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Abstract

Recently, independent components analysis (ICA) of resting state magnetoencephalography 

(MEG) recordings has revealed resting state networks (RSNs) that exhibit fluctuations of band-

limited power envelopes. Most of the work in this area has concentrated on networks derived from 

the power envelope of beta bandpass-filtered data. Although research has demonstrated that most 

networks show maximal correlation in the beta band, little is known about how spatial patterns of 

correlations may differ across frequencies. This study analyzed MEG data from 18 healthy 

subjects to determine if the spatial patterns of RSNs differed between delta, theta, alpha, beta, 

gamma, and high gamma frequency bands. To validate our method, we focused on the 

sensorimotor network, which is well-characterized and robust in both MEG and functional 

magnetic resonance imaging (fMRI) resting state data. Synthetic aperture magnetometry (SAM) 

was used to project signals into anatomical source space separately in each band before a group 

temporal ICA was performed over all subjects and bands. This method preserved the inherent 

correlation structure of the data and reflected connectivity derived from single-band ICA, but also 

allowed identification of spatial spectral modes that are consistent across subjects. The 

implications of these results on our understanding of sensorimotor function are discussed, as are 

the potential applications of this technique.
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Introduction

The human brain accounts for roughly 2% of the body’s mass, but 20% of its energy 

utilization (Raichle and Gusnard 2002). Electrophysiology studies have revealed that 

ongoing task-independent brain activity generally follows a 1/frequency (1/f) relationship, 

superimposed with peaks of coherent oscillations in certain frequency bands, and localized 

to certain regions of the brain (i.e. occipital alpha). In addition, the electrophysiology of the 

brain is also replete with cross-frequency interactions whereby the phase of lower frequency 

bands is coupled to the amplitude of high frequency oscillations (Jensen and Colgin 2007). 

How these phenomena integrate with our knowledge of resting state connectivity is poorly 

understood.

Building on the work of Biswal and colleagues (1995) and Raichle and colleagues (2001), 

functional magnetic resonance imaging (fMRI) has been used extensively to reveal the 

spatial patterns of brain activation in the task-independent state (Biswal et al. 1995; Raichle 

et al. 2001). In particular, studies using independent components analysis (ICA) 

(Damoiseaux et al. 2006) have demonstrated the existence of multiple, robust networks with 

correlated blood oxygen level dependent (BOLD) signals. Due to the inherently slow time 

scale of the hemodynamic response function, fMRI cannot be used to identify the 

electrophysiological oscillations underlying these networks. Although concurrent fMRI and 

electroencephalography (EEG) (Yuan et al. 2012) have been used to obtain an 

electrophysiological signature of various resting state networks (RSNs), spatial localization 

of the EEG signal is limited by volume conduction in the skull and surrounding tissue. Thus, 

the interplay between spatial networks and spectral activity is not yet fully understood.

Recently, the presence of RSNs in MEG data has also been demonstrated in MEG data using 

both ICA (Brookes et al. 2011) and seed-based methods (Hipp et al. 2011). Additional 

research has demonstrated that oscillations in a wide range of frequencies contribute to 

individual networks. Brookes and colleagues demonstrated that individual ICA-derived 

networks showed differing contributions across the spectral bands (Brookes et al. 2012). For 

example, a bilateral insular network was strongly biased towards beta and gamma 

frequencies, while a bilateral visual network was primarily driven by beta oscillations. In the 

same study, the authors demonstrated that individual nodes within a network may show task-

related changes in differing frequency bands. Using atlas-based methods, Brookes and 

colleagues (2016) demonstrated that frequency-specific network abnormalities and 

alterations in cross-frequency amplitude-amplitude coupling can contribute to the 

pathophysiology of schizophrenia (Brookes et al. 2016). In addition, Hillebrand and 

colleagues (2016) found differences in the direction and magnitude of phase transfer entropy 

coupling across frequencies (Hillebrand et al. 2016). However, these prior studies required 

either the use of canonical seeds or regions of interest (ROIs), or made the assumption that 
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the spatial pattern of the network was constant across frequencies. Canonical seeds and ROIs 

may be problematic in that they make a priori assumptions about where activity is localized. 

ROIs may span multiple functional areas, giving ambiguous results. In addition, the 

assumption may be questionable, especially given ample evidence that task-related 

activations localize to different areas across frequencies (for example (Singh et al. 2002; 

Palva et al. 2011)).

Given the high likelihood that the spatial profile of RSNs differs across frequencies, we 

sought to develop a technique to address this directly. This study sought to investigate the 

spatial spectral patterns of RSNs as revealed by ICA. We present a novel ICA method in 

which we first assume that the ICA mixing parameters are consistent across subjects and 

frequency bands; we then derive separate spatial maps for individual frequencies. We refer 

to this new method as “Multiband ICA”, and used the recovered individual spatial maps to 

determine whether there were spatial differences in the network patterns across frequency 

bands. Importantly, our technique requires no a priori assumptions regarding spatial 

localization, either within or across frequency bands, and is entirely data-driven. The 

methods employed herein can be applied to broaden our understanding of the spatial spectral 

architecture of the human brain in both healthy and diseased states.

Materials and Methods

Subjects

Twenty-two medically healthy volunteers with no personal or first-degree family history of 

psychiatric disorders were included in this study; the sample included all subjects from a 

previous publication (Nugent et al. 2015) as well as subjects who had been excluded from 

that final analysis in order to achieve adequate age/gender matching. Subjects were 

evaluated on the basis of medical history, physical exam, blood tests, electrocardiogram, 

urinalysis, and a structured clinical interview for the DSM-IV-TR (SCID). Subjects were not 

taking any psychiatric medications or any other medications expected to affect brain 

function or metabolism. Subjects who were pregnant or lactating, met DSM-IV-TR criteria 

for substance abuse in the last three months, or had contraindications to magnetic resonance 

imaging (MRI) were excluded. This study was approved by the NIH combined CNS IRB, 

and all participants signed written informed consent.

Data Acquisition

MEG recordings were acquired at a 1200Hz sampling rate for 250 seconds on a 275 channel 

CTF system (MEG International Services, Ltd., Coquitlam, BC, Canada). During the 

recording, subjects were not presented with stimuli and were instructed only to relax with 

their eyes closed. For each subject, fiducial head coils marked the naison and left and right 

periauricular points. During recording, head position was monitored dynamically for all but 

two subjects. For the two subjects without dynamic head localization, head position at the 

end of the recording was compared to the initial position to infer that the subject did not 

move more than 5mm. For anatomical localization, T1 weighted MRI scans were also 

acquired on a GE 3T platform. To ensure accurate coregistration, photographs and 
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measurements taken from anatomical landmarks were used to place MRI visible fiducials in 

the same location as the MEG fiducial head coils.

Data Analysis

This work used the computational resources of the NIH High Performance Computing 

(HPC) Biowulf cluster (http://hpc.nih.gov). Structural MRI images were processed using 

Analysis of Functional Neuroimages (AFNI; NIMH, NIH, Bethesda, MD). Images were 

skull stripped to obtain a brain surface for use in calculating the forward solution using a 

multisphere model. Transformations were derived to rotate the anatomical MRI image to the 

plane of the fiducial markers and to spatially normalize the image to the TT_N27 atlas 

provided within AFNI. This atlas, in Talairach coordinates, results from 27 coregistered 

images taken from a single participant and is widely used in the neuroimaging community 

(see https://www.mcgill.ca/bic/resources/brain-atlases/human). MEG recordings were 

processed using CTF software (http://www.ctf.com) as well as software developed in-house. 

MEG signals: 1) were corrected for DC offset by removing the mean over the entire 

recording; 2) high pass-filtered at 0.61 Hz (an arbitrary figure used for viewing purposes 

only); and 3) band stop-filtered with a filter width of 3Hz to reject powerline interference at 

60Hz and higher harmonics (120Hz, 180Hz, and 240Hz). Following this initial 

preprocessing, recordings were visually inspected to ensure that no severe artifacts were 

present.

Following initial preprocessing and inspection, the recordings were projected into source 

space using synthetic aperture magnetometry (SAM) (Robinson and Vrba 1999) on a 5mm 

grid. We identified six frequency bands over which to obtain source space projected time 

series images: delta (2–4Hz, δ); theta (4–8Hz, θ); alpha (8–14Hz, α); beta (14–30Hz, β); 

gamma (30–50Hz, γ); and high gamma (50–100Hz, γ′). In contrast to the meta-ICA 

method of Brookes and colleagues (Brookes et al. 2012) we calculated the covariance matrix 

and beamformer weights for a wide band (2–100Hz), as has been done in recent work 

examining connectivity across multiple frequency bands (Brookes et al. 2016). By using 

broad band weights, we eliminated the possibility that correlations between voxel time 

courses varied across frequency bands simply due to differing amounts of “signal leakage”, 

or cross-talk between voxels originating from the ill-posed nature of the MEG inverse 

problem (see (Brookes et al. 2011) for a comprehensive discussion of signal leakage). The 

disadvantage, however, is that the beamformer weights are biased towards localization in the 

frequencies with the greatest signal-to-noise ratio (SNR). We would expect these weights to 

be least optimal for the γ and γ′ bands, due to the 1/f relationship between spectral power 

and frequency. Regularization equal to four times the estimated sensor noise was applied. 

The final time series was calculated for the six frequency bands of interest and normalized 

by the projected noise variance. The beamformer weights were calculated over the entire 

250-second recording. Following SAM, the Hilbert envelope was calculated and sampled at 

1 Hz. For the δ, θ, α, and β bands, datasets were transformed to Talairach space and mean 

centered, and the variance was normalized.

For the γ and γ′ datasets, an additional confound was the presence of muscular artifacts, a 

key issue discussed in depth by Muthukumaraswamy (Muthukumaraswamy 2013). Due to 
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the high sensitivity of the MEG superconducting quantum interference device (SQUID) 

sensors, even minute facial muscle movements appear as artifacts, particularly in the γ and 

γ′ bands. In order to minimize these artifacts, we calculated additional images of power in 

the band from 200–250Hz, which is greater than most neuronal sources of activity but will 

show muscle-related artifacts. We then used a simple voxel-wise linear regression to remove 

the contribution of this “artifact” signal from the primary signal of interest in both the γ and 

γ′ bands. The residuals were then used for further analysis, a technique previously used in 

the relevant literature (Brookes et al. 2016; O’Neill et al. 2015). To maintain consistency, we 

estimated this γ′ signal using beamformer weights derived from 2–100Hz filtered data. An 

illustration of the efficacy of this technique is shown in Supplemental Figures 2 and 3.

Following this regression step, we carried out a second stage of artifact removal for our γ 
and γ′ band images. The γ and γ′ band residual images were transformed to Talairach 

space, and loaded into Matlab (Mathworks, Natick, MA). Each dataset was mean centered 

and variance normalized (over all voxels), and outlying time points exceeding 10 times the 

standard deviation (a threshold deemed high enough to avoid removing any 

neurophysiological increases in γ activity) were identified. If outliers were found, they were 

removed and replaced by simple interpolation. Data were then once again mean centered and 

normalized using recalculated values, and the process was iterated three times. To minimize 

interpolation errors, an additional constraint was that there could be no more than three 

outlying points in a row.

We performed extensive quality control to ensure that any differences in connectivity across 

frequency bands did not result from artifacts. Our previous study (Nugent et al. 2015) used a 

single seed, placed in the motor cortex, to compute the mean correlation of that voxel’s time 

course with all other voxels in the brain (the global correlation). We carried out the same 

procedure here, separately for all bands. It should be noted that this was performed using a 

larger dataset, including a sample of subjects with major depressive disorder, in order to 

maintain the consistency of groups in future between-subjects analyses, as well as to better 

estimate the normal distribution of global connectivity. The present study included 39 

subjects with MDD detailed in our prior publication (Nugent et al. 2015) as well as all those 

excluded from that prior study because of age- and gender-matching constraints, with the 

exception of one subject who had a sub-optimal MRI scan. For each band, we calculated the 

mean global correlation across all subjects, and excluded all subjects for whom the mean 

correlation in any band was greater than three standard deviations above the mean. In order 

to be particularly conservative, for the γ and γ′ signals this was performed on the residuals 

after regression of the γ′ signal, but before the second stage of spike removal. After 

excluding subjects, we recalculated the mean and standard deviation and again excluded any 

subjects with a global correlation in any band greater than three standard deviations above 

the mean. While this is an imperfect method, and we do not presume to state that the 

distribution of the global correlation was Gaussian, we believe this was an unbiased way to 

exclude subjects with artifactually high correlations.

Nugent et al. Page 5

Hum Brain Mapp. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The Multiband ICA technique

Following artifact removal and quality assurance procedures, AFNI was used to mean center 

and variance normalize the datasets. Data were temporally concatenated (within frequency 

bands), and the concatenated datasets were normalized again to ensure that the variance over 

all voxels was one. All datasets in all frequency bands were then resampled to an 8mm grid 

using AFNI for ICA estimation. Finally, the concatenated datasets for each frequency band 

were themselves concatenated to produce a matrix of dimensions:

As noted above, we refer to an ICA performed on this matrix as “Multiband ICA”, and 

illustrate it in Figure 1. This method assumes that the mixing matrix is consistent across 

subjects and frequency bands, similar to multimodal joint ICA, which assumes that the 

mixing matrix is stationary across modalities (Calhoun et al. 2006). In essence, the resulting 

components will reveal frequency-specific networks that share joint information and similar 

loadings across subjects. All ICAs took place within Matlab (Mathworks, Natick MA) using 

the Icasso procedure (Himberg and Hyvarinen 2003). After an initial principle components 

analysis (PCA) data reduction to 25 components, the ICA was run 500 times, producing 25 

independent component (IC) estimates on each iteration. The resulting estimates were 

clustered, and the final IC is given as the centrotype of each cluster. A quality factor (Iq) that 

expresses the compactness of a cluster was estimated for each cluster. The component 

representing the sensorimotor network was identified visually and carried on for further 

analysis.

Following the ICA, the temporal IC representing the bilateral sensorimotor network was 

split into vectors corresponding to each of the six frequency bands for each individual 

subject. Linear regression (using AFNI’s 3dDeconvolve routine) was used to obtain 

individual subject/frequency spatial maps using the original 5mm source space images. 

Because individual temporal ICs are produced by this ICA method, only a single-step 

regression (or correlation) is necessary, as implemented in prior studies (Brookes et al. 2011; 

Nugent et al. 2015). The resultant β coefficient maps were then entered into an ANOVA 

(using AFNI’s 3dANOVA) to determine if there was a main effect of frequency. We had two 

primary hypotheses: first, that some ICs would show a difference in the strength of the node 

representation across frequencies and, second, that the precise localization of the node 

would change across frequencies. Voxel-wise tests such as the ANOVA used herein are well 

suited for the former, but sub-optimal for the latter. In order to determine if the ANOVA 

could potentially be useful in revealing differences in node localization, we conducted a 

simulation analysis (presented in the Supplemental Methods and Supplemental Results). For 

the ANOVA results, the main effect of frequency maps were thresholded at p < 0.0001, 

corrected for false discovery rate. To present only the most salient results, we applied an 

additional constraint of a cluster mass greater than or equal to 25 voxels. Although no 

additional control should be required to control for the false positive rate, this would 

correspond to a family-wise error cluster-corrected threshold much less than 0.01.
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Validation of the Multiband ICA technique

Several additional analyses were performed to demonstrate the validity of the Multiband 

ICA technique. First, we identified canonical left and right motor cortex seeds from 

previously published work (Raichle 2011) (Talairach coordinates (−39, 23, 47) and (38, 23, 

45) for left and right motor cortex, respectively). Using the original SAM time series from 

each subject and for each frequency band, we extracted the pairwise correlations between 

these seeds. We then performed an ANOVA across frequencies on the Z-transformed 

correlation coefficient across subjects. Next, we compared the bilateral seed-based motor 

network connectivity for each frequency band against the beta weights in the bilateral motor 

cortex voxel derived from Multiband ICA in order to validate that the Multiband ICA 

technique accurately captured the natural correlations present in the raw data without 

imposing spurious correlation structures.

Next, we generated a series of seed-based correlation spatial maps for each frequency. These 

maps were created using the Hilbert envelope datasets for each band concatenated 

temporally across subjects as well as AFNI’s InstaCorr function. First, we plotted seed-

based connectivity maps for each frequency band using the canonical left motor cortex seed 

voxel. We compared this to a similar map where the seed was derived from the peak in the 

frequency-specific ICA map derived from the Multiband ICA. This was done to illustrate 

that a single canonical motor cortex seed may suffice to describe connectivity across 

frequency bands, and that the Multiband ICA method may identify network subregions 

demonstrating a prevalence of synchronized activity in a particular frequency band.

Because single-band ICA techniques have been well studied in the literature (Brookes et al. 

2011; Brookes et al. 2012; Luckhoo et al. 2012), we performed additional analyses on 

specific frequency bands to further validate our Multiband ICA technique. These additional 

analyses were performed on frequency bands where Multiband ICA revealed bilateral 

connectivity. Temporal ICA was performed on the individual frequency voxel by time 

matrices, using identical methods to those in the Multiband ICA technique. Spatial maps 

were generated by linear regression of the IC time course on the frequency-specific dataset 

temporally concatenated across subjects. As additional verification, we performed the same 

analysis with raw datasets where the SAM source localization was performed using 

beamformer weights derived from data filtered to the band of interest rather than the broad 

band (2–100Hz). This was done to demonstrate that bilateral connectivity was not artificially 

imposed by the broad band weights, particularly for frequency bands with relatively low 

SNRs (i.e. γ and γ′).

Lastly, we calculated matrices of between-frequency band amplitude-amplitude coupling for 

left motor cortex and right motor cortex by obtaining the mean Z-transformed pairwise 

correlation coefficients, averaged over all subjects. We tested for significant amplitude-

amplitude correlations by performing one-sample t-tests on the Z-transformed correlation 

matrices for each subject. We then compared this to the within-frequency amplitude-

amplitude correlation matrix derived from the Multiband ICA motor network time courses. 

Significance for amplitude-amplitude correlations was set at p < 0.05/15 = .0033 

(Bonferroni corrected for multiple comparisons). We also present amplitude-amplitude 
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correlation matrices derived from single-band ICA calculated with both narrow and broad 

band beamformer weights.

Additional Analyses

The Supplemental Materials contain the methods and results of a simulation demonstrating 

how a systematic change in the position of a network node across frequency bands would 

appear in a resulting ANOVA examining the main effect of frequency. In addition, 

Supplemental Figures 7–10 present additional networks identified using Multiband ICA. Of 

particular note are the ICs shown in Supplemental Figure 7. These ICs exhibited no main 

effect of frequency, at least not at our significance threshold. Importantly, the ability of the 

Multiband ICA technique to recover both frequency-dependent and non-frequency-

dependent nodes speaks to its versatility. In addition, ICs that do not show frequency 

dependence may nevertheless be quite informative; that is, non-frequency-dependent ICs 

may operate differently from a neurobiological perspective than ICs with a strong frequency 

dependence.

Results

Subjects

Of the original 22 healthy subjects, three were removed after visual inspection revealed 

obvious γ′ (i.e. muscle) artifacts. An additional subject was removed from the analysis due 

to an extreme global correlation with a motor seed. The final cohort of 18 healthy subjects 

had a mean age of 37±8.7 years, nine were female, and all were right-handed.

Multiband ICA results

Figure 2 illustrates the bilateral sensory motor network, which was readily apparent in the 

group of ICs. Mean IC maps are shown for each of the frequency bands in Figure 2A. The 

bilateral nature of the network is clearly evident in the α, β, and γ bands. The ANOVA 

results showed significant clusters in bilateral primary motor cortex and bilateral superior 

frontal gyrus, as well as supplementary motor area (SMA), thalamus, and orbital cortex. The 

supplemental simulations (see Supplemental Figure 1) allowed us to interpret the ANOVA 

findings; clusters on the periphery of the sources in the mean images suggest a systematic 

shift in the location of the nodes in the sensorimotor network across the frequency bands. 

Intuitively, given the spatial spread of network nodes due in part to signal leakage, the 

spatial shift of a node would not appreciably alter connectivity values within the cluster but 

would instead show up as effects on the cluster’s boundary. It is important to note that 

although the ANOVA analysis used here may be suboptimal for detecting node positional 

shifts, it provided a consistent manner of determining the statistical significance of 

differences across frequency band.

Figure 2C shows the plots of the beta weights at peaks of the F map shown in Figure 2B. 

Although the beta weights for the motor cortex sharply peak at α and β, this is a somewhat 

imprecise reflection of the shift in localization between the α, β, and γ frequencies. 

Additional clusters were present outside the motor network, including those with peaks in 

the orbital cortex and thalamus, which showed nearly equivalent contributions from the θ, α, 
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and β frequencies, suggesting that connectivity between these areas and the motor cortex is 

potentially frequency-dependent. Because these additional clusters are both outside the 

motor cortex and are also in deep areas of the brain that demonstrate lower signal-to-noise 

on MEG reconstructions, these results should be considered preliminary.

Evidence supporting the Multiband ICA technique

Figure 3A shows the mean correlation between our left and right motor seeds across subjects 

for each frequency band. The ANOVA was significant for a main effect of frequency 

(F(5,102)=29.28, p<0.001). Figure 3B plots the regression coefficient reflecting the 

covariance of the voxel time course with the IC time course; ANOVA was significant for the 

main effect of frequency (F(5,102)=10.71 p<0.001 and F(5,102)=7.337, p<0.001 for right 

and left motor cortices, respectively). Because they measure fundamentally different 

quantities, the data presented in Figures 3A and 3B cannot be compared directly; however, 

the overall spectral profiles are consistent. The Multiband ICA beta weight in the right motor 

cortex peaked in α, and the beta weight for left motor cortex was greatest in the β band; 

nevertheless, a linear mixed model showed no significant region by frequency interaction. 

Regression weights were generally higher for left motor cortex, showing that the IC slightly 

favored the left hemisphere. This is likely due to the fact that all subjects were right-handed.

In order to explore spatial patterns of correlation, we obtained seed-based correlation maps 

using AFNI’s InstaCorr. Figure 4A shows the seed-based correlation maps for the canonical 

left motor cortex seed (located at the cross-hairs). These spatial maps reflect the bilateral 

correlation results in Figure 3A. Bilateral motor cortex connectivity was evident only in the 

α and β bands and was particularly reduced in the γ band frequencies. Note that the 

beamformer weights were calculated on the broadband (2–100Hz) signal, and the 

differences seen in spatial extent cannot be attributed to differences in signal leakage across 

frequencies.

Figure 4B presents similar seed-based correlation maps, but this time using the peak voxel 

from the Multiband ICA frequency maps in Figure 2 as the seed; the cross-hairs were 

located at the seed location for all bands. Notably, at the α band, the peak from the 

Multiband ICA was almost identical to the canonical left motor cortex seed. In contrast, the 

β and γ peaks were shifted medially. Interestingly, within these three frequency bands (α, β, 

and γ, which exhibit significant bilateral connectivity), the peak location from the Multiband 

ICA seemed to maximize bilateral connectivity. For the canonical left motor cortex seed, the 

correlations to the right canonical motor cortex seed were 0.37, 0.50, and 0.19 for the α, β, 

and γ frequency bands, respectively. In contrast, if the peaks from the Multiband ICA 

frequency specific maps were used as the seeds, the correlations to the contralateral voxel 

were 0.37, 0.67, and 0.31, for the α, β, and γ frequency bands, respectively, which is a 

substantial enhancement for both β and γ. Thus, the left motor cortex peaks resulting from 

the Multiband ICA appeared to optimize interhemispheric motor cortex connectivity, 

suggesting that frequency-specific functional subnetworks are present. It should be noted 

that the images in Figure 4B are not identical to the mean IC maps in Figure 2. The IC maps 

are more balanced left-right, indicating that the ICA procedure selected a time series that 

was a roughly even mixture of left and right motor cortex activity, suggesting that these 
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temporal signatures possessed equivalent mixing matrices across subjects. In addition, in the 

δ, θ, and γ′ frequency bands, the spatial pattern revealed by Multiband ICA was arguably 

not a “network,” but rather a single node localized to a related cortical area with a similar 

mixing matrix across subjects. It should be emphasized that in contrast to the seed-based 

correlation maps in Figure 4, the IC maps represent the mean across all subjects. Differences 

in localization of the peak across subjects will tend to magnify the spatial extent of the IC 

source in the mean image.

Figure 5 compares the Multiband ICA results to those from more standard ICAs in a single 

frequency band. This analysis was performed only in the α, β, and γ maps, where two peaks 

in the left and right motor cortex were readily appreciated. It is apparent that the results from 

the Multiband ICA were consistent with results from individual frequency-specific ICAs. 

The Multiband ICA time courses correlated significantly with the individual frequency IC 

time courses at R=0.62, R=0.64, and R=0.76 for α, β, and γ, respectively. In addition, the 

use of broadband beamformer weights over weights derived from data filtered to each 

frequency band did not substantially alter the IC components. When a narrow band was used 

to derive the beamformer weights, IC time courses from the individual frequency analysis 

significantly correlated with the Multiband IC time courses at R=0.58, R=0.42, and R=0.48 

for α, β, and γ, respectively. Notably, the ICAs performed using data from a single 

frequency band tended to fractionate networks into multiple ICs. The same Figure 5 is 

shown with additional sensorimotor IC components identified from the single-band analyses 

in Supplemental Figures 4 and 5, which correlate with the Multiband ICA time course at R > 

0.2.

As an additional exploratory analysis and to demonstrate consistency between methods, we 

examined the amplitude-amplitude cross-frequency correlation matrices for our left and right 

canonical motor cortex seeds, and compared these with a similar matrix derived from the IC 

time courses for each frequency. These matrices are shown in Figure 6. Although the 

matrices are not identical, it is evident that the overall correlation structure is preserved. The 

δ-to-α amplitude-amplitude correlation was significant for the Multiband ICA time courses, 

but the right motor and left motor seed-based correlations were not. Figures 6D and 6E also 

illustrate similar correlation matrices derived from the single-band ICA derived using both 

narrow- and broad-band beamformer weights. Components were matched on the basis of 

temporal correlation with the Multiband ICA motor network time course. The Multiband 

ICA frequency-frequency coupling matrix clearly captured the intrinsic coupling structure 

better than the single-band ICAs, further supporting its validity.

Mutiband ICA outside the sensorimotor network

Results from ICs other than the sensorimotor network are shown in Supplemental Figures 7–

10. Of the 25 estimated ICs, 23 had a quality factor Iq > 0.8. Of these, in general, most IC 

networks with cortical nodes showed peak contributions from either the α or β bands. 

Bilaterality of the networks was in general more prominent in the β band maps. 

Interestingly, cortical nodes in the visual cortex were grouped with cerebellar nodes most 

prominently in the γ and γ′ ranges. See the Supplemental Materials for a full discussion of 

these results.
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Discussion

This manuscript presents a novel technique, which we termed Multiband ICA, for 

investigating the spatial spectral structure of task-independent networks in MEG. We 

selected the sensorimotor network for exploration, as it is well characterized and robustly 

bilateral. We demonstrated that the Multiband ICA results mirrored those from ICAs of a 

single frequency band, and are largely consistent with canonical seed-based approaches. 

Multiband ICA, however, offers several important advantages. While ICAs in each 

frequency band individually may reveal several sensorimotor networks (see Supplemental 

Figures 4 and 5), only Multiband ICA can determine which have shared loadings across 

subjects, indicating functional integration across oscillatory frequency bands. Multiband 

ICA also appears to optimize interhemispheric connectivity, potentially indicating 

frequency-specific functional subnetworks within the sensorimotor cortex. This finding 

highlights the potential power of Multiband ICA—specifically its ability to connect distinct 

functional networks across frequency bands to reveal the underlying architecture of these 

networks. We know of no other technique that can demonstrate the frequency-dependent 

spatial patterns in intrinsic connectivity networks in a model-free, data-driven manner.

A related line of research involves studies attempting to characterize the spectral signatures 

of fixed spatial networks. Crucially, in these studies, the spatial signature of the network is 

assumed not to vary across all frequency bands in which the network is expressed. This is 

the primary method of Meta-ICA (Brookes et al. 2012), used by Brookes and colleagues to 

demonstrate the spectral profiles of several RSNs. Consistent with our findings herein, 

Brookes and colleagues demonstrated maximum contributions to the sensorimotor network 

from the α, β, and γ bands. The relatively higher contribution from γ band data found in 

that study likely resulted from the fact that the beamformer weights were calculated 

separately for each frequency band of interest, while our broad-band beamformer weights 

were likely sub-optimal for our γ band data. Nevertheless, our study clearly demonstrated 

that the assumption of a spatially invariant network across frequency bands is an 

oversimplification.

Other related approaches use spectral ICA in a variety of specific techniques, including 

spatial or temporal Fourier ICA (SFICA or TFICA), or envelope Fourier ICA (eFICA). 

Fourier ICA techniques generally divide the time series using either sliding windows or 

epochs, computing either the complex-valued Fourier transform (Hyvarinen et al. 2010) or 

the power spectrum (eFICA) for each segment. The resultant channel/voxel-by-time-by-

frequency matrix can then be decomposed using either spatial or temporal ICA. Ramkumar 

and colleagues (2014) used the eFICA approach to derive multiple subnetworks within the 

sensorimotor cortex, each with peaks in the α or β range (Ramkumar et al. 2014). It is 

important to point out that while this method may yield multiple subnetworks expressing 

specific spectral peaks, it does not reveal the relationship between these networks, e.g. which 

networks in different frequency bands group together based on similar loadings across 

subjects. The Multiband ICA technique, due to the constraints imposed by the shared mixing 

matrix, may reveal only one primary sensorimotor network, but nevertheless show 

subnetworks that are functionally linked in that they share similar relationships across 

subjects. Spectral group ICA has also been applied in EEG with largely consistent results, 
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although localization to source space is generally prohibitive due to volume conduction 

(Bridwell et al. 2013).

Notably, a recent EEG study performed a somewhat similar analysis. Sockeel and colleagues 

(2016) performed a high dimensional spatial ICA on source localized EEG data (Sockeel et 

al. 2016). Similar to Multiband ICA, the time series of spectral power in five frequency 

bands were temporally concatenated before the ICA decomposition. In contrast to our 

method, however, the ICA was performed at the individual subject level, with the resultant 

components clustered to identify common networks. Additionally, although EEG technology 

is far more accessible, volume conduction of the electric fields limits the accuracy of spatial 

localization. Finally, the use of a spatial ICA derives a single spatial map for all of the 

frequency bands assessed, eliminating the ability to compare the spatial profile of the 

network across frequency bands. Nevertheless, Sockeel and colleagues reported that power 

was evenly distributed over the five frequency bands for a somato-motor network (Sockeel et 

al. 2016). This contrasts with both results from our present study as well as the meta-ICA by 

Brookes and colleagues (Brookes et al. 2012), both of which showed greatest power in the α 
and β bands.

The idea that functional subnetworks exist within larger networks has been investigated 

using both fMRI and MEG. Spatial ICAs of task-free fMRI data found that increasing model 

order fractionated large-scale networks into subnetworks (Kiviniemi et al. 2009; Ray et al. 

2013), and that alterations due to disease states may be confined primarily to specific 

subnetworks (Abou Elseoud et al. 2011; Dipasquale et al. 2015). Another fMRI study 

demonstrated the functional relevance of these smaller subnetworks by demonstrating their 

relationship to transient synchrony events (Allan et al. 2015). Recently, O’Neill and 

colleagues (2015) used a multivariate sliding window analysis of MEG data to demonstrate 

that the sensorimotor network is composed of dynamically switching subnetworks (O’Neill 

et al. 2015). Although this analysis was limited to the β band, it nevertheless illustrated the 

presence of distinct subnetworks that have behavioral significance in task performance. 

Another study reported that, consistent with our results, left to right motor cortex 

connectivity peaked in the α and β bands; that study also demonstrated temporal 

fluctuations in connectivity as well as alterations in the spatial subnetworks involved 

(Brookes et al. 2014). Given those results, one limitation of our work is that our method only 

reflects static connectivity rather than dynamic connectivity.

The results reported here can also be discussed in the context of the known properties of 

motor function. Our finding that the sensorimotor network exhibited peaks in connectivity in 

the α and β bands is neither new nor surprising. The motor cortical mu-rhythm (which is in 

the α range) has been studied since the 1930s, and oscillations in the α, β, and γ ranges 

have been implicated in motor function (reviewed in (Pfurtscheller and Lopes da Silva 

1999)). A variety of tasks have been used to localize oscillatory changes in response to 

movement; notably, it has been shown that mu-rhythm responses are localized more 

posteriorly in the somatosensory cortex, whereas the β rhythm is generally localized more 

anteriorly in the motor cortex (Pfurtscheller et al. 1994; Salmelin et al. 1995; Cheyne et al. 

2003). It is thus noteworthy that our peak in the α band (Talairach coordinates 37.5, 27.5, 

42.5) was located in the primary sensory cortex, slightly posterior and medial to the peak in 
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β band connectivity (22.5, 22.5, 47.5). Further work will be necessary, however, to establish 

the reliability of the precise localization of the Multiband ICA findings and to determine if 

this reflects the same phenomenon as the movement task findings reported above. In 

addition, and as mentioned above, use of a voxel-wise ANOVA is not the ideal statistical test 

to demonstrate a shift in peak localization across frequency bands. Nevertheless, our results 

strongly suggest a frequency-specific localization of intrinsic—rather than task-induced—

fluctuations in the power of sensorimotor cortical oscillations, which is a novel result. In 

practice, our technique could also be used during task performance, where it could be used 

to demonstrate how frequency-specific subnetworks differentially respond to stimuli.

This study has several important limitations and caveats. First, the entire study is based on 

the assumption that it is possible to find networks that span multiple frequency bands and 

share similar loadings onto individual subjects. This is the same assumption upon which the 

well-validated joint-ICA technique is based. Given the consistency of our results with those 

from single-band ICAs, it would appear that this assumption is sufficiently met, at least in 

the sensorimotor network.

A related concern is that our temporal ICA assumes spatial consistency, and could therefore 

induce spurious connectivity in bands where there is none. We do not believe that this is the 

case for several reasons. First, distinct bilateral nodes were only evident in α, β, and γ, but 

not in δ, θ, or γ′. If the temporal ICA had imposed spurious correlation structure, all bands 

would have shown bilateral nodes. Second, it has been demonstrated that group ICA is quite 

robust to inter-subject differences. For instance, Allen and colleagues used exhaustive 

simulations to demonstrate that spatial ICA, using temporally concatenated subject data with 

an assumption of spatial consistency, is remarkably robust at recovering individual subject 

variability in the location and strength of sources (Allen et al. 2012). While that study 

examined spatial ICA, the results can be reasonably extrapolated to temporal group ICAs as 

well as our Multiband ICA design where the different frequency bands are effectively treated 

like individual subjects. Our findings are also consistent with others that support multiple 

subnetworks within the motor cortex that may operate on separate frequency scales.

An alternative iteration of Multiband ICA that would circumvent the assumption of spatial 

consistency across bands would be to spatially rather than temporally concatenate across 

frequency bands. Under these circumstances, the mixing matrix would thus contain spatial 

components unique to each frequency band. The primary issue with this alternative approach 

is that it would assume temporal consistency across all frequency bands with a single IC 

time series for all bands. The correlation matrices presented in Figures 6A and 6B for the 

motor cortex seeds would suggest that this is not a valid assumption. An additional 

investigation into this method (results not presented) demonstrated that this iteration 

produced IC components that were heavily biased towards a single frequency band to the 

exclusion of all other bands. Overall, results for this method were frequently inconsistent 

with single-band ICAs, suggesting that our approach is the most appropriate.

Finally, another minor limitation to the study is that an eyes-closed resting state condition 

was used. While this condition minimizes artifacts due to eye blinks, it does not eliminate all 

eye movement-related artifacts and increases the likelihood that subjects will fall asleep. 
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However, given the relatively short recording times, we believe that subjects remained alert 

throughout the recording, though we cannot eliminate the possibility of sleep. Nevertheless, 

it is unlikely that sleep would affect motor cortex connectivity or impair the internal validity 

of the technique. Additional caveats include the relatively small sample size, short MEG 

recording time, and the lack of replication data. Replication with a larger sample is planned 

for future investigations into the Multiband ICA technique; longer recording times are also 

being investigated.

Another interesting and potentially fruitful future analysis would be to compare the results 

herein with those in a patient group, to determine if alterations in the underlying spatial-

spectral architecture of brain regions are involved in psychopathology. Interestingly, a study 

comparing task versus rest states as a proxy for the default mode network in patients with 

schizophrenia found reductions in coherence primarily in the γ band, as well as frequency-

specific differences in spectral power dependent on the brain region assessed (Kim et al. 

2014). Given that the results hinted at a complex relationship between oscillatory power and 

connectivity, the study of psychiatric disorders may benefit from the Multiband ICA 

technique.

Conclusion

Here, we introduced and explored a novel technique, Multiband ICA, for exploring the 

spatial-spectral architecture of the human brain. An extension of traditional temporal ICA 

applied to Hilbert envelope MEG data, our technique requires no a priori selection of the 

frequency band of interest. We found that this method revealed frequency-dependent 

alterations in the spatial patterns of intrinsic connectivity networks without imposing an 

artificial correlation structure, as shown by the parallel results with single-band ICA. While 

it is possible that carrying out separate ICAs in each frequency band and comparing the 

results may convey similar information, Multiband ICA has the added advantage of linking 

together the spatial networks that carry similar loading across subjects by way of the shared 

mixing matrix. Although we verified the technique using the sensorimotor network, the 

technique can be applied to all intrinsic connectivity networks. In addition, this technique 

can potentially be used to reveal differences in the underlying spatial-spectral architecture of 

networks implicated in an array of neurological and psychiatric disorders, potentially 

leading to improved diagnosis and treatment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic illustration of the Multiband independent components analysis (ICA) procedure, 

showing time series concatenation over both subjects and frequency band.
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Figure 2. 
Illustration of the sensorimotor network extracted with the Multiband independent 

components analysis (ICA) technique. A) Mean regression weight maps over the six 

frequency bands, thresholded at β=0.5. B) ANOVA for the main effect of frequency, 

thresholded at pFDR < .0001. C) Plot of beta weights at peak locations from the ANOVA 

map. Images are presented in radiological orientation.
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Figure 3. 
A) Plot of the mean Z-transformed Pearson correlation between canonical seeds in left and 

right motor cortex. B) Plot of mean Multiband independent components analysis (ICA) 

regression weights in the same canonical left and right motor cortex locations.
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Figure 4. 
Seed-based correlation maps across temporally concatenated Hilbert envelope time series 

data. A) Correlation maps using the canonical left motor cortex seed. B) Correlation maps 

using the peak voxel for each frequency band resulting from the Multiband independent 

components analysis (ICA). All maps are thresholded at a regression weight greater than 0.3 

or −0.3. Images are presented in radiological orientation.
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Figure 5. 
Multiband independent components analysis (ICA) maps for α, β, and γ alongside maps 

from ICAs performed independently for each band. A) Multiband ICA maps for α, β, and γ, 

where a left and right lateralized motor cortex peak were evident. B) Spatial maps of ICAs 

carried out for α, β, and γ bands independently. Hilbert envelope time series data for the 

ICA was derived using broad band beamformer weights (2–100Hz). C) Same as B), but the 

Hilbert envelope time series data were derived using beamformer weights optimized for each 

frequency of interest. Images are presented in radiological orientation.
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Figure 6. 
Cross-frequency amplitude-amplitude coupling matrices. A) A matrix showing the mean Z-

transformed correlation across subjects of the left motor seed time course at each frequency 

with every other frequency. Mean correlations significant by one-sample t-test at p<0.0033 

are denoted by asterisks in the lower diagonal of the matrix. B) Identical to A), but for the 

right motor cortex. C) Z-transformed correlation matrix between the Multiband independent 

components analysis (ICA) time courses for each frequency with all other frequencies. D) 

and E) Z-transformed correlation matrix between the single-band ICA time courses for 

source projections derived from narrow-band and wide-band beamformer weights, 

respectively. Single-band ICA components were chosen based on temporal correlation with 

motor network Multiband ICA time courses. Spatial maps of the chosen single-band ICs are 

shown in Supplemental Figure 6. In all panels, significant correlations are denoted by 

asterisks in the lower diagonal of the matrix.
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