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Abstract

Large (>100 kb), rare (<1% in the population) copy number variants (CNVs) have been shown to 

confer risk for schizophrenia (SZ), but the findings for bipolar disorder (BD) are less clear. In a 

new BD sample from the United Kingdom (n = 2591), we have examined the occurrence of CNVs 

and compared this with previously reported samples of 6882 SZ and 8842 control subjects. When 

combined with previous data, we find evidence for a contribution to BD for three SZ-associated 

CNV loci: duplications at 1q21.1 (P = 0.022), deletions at 3q29 (P = 0.03) and duplications at 

16p11.2 (P = 2.3 × 10−4). The latter survives multiple-testing correction for the number of 

recurrent large CNV loci in the genome. Genes in 20 regions (total of 55 genes) were enriched for 

rare exonic CNVs among BD cases, but none of these survives correction for multiple testing. 
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Finally, our data provide strong support for the hypothesis of a lesser contribution of very large 

(>500 kb) CNVs in BD compared with SZ, most notably for deletions >1 Mb (P = 9 × 10−4).

INTRODUCTION

There is strong evidence for a substantial genetic contribution to risk for both bipolar 

disorder (BD) and schizophrenia (SZ).1 Recent studies have provided evidence that while 

some alleles confer a specific susceptibility to either BD or SZ, others confer susceptibility 

to both disorders.2 Large-scale genome-wide association studies have identified common 

variants (minor allele frequency >0.01) that increase risk of both BD and SZ at CACNA1C, 

ANK3, ITIH3-ITIH4, ZNF804A and NCAN.3–8 Polygenic risk score analyses have also 

shown that large numbers of alleles that are yet to be identified at genome-wide significance 

are over-represented in SZ cases and are also over-represented in cases of BD.9

Copy number variants (CNVs) are structural genomic variations that are >1 kb in size and 

occur in the form of deletions, duplications, insertions and inversions (reviewed in Malhotra 

and Sebat10). Large, rare CNVs (>100 kb in size and present in <1% of individuals) increase 

risk for SZ and other neurodevelopmental disorders including autism spectrum disorders, 

intellectual disability, attention deficit hyperactivity disorder, developmental delay and 

epilepsy.10–14 In a recent study, we showed that 11 CNV loci are significantly associated 

with SZ and four more loci are potentially implicated.15 Overall, 2.5% of individuals with 

SZ carry at least one of these 15 CNVs, compared with 0.9% of controls.15 CNVs have been 

less well studied in BD; the evidence for their involvement in typical forms of the disorder is 

less clear-cut than in SZ.2 Studies in general have not found a significant increase in the rate 

of rare CNVs in individuals with BD compared with controls.16–19 However, it has been 

reported that singleton deletions over 100 kb in length are more frequent in BD cases,17,18 

that an increased rate of CNVs occurs in early-onset BD cases,20 that the frequency of de 
novo CNVs are significantly more frequent in BD cases (with an onset below 18 years of 

age) than controls21 and that the rate of de novo CNVs in BD are intermediate between SZ 

and controls.22 We have not observed such excesses in the Wellcome Trust Case Control 

Consortium (WTCCC) BD CNV analysis, and we did note that the overall rate of CNVs 

seen in BD cases was less than that found in individuals with SZ16 and significantly lower 

than in a reference group with other non-psychiatric disorders.23

In a recent review, Malhotra and Sebat10 reported the rate for CNVs at specific loci that have 

received the strongest support for a variety of disorders (intellectual disability, 

developmental delay, autism spectrum disorder, SZ, and BD and recurrent depression) by 

combining all available data. The CNV occurrence at each locus was reported for BD and 

recurrent depression combined, and suggested an increase of CNVs at four loci: deletions at 

3q29 and 22q11.21, and duplications at 1q21.1 and 16p11.2. The incidence of CNVs at these 

loci for just BD was not reported separately.

In this study, we examined CNVs in a new United Kingdom BD data set (n = 2591), the 

Bipolar Disorder Research Network sample (www.BDRN.org). This sample is independent 

of the WTCCC data set we previously reported.16,23 We performed three types of analysis of 

rare CNVs (<1% of the population): (1) we compared the rate of CNVs in BD vs controls at 
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15 loci that received support for association with SZ, using all available large data sets.15,24 

(2) We examined each gene across the genome for exon-disrupting CNVs in BD compared 

with controls, using a size cutoff of 10 kb. (3) We compared the burden of very large CNVs 

(>500 kb in size) in BD with that in a large SZ data set from the United Kingdom 

(CLOZUK and CardiffCOGs, n = 6882) and with publicly available data from control 

individuals typed on similar arrays (n = 8842).24

MATERIALS AND METHODS

Bipolar disorder cases

The BD sample is a new collection called the Bipolar Disorder Research Network sample 

(www.BDRN.org), recruited in collaboration with the Stanley Center for Psychiatric 

Research at the Broad Institute of MIT and Harvard. All participants were unrelated, white 

European, living in the British Isles. The protocols and procedures were approved by the 

relevant ethics review panels where patients were recruited. The individuals were recruited if 

they suffered with a major mood disorder in which clinically significant episodes of elevated 

mood had occurred. Bipolar cases were excluded if they had experienced mood or psychotic 

illness only as a result of alcohol or substance dependence or medical illness or medication; 

or were biologically related to another study participant. The following methodology was 

used for assessment of bipolar cases: a semi-structured lifetime ever psychiatric interview 

(Schedules for Clinical Assessment in Neuropsychiatry),25 followed by clinical ratings and a 

best-estimate lifetime diagnosis according to the Research Diagnostic Criteria.26 In cases 

where there was doubt as to the best-estimate lifetime diagnosis, diagnostic and clinical 

ratings were made by at least two members of the research team blind to each other’s 

ratings.

The BD cases consisted of 2637 individuals of which 30.8% were male. The mean age of 

recruitment was 46 years (s.d. = 12), with a mean age at first impairment due to BD of 28 

years (s.d. = 11). There were 61% bipolar I disorder/mania, 32% bipolar II disorder/

hypomania and 7% schizoaffective disorder, bipolar type.

Schizophrenia cases

For comparison of BD with SZ, we used two UK-based samples that we previously 

described and analysed for CNVs.12,15,24 The CLOZUK SZ cases (n = 6558) consist of 

individuals taking the antipsychotic clozapine. Subjects (71% male) were aged 18–90 years 

with a recorded diagnosis of treatment-resistant SZ according to the clozapine registration 

forms completed by their psychiatrists. The use of these anonymised samples for genetic 

association studies was approved by the local Ethics Committee. The CardiffCOGS (n = 

571) is a sample of clinically diagnosed SZ patients recruited from community, inpatient and 

voluntary sector mental health services in the United Kingdom. Interview with the SCAN 

instrument25 and case-note review was used to arrive at a best-estimate lifetime diagnosis 

according to DSM-IV criteria.27
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Controls

The control data sets comprised the same sample described in Rees et al.24 in a study of SZ, 

we did not include WTCCC1 controls used in Rees et al.,24 as they have been previously 

used in our WTCCC BD CNV analysis.16 The remaining controls (before quality control 

(QC) filtering) from Rees et al.24 were participants in a smoking cessation study from the 

United States (n = 1491), individuals from the United States who took part in a study of 

melanoma (n = 3102, ~ 2/3 individuals were affected with melanoma), individuals from 

Germany who were participants in a refractive error study (KORA study) (n = 1869) and 

WTCCC2 controls (National Blood Donors cohort: n = 1392 and the 1958 British birth 

cohort: n = 1521). These data sets were chosen because they had been genotyped with 

Illumina (San Diego, CA, USA) arrays that have a high probe overlap with the arrays used to 

genotype the BD cases in the current study. Full details of these samples are available in the 

Supplementary Material. A total of 93.5% of controls were of European descent.

Genotyping and QC filtering

Details of the arrays used for genotyping the data sets are available in the Supplementary 

Material; Supplementary Table S1. The steps for genotyping and QC filtering for the BD 

cases were performed as described in the previously reported SZ sample.15 To ensure that 

the CNV calling was comparable across the different arrays, only probes that were present 

on all arrays were analysed, resulting in a total of 520 766 probes. In addition, to avoid batch 

effects, raw intensity files from each BD, SZ and control data set were analysed 

independently.

The Illumina GenomeStudio software (v2011.1) was used to process the raw intensity data, 

generating Log R Ratios and B-allele frequencies. BD samples were excluded if any of the 

following QC statistics constituted an outlier within their source data set: Log R ratios s.d., 

B-allele frequency drift, wave factor and total number of CNVs. Out of the 2637 BD 

samples with array data, 46 were excluded due to (i) poor QC, (ii) duplicates or related 

(piHat>0.1) individuals of this or previous BD studies by identity by descent and (iii) 

incorrect gender. The numbers and the ethnicities of these subjects are listed in 

Supplementary Material; Supplementary Table S2. The final numbers after exclusions for 

QC and duplicates were 2591 BD cases, 6882 SZ cases and 8842 controls. These samples 

were used for the comparisons between SZ and BD, and for the identification of new loci, 

whereas larger, publicly available data sets were used for the analysis of the 15 SZ-

associated loci.

CNVs went through QC steps described in more detail in the Supplementary Methods. 

Briefly, CNVs were included if their frequency was <1% (applied using PLINK28). 

Subsequently, CNVs were further validated by applying a median Z-score outlier method of 

validation.29 Different size cutoffs were used for the different types of analysis, as detailed 

below.

Statistical analysis

The rates of CNVs at specific loci for BD and controls were compared using Fisher’s exact 

test (two tailed). In order to determine genome-wide significance, we followed a previous 
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practice by employing a Bonferroni correction for multiple testing of recurrent CNVs that 

are flanked by segmental duplications.11,15,24,30 The resulting P-value threshold of 4.1 × 

10−4 is based on 120 genomic regions that are prone to recurrent CNVs (P = 0.05/120). 

When examining associations with CNVs at individual genes, accounting for testing ~ 20 

000 genes, we employed a gene-wide association threshold of P<2.5 × 10−6.

The burden analysis of very large, rare CNVs was performed with PLINK28 using 10 000 

permutations. The analysis was stratified by CNV size (500 kb–1 Mb and >1 Mb), testing 

deletions and duplications separately. To identify novel loci a gene-based approach was 

used.24 Each gene in the genome was examined for exon-disrupting CNVs using hg19 

reference sequence gene coordinates (UCSC genome browser and includes non-coding 

RNAs). Deletions and duplications >10 kb were counted and analysed separately, and 

significance levels were generated using Fisher’s exact test (two tailed) comparing the 

incidence in BD cases against controls. Potential regions were excluded if manual inspection 

of Z-scores, Log R ratios and B-allele frequency traces suggested that they were 

unreliable.24,29

Power calculations were performed using the online open source genetic power calculator 

(http://pngu.mgh.harvard.edu/~purcell/gpc/).31 Frequencies and odd ratios for BD were 

taken from the review by Malhotra and Sebat.10

RESULTS

Previously implicated SZ loci

We examined the rates of CNVs in BD cases and control groups at 15 loci previously 

implicated in SZ.15 The CNV rates were based on the following data sets: (i) BDRN cases in 

this current study, (ii) data from a meta-analysis by Malhotra and Sebat10 for BD cases (after 

excluding those with major depression), (iii) BD cases from the study by Bergen et al.,18 in a 

Swedish population and (iv) samples used in our previous CNV study16 using the BD cases 

from the WTCCC1 for loci that were not included in the Malhotra and Sebat10 study. In 

some instances, one or more of these four sources did not provide data for a particular CNV 

locus. A full description of which sources contributed to each of the 15 CNVs analysed is 

provided in the Supplementary Material; Supplementary Table S3. The CNV occurrence in 

controls are taken from Rees et al.,15 which reports the data from large combined control 

data sets ranging from 27 045 to 81 821 samples in total.

The rates of CNVs in all reported large BD data sets and control groups at the 15 loci are 

presented in Table 1. For 3 of the 15 CNVs, we noted nominally significantly higher rates in 

BD cases than in controls (without correction for multiple testing). The strongest evidence 

for association was obtained for duplications at 16p11.2, which were increased in BD cases 

(0.13%) compared with controls (0.03%) with a combined P-value of 2.3 × 10−4, surpassing 

our genome-wide significance threshold for this type of CNV (see Methods) and 

strengthening the evidence from previous studies. Supplementary Figures S1 and S2 indicate 

the positions of the duplications, Log R ratios and B-allele frequency traces using Illumina 

GenomeStudio in the three BD samples across 16p11.2. The other nominally significant loci 
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were duplications at 1q21.1 and deletions at 3q29 (P-values, 0.022 and 0.03, respectively), 

which do not survive any multiple-testing correction.

Analysis of novel CNV loci

Genes across the genome were examined for CNVs that disrupted exons in the BD BDRN 

sample set (n = 2591) and control samples (n = 8842), excluding the 15 previously 

implicated SZ loci reported in Table 1. A total of 55 genes mapping to 20 distinct genomic 

regions were enriched among our BD cases with nominal levels of significance (two-sided 

Fisher’s exact test, P-value<0.05) (Supplementary Table S4), but no gene reached the 

genome-wide association threshold for the 20 000 genes examined (P<2.5 × 10−6). Within 

our data set, the strongest evidence for association was for duplications at ATF7IP2 
(encoding activating transcription factor 7—interacting protein 2) located at 16p13.2–

p13.13, which was found in eight BD cases (0.31%) and in four controls (0.045%, two-sided 

Fisher’s exact test, P = 1.4 × 10−3). The gene, GRIN2A encoding glutamate receptor, 

ionotropic, N-methyl-D-aspartate, subunit 2A, lies downstream of ATF7IP2. Its first exon is 

disrupted in seven BD cases and five controls (0.27% BD vs 0.057% controls, two-sided 

Fisher’s exact test, P = 8.1 × 10−3). Supplementary Figure S3 indicates the positions of the 

duplications in all samples across ATF7IP2 and GRIN2A.

In addition, there is evidence of association for duplications at the gene CGNL1 (cingulin-

like 1) at 15q21.3, intersected in 13 BD cases (0.50%) and 19 controls (0.21%), two-sided 

Fisher’s exact test, P = 0.021. A significant excess of duplications at this gene have been 

previously observed in SZ.24 Supplementary Figure S4 indicates the positions of the 

duplications in the cases and controls across CGNL1.

CNV burden analysis

We compared the rate of CNVs in BD with those in SZ cases and in controls. The burden 

analyses were performed only on the BD, SZ and control data sets where we had access to 

raw data and that were genotyped with Illumina arrays (BD: n = 2591; SZ: n = 6882; 

controls: n = 8842), as described in the Materials and methods section. As CNV burden 

analysis is highly susceptible to technical bias, we limited it to the largest class of CNVs, 

those >500 kb, which should be called reliably on all arrays used in different data sets. BD 

cases were not significantly different from controls in any comparison (Table 2). SZ cases 

had more deletions >1 Mb compared with BD cases (two sided, P = 9 × 10−4). Duplications 

in the size range of 500 kb–1 Mb were also more common in SZ compared with BD cases 

(two sided, P = 0.045). As this excess could be due to the already implicated 15 SZ CNV 

loci (listed in Table 1), the analysis was repeated after removing CNVs in these loci. Neither 

of the comparisons remained even nominally significant, suggesting that a large part (but not 

all) of the excess in SZ is due to CNVs at those known loci: (deletions >1 Mb, SZ 0.87%, 

BD 0.54%, P = 0.12; duplications, 500–1 Mb, SZ 5.1%, BD 4.3%, P = 0.12).

DISCUSSION

It is well documented that specific CNVs contribute to the susceptibility of SZ, however, the 

involvement of CNVs in BD is less compelling. In a new independent BD sample, we have 
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studied rare, large CNVs and analysed their frequencies in this sample and in previously 

reported BD, control and SZ data sets.10,15,16,18,24 The incidence of CNVs in this new BD 

data set had not been previously reported, although a large proportion of the sample has been 

used for genome-wide association studies.3 The SZ, BD and control samples were 

genotyped on a variety of Illumina arrays, but only probes present on all arrays were 

analysed (n = 520 766). In addition, for all data sets (SZ, BD and controls) the methodology 

used was identical for CNV calling and statistical analysis.

Combining the BDRN BD data with recently reported CNV analyses10,15,16,18,24 provided 

support for three of the 15 previously implicated CNVs in SZ. Two of the loci, 1q21.1 

duplication and 3q29 deletion were nominally significant with a two-sided P-value of 0.022 

and 0.03, respectively, and these results do not survive correction for multiple testing. The 

strongest evidence was for duplications at 16p11.2 (two-sided P-value = 2.3 × 10−4), which 

survives correction for the number of potential recurrent CNV loci in the genome (P-

value<4.2 × 10−4) and is the most significant BD-associated CNV to date. The locus was 

implicated in BD before10,32 (P = 8 × 10−4 for BD and major depression combined,10 P = 

0.017 for BD32), but the current study raises the statistical support to above a level that is 

regarded as genome-wide significant for this type of CNV locus. Additional phenotypic 

details for the three carriers of 16p11.2 duplication are available in Supplementary 

Information. All three individuals had a DSM-IV rating of bipolar I disorder, and had 

episodes of depression as well. There was nothing unusual in their recorded presentations 

and at least two of them appeared to have no cognitive deficits, attaining O- or A-levels at 

school. The locus 16p11.2 has been also previously implicated in neuropsychiatric disorders 

via a genome-wide association study of mixed SZ and BD (psychosis) phenotypes, which 

revealed a novel variant at 16p11.2 showing genome-wide association for rs4583255 (P-

value 6.6 × 10−11, odds ratio = 1.08) located in the 593-kb CNV duplication region33 within 

the gene TAOK2. A significant excess of a combination of micro-deletions and duplications 

at 16p11.2 has also been reported in major depressive disorder in a German sample.34

Our BD discovery sample consists of 2591 cases and 8842 controls, and has a power of 74 

and 80% with an a of 0.05 to detect associations with duplications at 1q21.1 and 16p11.2, 

respectively. However, for the associations with the 15 SZ loci we used all available data 

sets, increasing the numbers of BD cases to ~ 4000–9000 and the numbers of controls to 

those that provided the definitive findings in SZ. Although the BD case numbers are still 

smaller than for SZ, it is clear (Table 1) that for some of the loci the frequencies in BD are 

very similar to those of controls, suggesting that this is not a power problem but more likely 

a genuine difference between SZ and BD.

We provide a list of the top hits for duplications and deletions at 55 genes that are more 

frequently affected in BD cases compared with controls (Supplementary Table S4). The 

significance for any of these genes does not survive a Bonferroni correction for multiple 

testing of 20 000 genes separately for deletions and duplications (P<2.5 × 10−6). The 

strongest evidence for association was for duplications at ATF7IP2. GRIN2A, a glutamate 

receptor, lies downstream of ATF7IP2, and although less significantly associated with BD, 

functionally it is the better candidate, as glutamate signalling pathways are thought to be 

involved in genetic predisposition to BD.35 In addition, GRIN2A is associated with SZ, 
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meeting genome-wide significance.36 At the gene CGNL1 (cingulin-like 1), there is overlap 

with our current BD data and SZ. Here, we report an excess of duplications in BD cases 

compared with controls in this gene, for which we also note an excess of duplications in SZ 

cases compared with controls.24 However, we note that the control samples used in the 

current BD study are not independent of those used in the previous SZ study. Replication in 

independent studies of both cases and controls is required to confirm the involvement of any 

of these loci with BD.

CNV burden analyses have shown an increased burden of large, rare CNVs in SZ: we 

reported a 2.5% higher rate of CNVs larger than 500 kb in SZ compared with controls.24 

Using the same SZ data set to compare the burden of CNVs in BD revealed a significant 

difference between SZ and BD with respect to large, rare CNVs, in particular deletions. 

However, this excess was partially explained by the 15 loci already implicated in SZ. When 

comparing BD and control samples, we saw no significant difference in CNV burden for any 

of the CNV sizes examined. Both observations support our previous findings examining 

CNVs in BD cases and controls genotyped as part of the WTCCC study.16 These findings do 

not, however, exclude the involvement of CNVs in the susceptibility of BD at some specific 

loci. However, very large CNVs appear to contribute less to BD than to SZ.16,32 Larger 

structural variants often appear to predispose to persistent, wide-ranging brain dysfunction, 

including those that affect cognitive and personality development.2,23,37

In summary, we have performed CNV analysis in a large independent BD data set and 

compared the CNV burden with both SZ and controls. Our data confirms previous findings, 

suggesting that there is a significant difference between SZ and BD in terms of CNV 

occurrence, in particular for large deletions >1 Mb. We do not rule out the possibility of 

CNV involvement in the susceptibility of BD at specific loci. In fact, we observe an increase 

of duplications at 16p11.2 and 1q21.1, deletions at 3q29 and the potential involvement of 

additional CNVs, all of which require replication.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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