial-to-trial fluctuations in a voltage sensitive dye signal arise
from combining a consistent evoked response with a variable background activity. The degree
to which fluctuations in spontaneous activity contribute to shared or independent spiking
variability is unclear, however. To address this, we asked whether the spatial scale of correlated
spontaneous activity was similar to that of evoked responses, indicating that they are generated
by the same circuits.

We recorded spontaneous activity continuously for 15–30 min periods in 6 of the 7 array
implants. We divided the data into 1.28 s “trials”, separated by an interval of 1.5 s, to mimic
the structure of our evoked data. Because the spontaneous activity was recorded many hours
after the evoked activity, we sorted the data independently. Using the same criteria as for the
evoked activity, we isolated 166 single neurons from these recordings, providing 2738 pairs.
We analyzed the dependence of rsc on the distance between neurons (Figure 7A; solid line).
The rsc for spontaneous activity decayed significantly with distance (r=−0.22, p<0.0001)
falling roughly to half its peak value at a distance of 4 mm (solid line), a similar decay to that
observed for evoked activity. Whereas the spatial structure of correlation was similar between
spontaneous and evoked activity, there was a striking difference in its strength: the average
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rsc value for spontaneous activity was 0.299 ± 0.003, nearly two-fold higher than the average
correlation of evoked activity (0.176) in our data set (p<0.0001).

The difference in correlation of spontaneous and evoked activity suggests that sensory input
can strongly reduce the correlation of ongoing activity. We investigated the dynamics of this
process by comparing the correlation in the spontaneous activity immediately preceding and
following the presentation of each visual stimulus in our original data set. Specifically, we
divided the stimulus and interstimulus interval (ISI) into 100 ms response windows, starting
200 ms before each stimulus and extending through the blank interval until just before the onset
of the subsequent stimulus. We combined data from all pairs, regardless of their distance,
because we observed no dependence of dynamics on spatial separation. We computed the
average firing rate in each bin – the population PSTH – which shows the change in firing rate
induced by the visual stimulus (Figure 7B; gray box). For each 100 ms epoch, we also computed
the value of rsc (Figure 7C). At response onset, correlation dropped by over 30% from 0.065
± 0.002 to 0.044 ± 0.001. It slowly rose over the next 400 ms and then maintained a stable,
relatively high level. At stimulus offset, correlation decreased again, followed by a slow rise
through the ISI.

The difference between the magnitude of correlation at the end of the ISI and during long
periods of spontaneous activity (0.065 vs 0.299) might reflect a slow strengthening during
uninterrupted spontaneous activity or simply that correlation measured in brief windows (100
ms) is weaker than that measured across the duration of the trial (1.28 s). This latter contribution
is evident in the weaker rsc of evoked activity computed in 100 ms bins (peak of 0.074)
compared to that derived from the full stimulus interval (0.176). We therefore calculated the
correlation of uninterrupted spontaneous activity in brief epochs (0.1 s): the mean rsc across
all distances was 0.138 ± 0.002, significantly larger than the value of 0.065 ± 0.002 we observed
at the end of the ISI and roughly triple the value at response onset (Figure 7A; dotted line).
The distance-dependence of rsc measured on this time scale was similar to that measured over
1.28 s.

In summary, we find that the spatial structure of correlated activity is similar for spontaneous
and evoked activity, indicating that the two may arise from the same mechanisms and circuits.
However, during long periods of uninterrupted spontaneous activity, correlation is roughly
twice as strong as during evoked activity. The stimulus-driven reduction in correlation is rapid,
and particularly evident at stimulus onset and offset. After the stimulus ends, correlation rises
slowly over the 1.5 s ISI. These results indicate that the processes that lead to correlated
variability are altered by inputs to the network, whose effect appears to linger for many seconds
after stimulus offset.

Discussion
We have shown that correlation has a different spatial extent depending on the temporal scale
on which it is measured. Precise synchrony extends for less than 3 mm, whereas trial-to-trial
variability is correlated between cells separated by as much as 10 mm. Correlation on both
time scales is strongest for pairs of neurons with similar tuning. The spatial structure of
correlated variability is similar during prolonged periods of spontaneous activity, but is nearly
twofold larger in magnitude.

Synchrony
Consistent with our findings, previous studies have also reported that V1 synchrony depends
on neuronal separation (Toyama et al., 1981; Michalski et al., 1983; Ts'o et al., 1986; Gray et
al., 1989; Schwarz and Bolz, 1991; Hata et al., 1993; Samonds et al., 2006) or similarity of
orientation preference (Ts'o et al., 1986; Ts'o and Gilbert, 1988; Engel et al., 1990; Schwarz
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and Bolz, 1991; Kohn and Smith, 2005). An important distinction between these studies and
ours, however, is that previous studies relied on measurements of CCG peak height or area,
which can overestimate sharp synchrony by including the influence of a broad CCG peak (as
in Figure 4F). Our method of calculating the CCG removed correlation on a time scale greater
than 50 ms, which revealed a limited spatial extent of synchrony. In addition, most previous
studies were based on recording sequentially from individual pairs and thus contained relatively
small data sets. By measuring synchrony between all possible pairings of neurons recorded by
the array, we were able to analyze thousands of pairs, providing more accurate and detailed
measurements.

In V1, the shared input that generates synchrony could be provided by feedforward input from
the LGN (extending < 1 mm), horizontal connections within V1 (extending up to 6 mm), and
feedback from extrastriate visual cortex (extending more than 10 mm). The spatial extent of
synchrony, and its dependence on tuning similarity, suggests that horizontal connections
contribute strongly. These connections target distant (>500 μm) neurons with similar
preferences, but appear nonspecific on a more local scale (Gilbert and Wiesel, 1983; Malach
et al., 1993; Bosking et al., 1997). Synchrony between nearby cells might thus be expected to
be independent of tuning (see also Das and Gilbert, 1999; Maldonado et al., 2000), whereas
we found that synchrony is stronger between neurons with similar tuning, even for the most
closely spaced neurons recorded (400 μm; see also Kohn and Smith, 2005). This could be
because the input provided by distant neurons will be strongest to nearby neurons that have
the same preference as the distant source (and therefore each other). Thus, even on a local
scale, some common input will depend on the cells' relative preferences. In addition, although
it shows little anatomical specificity, local input may have substantial functional specificity,
since nearby neurons can have strikingly distinct orientation tuning (Ohki et al., 2006). Finally,
the local specificity of synchrony may be generated or modulated by other mechanisms, such
as gamma oscillations produced by recurrent excitation and inhibition (Lytton and Sejnowski,
1991; Wang and Buzsáki, 1996; Traub et al., 2001; Hasenstaub et al., 2005; Morita et al.,
2008) or gap-junction coupled networks (Connors and Long, 2004).

Our measurements constrain the functional role of synchrony in visual processing. Specifically,
the limited spatial extent we observe suggests synchrony is ill-suited for binding the distributed
representation of visual objects. Even small visual stimuli activate a spatially extended region
of visual cortex: the cortical magnification factor at the eccentricity of our recordings is roughly
3 mm/deg (Van Essen et al., 1984; Tootell et al., 1988). Most visual objects would thus activate
neurons separated by distances much greater than the reach of the mechanisms generating
synchrony. Of course, other visual stimuli may generate more spatially extensive synchrony.
An important test for the binding-by-synchrony hypothesis will thus be to see whether neurons
separated by large distances can be precisely synchronized.

Correlated trial-to-trial variability
Despite the substantial impact of correlated variability on population coding (see below), its
properties and the underlying mechanisms have gone largely unexplored. Several studies have
shown that rsc for nearby neurons depends on the similarity of tuning preference (Zohary et
al., 1994; Bair et al., 2001; Kohn and Smith, 2005); others have shown that it decays with
distance (in motor and parietal cortex; Lee et al., 1998). Our data show that rsc decays slowly
with distance and remains significantly above zero for neurons up to 10 mm apart; at all
distances, rsc is largest for pairs of neurons with similar orientation preferences. Such spatially-
extended correlation is consistent with recent electrophysiological (Nir et al., 2008) and
imaging (Fox and Raichle, 2007) data suggesting widespread (e.g., interhemispheric)
correlated spontaneous activity.
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Horizontal connections may contribute to generating the correlated variability we observe,
particularly for distances less than roughly 6 mm (Angelucci et al., 2002). Although these
connections may also contribute over larger distances – for instance, if slowly fluctuating input
is relayed through multiple synapses – a more straightforward interpretation is that feedback
connections from extrastriate cortex are involved. Feedback connections extend over 10 mm
(Rockland and Knutson, 2000; Angelucci et al., 2002) and form a major source of input to V1
(Felleman and Van Essen, 1991; Salin and Bullier, 1995). The dependence of rsc on similarity
in orientation preference would require feedback to target neurons with similar preferences,
for which there is some anatomical evidence (Angelucci et al., 2002; Shmuel et al., 2005). That
correlation may arise from input conveyed via feedback connections is rarely considered in
theoretical studies, which typically focus on how correlation affects decoding by downstream
neurons. Our results suggest that downstream neurons may in fact be an important contributor
to correlated variability.

Correlated variability can be either helpful or harmful to the accuracy of a population code,
depending on its properties. How does the correlation structure we observe affect population
coding? To address this issue we computed the Fisher information of a population of model
neurons, using a number of different correlation structures (see Methods). The Fisher
information provides a lower bound on the error of an optimal unbiased decoder and is
proportional to the common metric d′. It thus represents a useful benchmark for comparing the
impact of different correlation structures on the accuracy with which a population encodes a
variable.

We considered multiple pools of 100 neurons with evenly distributed orientation preferences,
separated from each other by 0.5 mm along one spatial dimension. The red line shows the
performance of a population without correlation (i.e., with neurons whose variability is
independent). As expected, performance increases linearly with the size of the population or,
in our calculations, the extent of cortex activated. Consistent with previous findings (Abbott
and Dayan, 1999; Averbeck et al., 2006), fixed correlation (red dashed line) improves the
accuracy of the population code, relative to independent neurons, whereas rsignal-dependent
correlation (of the form observed in our data) strongly reduces the Fisher information (black
dotted line). Including the distance but not rsignal dependence we observe results in similar
performance to fixed correlation strength (black dashed line). This is because the decay with
distance simply alters the mean correlation as the population increases but, as it is unrelated to
cells' tuning, does not impair the encoding of orientation. Finally, the full correlation structure
we measured – including both the dependence on distance and rsignal – results in only a slight
improvement compared to the rsignal-dependence alone (thin black line). Had rsc decreased
more quickly with distance the detrimental effect of correlation would have been mitigated
(thick black line, using the more rapid distance-dependence observed for synchrony). Our data
thus show that the correlation structure in V1 reduces the Fisher information (relative to that
provided by independent neurons), even when a spatially-extended population is taken into
account. It is important to note, however, that the ultimate impact of correlation will depend
on the manner in which responses are decoded and that the stimulus-dependence of correlation
observed on brief time scales may provide an additional source of information (Montani et al.,
2007).

Dynamics of correlated variability
The temporal evolution of synchrony is related to an animal's behavior and to features of the
visual stimulus (Vaadia et al., 1995; de Oliveira et al., 1997; Samonds and Bonds, 2005;
Hirabayashi and Miyashita, 2005; van der Togt et al., 2006). Our measurements of the
dynamics of correlated variability represent, to our knowledge, the first such study. We find
that correlated variability drops sharply at both response onset and offset. Response onset has
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previously been shown to be particularly reliable (Müller et al., 2001; Uka and DeAngelis,
2003). Our data indicate that in addition to being more reliable, neuronal variability is also
relatively independent at response onset.

After stimulus offset, correlated variability grows in magnitude. During long periods of
spontaneous activity, correlation is roughly twice as strong as during evoked responses and
nearly triple that observed at response onset. Previous studies have proposed that sensory input
simply sums with ongoing activity (Arieli et al., 1996) or that the dynamics of ongoing activity
are hardly affected by sensory input (Fiser et al., 2004). Our results, in contrast, suggest that
sensory drive strongly reduces the correlation of spontaneous activity (see also Kohn and
Smith, 2005; and Gutnisky and Dragoi, 2008). The elevated correlation in the absence of a
stimulus may reflect the default or idle network state, which is disrupted when a subset of
neurons in the network is driven by sensory input. Consistent with this idea, nearby neurons
in mouse barrel cortex have highly correlated intracellular membrane potentials during quiet
wakefulness, which is disrupted during active whisking (Poulet and Petersen, 2008).

Other factors affecting correlation
In a pair of neurons with fixed common input, correlation increases with firing rate (de la Rocha
et al., 2007). In principle, the trends in correlation we observe could thus reflect a change in
the common input provided to the pair or simply follow from changes in rate. Although we
found trends for firing rate to vary with distance and rsignal, they were small and not sufficient
to explain the change in rsc (see Supplemental Figure 1). The structure of rsc that we observe
thus arise from changes in the strength of shared input, presumably relayed by the circuits
described above.

A second concern is whether the anesthesia used in our recordings affected the correlation we
observed. Several lines of evidence indicate that this was not the case. First, we used sufentanil
anesthesia, which is widely used in the study of early cortex and for which there is not a single
documented discrepancy with data obtained in awake animals (Movshon et al., 2003). This is
distinct from the well-known ability of other anesthetics, such as ketamine, to alter strongly
cortical responsivity and correlation (Greenberg et al., 2008). Second, the value of rsc for our
data matches those based on recordings from awake macaques. For instance, for nearby neurons
with similar orientation tuning (rsignal > 0), we found an rsc of 0.22 ±0.03, similar to that of
similarly tuned neurons in area MT/V5 of awake primates (0.19–0.20 –Zohary et al., 1994;
Bair et al., 2001). Finally, recent data obtained in awake macaque V1 show a similar distance-
dependence of correlation to that reported here (Jason Samonds, personal communication).
While we cannot rule out some influence of anesthesia, these arguments strongly suggest that
the correlation we report is similar to that observed in awake animals.

Finally, in a previous study (Kohn and Smith, 2005), we found that correlation was stimulus
dependent: synchrony between nearby cells is significantly stronger for stimuli that drive a
pair of neurons well than for those that do not (see also Samonds and Bonds, 2005). In the
present study, we used standardized stimuli (i.e., not optimized for each pair) and combined
data across conditions. The magnitude of synchrony we observed for nearby cells with this
approach is similar to that generated by the least effective stimuli in Kohn and Smith (2005).
With standardized stimuli, synchrony is also dependent on stimulus orientation: at all distances
at which it was significant, the most effective stimuli evoked the strongest synchrony (see
Supplemental Figure 2). Similarly, synchrony had a limited spatial extent for activity evoked
by either effective or ineffective stimuli. The dependence of correlated variability on distance
and rsignal was also similar for effective and ineffective orientations (see Supplemental Figure
3).
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In Kohn and Smith (2005), we reported that the stimulus-dependence of synchrony and
correlated variability (measured on extended time scales) was different and suggested the
existence of two distinct mechanisms contributing to correlation. The current results show that
these two mechanisms are both sensitive to the neurons' relative orientation preferences, but
that each has a distinct spatial extent: one generates synchrony over distances of several
millimeters; a second generates correlated variability on a slow time scale and extends for at
least 10 mm.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Experimental methods A, A photograph of the array. The 10×10 grid of silicone
microelectrodes had a 400 μm spacing, 1.0 mm length, and was inserted 0.6 mm into cortex.
B, A diagram of the recording arrangement on the operculum of V1, shown in a sagittal section
of macaque cortex. In two experiments, we simultaneously recorded from a group of seven
linearly arranged microelectrodes, separated by at least 5 mm from the array.
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Figure 2.
Comparison of correction methods for CCGs. A, Diagram of the method used for CCG
correction. Data from 5 simulated trials is shown on the left, with a different color labeling for
the spikes from each trial. The trials were divided into bins based on the jitter window size
(demarcated by the dashed vertical lines). From the original data, a raw CCG was computed.
The original data was then resampled. For each spike in each jitter bin, a new spike was chosen
randomly, without replacement, from the set of all spikes in the same jitter bin on all trials.
B, Raw CCG and correction terms. From the original data, we computed a raw CCG (red
line, shown for an example pair of neurons). The most common method of correcting CCGs
is shuffling the trial labels, which produces the correction term shown with the dashed line for
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this pair. The jitter correction terms, for jitter window sizes of 50, 250, and 1000 ms, are shown
here with gray lines (dark, thin lines represent the larger jitter windows). C, Corrected CCGs
(subtracting the correction term from the raw CCG). In the shuffle-corrected CCG (dashed
line), significant correlation is evident on both slow and fast time scales as broad and narrow
peaks, respectively. Using jitter correction with large windows (250 and 1000 ms), the broad
peak is reduced but still evident. When the jitter window is small (50 ms, thick gray line), the
broad peak is removed and only the short time scale correlation remains.
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Figure 3.
Dependence of rsc on distance and tuning similarity. A, The dependence of rsc on distance for
pairs grouped based on their orientation tuning similarity (rsignal, thicker lines are for pairs
with the most similar orientation tuning). The distance bins start at 0.25 mm and extend to 4.25
mm in 0.5 mm increments. The average of all the data is plotted at the center value of each
bin. Data from dual-recording experiments (567 pairs) are shown with separate symbols to the
right of the axis. Error bars on this and all subsequent plots indicate ± 1 SEM; the points are
shifted slightly from their true value along the abscissa for illustration purposes only. In this
and all subsequent plots, only data points corresponding to 5 or more neuronal pairs are shown.
B, The dependence of rsc on rsignal for pairs grouped by their separation, thinner and darker
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lines are for more distant pairs. The rsignal bins start at −1.1 and extend to 1.1 in 0.2 increments.
The average of all the data is plotted at the center value of each bin. C, The dependence of
rsc on both distance and tuning similarity. The scale of the color plot is indicated by the bar at
the right. The original data in this and all subsequent surface plots was smoothed with a 2D
Gaussian (SD of 1 bin).
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Figure 4.
Effect of distance on the time scale of correlation. A, Surface plot showing the value of rccg
for different integration windows and distances between electrodes. The color scale is shown
to the left of panel E. B, rccg as a function of integration window for different distance groups
(thinner and darker lines for more distant pairs). C, Surface plot showing the value of rccg for
different integration windows and tuning similarity. The color scale is shown on the right. D,
rccg as a function of integration window for different rsignal groups (thinner and darker lines
indicate pairs with less similar tuning preferences). E, For neurons in three distance groups
(thinner and darker lines are more distance), the value of rccg is shown as a ratio to its value at
the longest distance (3–4 mm). F, Average shuffle-corrected CCGs for pairs of neurons
grouped by distance. The tick marks to the left of the CCGs indicate a value of 0 coinc./sp.
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Figure 5.
CCGs after removing long time scale correlation. A, Average CCGs, after jitter correction, for
pairs of neurons grouped by distance. A large peak, centered on zero time lag, is evident at
close distances. The increasing noise in the lower plots is due to the smaller number of pairs
at those distances. The tick marks to the left of the CCGs indicate a value of 0 coinc./sp. The
tick mark at the bottom of the CCGs indicates zero time lag. B, The area under the CCG peak,
within ± 10 ms of zero, falls off quickly with distance, reaching zero for pairs more than 3 mm
apart.
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Figure 6.
Dependence of synchrony on distance and tuning similarity. A, The dependence of synchrony,
quantified by the area under the CCG peak, on distance for pairs grouped based on their
orientation tuning similarity (rsignal, thicker lines are for more similar orientation tuning). B,
The dependence of synchrony on orientation tuning similarity for pairs grouped by distance
(rsignal, thinner lines are for more distant pairs of neurons). C, The relationship of synchrony
to both distance and tuning similarity (conventions are as in Figure 3C)
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Figure 7.
Dynamics of correlation. A, In a separate data collection period in 6 out of the 7 array implants,
we recorded 15–30 min of spontaneous activity. The value of rsc for 2738 pairs decreased with
distance, but was much higher at all distances than during the evoked response. Using a smaller
0.1 s epoch, the same as in panels B–C, resulted in a lower value for rsc. However, it was still
significantly higher than that observed in the ISI after the end of the visual stimulus (Figure
7C). B, The average geometric mean firing rate across all 12 stimulus directions and all neurons.
The stimulus period (1.28 s) is indicated by the gray shaded region, and the non-shaded regions
represent the blank inter-stimulus intervals. Each data point represents the average value for a
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100 ms window centered at the time on the abscissa. C, The value of rsc computed in the same
100 ms windows as above.
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Figure 8.
Impact of correlation structure on the Fisher information. We calculated the Fisher information
represented by a population of neurons with various correlation structures: no correlation (red
line), fixed correlation (red dashed line), correlation that decays with distance but not rsignal
(black dashed line), correlation that decays with rsignal but not distance (black dotted line), and
the full correlation structure measured in our experimental data, including both the dependence
on distance and tuning similarity (thin black line). If rsc decreased more quickly with distance
(at the rate we observed for synchrony), the decrease in the Fisher information would be
mitigated (thick black line).
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