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Abstract

Cohort studies can be biased by unmeasured confounding. We propose a hybrid ecologic–

epidemiologic design called the trend-in-trend design, which requires a strong time-trend in 

exposure, but is unbiased unless there are unmeasured factors affecting outcome for which there 

are time-trends in prevalence that are correlated with time-trends in exposure across strata with 

different exposure trends. Thus, the conditions under which the trend-in-trend study is biased are a 

subset of those under which a cohort study is biased. The trend-in-trend design first divides the 

study population into strata based on the cumulative probability of exposure given covariates, 

which effectively stratifies on time-trend in exposure, provided there is a trend. Next, a covariates-

free maximum likelihood model estimates the odds ratio (OR) using data on exposure prevalence 

and outcome frequency within cumulative probability of exposure strata, across multiple periods. 

In simulations, the trend-in-trend design produced ORs with negligible bias in the presence of 

unmeasured confounding. In empiric applications, trend-in-trend reproduced the known positive 

association between rofecoxib and myocardial infarction (observed OR: 1.2, 95% confidence 

interval: 1.1, 1.4), and known null associations between rofecoxib and severe hypoglycemia [OR = 

1.1 (0.92, 1.3)] and non-vertebral fracture [OR = 0.84 (0.64, 1.1)]. The trend-in-trend method may 

be useful in settings where there is a strong time-trend in exposure, such as a newly approved drug 

or other medical intervention.
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Introduction

Many important causal questions cannot be addressed through randomized trials because of 

ethical or practical reasons. Ecologic studies address causal questions by examining time 

trends in exposure and outcome, but can be biased by co-occurring trends in other factors 

affecting outcome.1 Epidemiologic designs such as the cohort study can be biased if there 

are unmeasured determinants of exposure that are associated with outcome (i.e., unmeasured 
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confounders). In this paper, we introduce a novel hybrid ecologic-epidemiologic design 

called the trend-in-trend design. Rather than comparing exposed vs. unexposed persons, the 

trend-in-trend design examines time-trends in outcome as a function of time-trends in 

exposure across strata with different time-trends in exposure. Intuitively, in a population 

stratified on time-trends in exposure, an association between exposure time-trends and 

outcome time-trends across strata should provide evidence for causation unless there are 

unmeasured factors affecting outcome for which there are time-trends in prevalence that are 

correlated with time-trends in exposure across strata. Thus, the scenarios under which a 

trend-in-trend study is susceptible to unmeasured confounding should be a subset of those 

under which a cohort study is susceptible, making the design more resistant to unmeasured 

confounding than other designs. The trade-offs are that a trend-in-trend study is feasible only 

when there is a strong time-trend in exposure, and should have less statistical precision than 

a cohort study.

While novel, the trend-in-trend design is related to two established econometric approaches. 

One is the difference-in-difference method,4 as both address unmeasured confounding by 

examining within-group changes and time-trends in outcome. However, unlike the method, 

the trend-in-trend design estimates an individual-level causal parameter. In particular, the 

trend-in-trend design yields the odds ratio (OR), which approximates the risk ratio when the 

outcome is rare.3 The trend-in-trend method is also related to the use of calendar time as an 

instrumental variable (IV),5,6 and in fact the two are equivalent if only a single stratum is 

used in the trend-in-trend design. However, use of calendar time as an IV can be biased by 

any time-trend in the prevalence of an unmeasured factor that affects outcome. In contrast, 

the trend-in-trend design is biased by such a trend only if the time-trend in the unmeasured 

factor is correlated with the time-trends in exposure across strata defined by factors 

associated with exposure. The trend-in-trend design therefore relaxes the assumptions under 

which a calendar time IV study is valid.

In this paper, we first introduce the cumulative probability of exposure, which is used to 

divide the population into strata with different exposure prevalences and thus different time-

trends in exposure, provided that an overall time-trend exists. We then propose two 

reasonable models for individuals and subgroups respectively. Under the assumptions that 

the outcome is rare, covariates are either time-invariant or change randomly over time within 

person, and there are no time-trends in unmeasured causal factors that are associated with 

time-trends in exposure across strata, we give a mathematical derivation of the connection 

between individuals and subgroups and a method to estimate the OR using group-level data. 

We then show mathematically that this estimate is unbiased by both measured and 

unmeasured confounders. We report a simulation study illustrating that the OR estimated 

using the trend-in-trend method is much less biased than that estimated using cohort 

methods when there is unmeasured confounding by factor with no trend in prevalence. 

Finally, we apply the trend-in-trend method to healthcare data to reproduce the known 

positive association between rofecoxib and acute myocardial infarction (AMI),7 and two 

presumably null associations: rofecoxib and severe hypoglycemia, and rofecoxib and bone 

fracture.8
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Methods

Stratification based on the Cumulative Probability of Exposure

The analysis of a trend-in-trend study involves two stages. In the first stage, we estimate the 

cumulative probability of exposure, which is the predicted probability of exposure over the 

entire study period, based on variables other than exposure, outcome, and their potential 

effects. In particular, suppose we observe a population in which each individual’s binary 

exposure status over the study period is observed. We also observe a set of variables that 

affect but are known from subject-area knowledge not to be affected by exposure, such as 

age, sex, geographic residence, diagnoses, etc. We fit a logistic regression model using these 

variables as independent variables, with the dependent variable being exposure. The fitted 

value is the estimated cumulative probability of exposure. Since the unit of analysis for the 

cumulative probability of exposure model is the individual, and covariates are treated as 

invariant, each subject will be in the same cumulative probability of exposure stratum for all 

observation periods. If, analogously to a new user cohort study, subjects are required to be 

present for a baseline period prior to the first opportunity for exposure, then the values for all 

variables in the cumulative probability of exposure model can be fixed at the first 

opportunity for exposure (e.g., drug approval). However, many healthcare databases have 

high turnover rates, and restricting the study to persons with sufficient baseline period prior 

to the first opportunity for exposure may drastically reduce available sample size. In such a 

situation, one can allow the value of cumulative probability of exposure variables that 

require time to ascertain (e.g., appearance of diagnoses) to be determined by data observed 

during the study period, provided that subject-area knowledge can rule out the possibility 

that exposure status affected any cumulative probability of exposure variable. For an 

exposure with an overall time-trend in prevalence, intuition tells us that the magnitude of the 

trend should vary across strata defined by the cumulative probability of exposure. The 

cumulative probability of exposure is similar to the propensity score,9 since both predict 

exposure, but differs from it in that the propensity score is used to balance observed 

covariates across exposure groups, while the cumulative probability of exposure is used to 

identify strata with different time-trends in exposure. It may also be possible to directly 

model the trend itself rather than the cumulative probability of exposure. The second stage 

analysis, described below, applies to any population stratified on time-trend in exposure 

prevalence.

Models in the Trend-in-Trend Design

To derive a quantitative estimate of a causal effect, we propose two models of outcomes. 

One model is defined for each subject at each time point to account for covariates 

heterogeneity across population and time trends of outcome. The other one is specified at the 

population level at each time point, which depicts the mean outcome among those subjects 

within the same subgroup. We assume that the study population consists of N individuals 

and there are T time periods. Let  denote the vector of covariates associated with 

individual i at time period t, which represents intrinsic characteristics that might influence a 

particular exposure and/or outcome.  can be either observed, unobserved, or partially 

observed.  is assumed to follow a distribution F across the population.  and  are 
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exposure and outcome variables for individual i at time period t. G is the index for 

cumulative probability of exposure strata.

Subject-Specific Model: the conditional expected outcomes  are 

assumed to satisfy

(1)

where h is the link function. The subject-specific model is a special case of the generalized 

linear mixed model with exposure and time period being the fixed effects and the covariates 

for an individual (some of which may be unobserved) represented as random effects.10 

Because the trend-in-trend design is intended to estimate the instantaneous risk of an 

exposure, only  instead of the past treatment history  is considered as a predictor of 

the the conditional expected outcome. The coefficient β1 for exposure has a causal 

interpretation at the individual level. It is also the logarithm of the OR when both exposure 

and outcome are binary, and the function h is logit.

When unmeasured confounding does not exist, i.e.,  can be fully observed, it is valid to 

estimate all coefficients in equation (1) using individual-level data. For example, the cohort 

design utilizes information about every unit in a group to examine associations with 

exposures.11 However, in observational studies, we cannot rule out the existence of 

unmeasured confounding, which may distort estimates of the fixed effects coefficients. In 

addition, the subject-specific model can be computationally challenging for the study of rare 

diseases because a large number of subjects is required.

Population-Averaged Model: we assume the marginal expectation  to 

satisfy:

(2)

where h* is the link function.  is a function on exposure and group, which 

represents the heterogeneity across exposed and unexposed subgroups. The population-

averaged model is the marginal expectation of the subject-specific model. It does not require 

knowledge of covariates or assumptions of the heterogeneity across individuals. Its 

coefficients are directly estimable from the aggregated data on exposure and outcome, but do 

not have individual causal interpretation.

In general, the two models can be related by integrating out . In Zeger et al. (1988),10 the 

cases of identity, log, probit, and logit link functions are discussed and the corresponding 

mathematical relations between (β0, β1, β2) and ( ) are listed in detail. The trend-

in-trend method will be built on the population-averaged model. With the purpose of making 

causal inferences on individuals with a binary outcome, we require the link function h to be 
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logistic such that deriving OR exp(β1) is possible and the estimated quantity approximates 

the risk ratio obtained from a cohort study of a rare outcome.

We next provide a mathematical derivation of the connection between the two models and of 

how to estimate the causal OR using only data on trends in the prevalence of both exposure 

and outcome in strata. We further show that under plausible assumptions, the trend-in-trend 

method is unconfounded by measured and unmeasured factors, provided that there are no 

trends in the prevalence of covariates that are correlated with the prevalence of the exposure 

over time. As the scenarios that will lead to a confounded estimate in a trend-in-trend study 

are a subset of those that will lead to a confounded estimate in a cohort study, the trend-in-

trend design is more resistant to potential confounding. However, unlike the cohort design, 

the trend-in-trend design requires a strong time-trend in exposure, so is available in fewer 

scenarios.

Estimation of the Odds Ratio

We first stratify the entire population into K strata according to the quintiles of the estimated 

cumulative probability of exposure. For each subgroup G and each time period t, we 

aggregate the individual-level data to obtain quantities in the following table.

Outcome Outcome 
Total

Exposure 

Exposure 

Because h is the logit function, we have:

(3)

In general, there is no closed-form for the marginal mean as a function of the fixed effects 

and β1 cannot be identified. However, an approximate form is available when we impose the 

following assumptions:

1. Covariates and time period have multiplicative effects on being exposed. i.e., 

. h1 and h2 are two deterministic functions but unknown.

2. Covariates for all individuals in any subgroup G are either time-invariant or 

change randomly over time. They are random variables from an unknown 

distribution, i.e., .

3. The outcome is rare, and therefore we can omit the denominator of the integrand 

in equation.

With these assumptions, it can be proven that
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(4)

(5)

where C1G, C2G, C3G are unknown constants that depend on group.

Equations (4) and (5) are covariate-free. In other words, the marginal expectation of 

outcome is the same across treated/control individuals within the same subgroup. Because 

each  is binary, aggregating outcomes for the treated and untreated yields two binomial 

distributions. Consequently, we can write the parametric likelihood for ( ):

(6)

(7)

(β0, β1, β2, C1G, C2G, C3G) are unknown parameters and can be estimated by maximizing 

the above likelihood using an optimization algorithm. In particular, eβ1 is the OR of interest. 

We have written a package for the R computing language called TrendInTrend that performs 

this maximization and calculates the OR with its 95% confidence interval given 

( ), t ∈ {1,2, …, T}.

Simulations

We performed simulation studies to confirm that when unmeasured confounding is present, 

the OR produced by the trend-in-trend method is negligibly biased (albeit somewhat less 

precise) than that produced by a cohort study. We simulated a study population of size 

250,000 with 20 calendar quarters as study periods. The data were generated according to 

the following procedure:

Step 1: The covariates  are a five-dimensional vector with three entries generated 

from a multivariate Gaussian distribution and two other entries generated from 

Bernoulli distributions with different success probabilities. Three scenarios are 

examined: 1) covariates are sampled only once and fixed over time 2) covariates are 

sampled independently for each calendar period 3) covariates are sampled repeatedly 

for each calendar period with autocorrelation coefficient of 0.5.
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Step 2: Assign  to 1 with the probability of .

Step 3: Simulate  based on the subject-specific model and the choice of link 

function h.

We choose a0, a1, a2, a3 such that the simulated exposure prevalence has the “up-and-down” 

shape shown in Fig. 1, which mimics the exposure trend of a drug that becomes widely used 

after introduction, and is then withdrawn (e.g., rofecoxib). However, the method should 

work for a unidirectional trend as well. A more detailed description of the simulation setup 

along with values of all parameters is provided in the supplementary material, section 2.

Based on the cumulative probabilities of exposure estimated via logistic regression, the 

study population was stratified into quintiles, i.e., K = 5. As expected, these strata, each with 

50,000 individuals, had different trends in exposure prevalence. The cumulative probability 

of exposure model included all five covariates, as shown in Fig. 2.

We considered the following scenarios under the rare events assumption: (1), the OR takes 

values of 1.0, 1.5, 2.0, and 2.5; (2) the strength of the cumulative probability of exposure 

model has three levels quantified by zero, two, and four omitted confounders out of five 

confounders in total, and a c-statistic is calculated for each level to gauge unobserved 

heterogeneity in factors affecting outcome; (3) the number of cumulative probability of 

exposure strata is either five or ten. We compare the estimated OR with those calculated 

using the cohort method. The results, which are the average values of 1000 simulations, are 

summarized in Tables 1–3, corresponding to three different scenarios of covariates sampling 

as described above.

As expected, when there were no unmeasured confounders, both the trend-in-trend and 

cohort designs yielded ORs that were close to the truth. However, as the number of 

unmeasured confounders increased, the ORs produced by the cohort design became very 

biased, with biases ranging from 90% to 127%, while those from the trend-in-trend design 

remained close to the truth, with bias ranging from −3.5% to 3%. The standard deviations 

for the trend-in-trend method were one to two times as large as those for the cohort method, 

which is to be expected as individual-level information is partially lost when counts of 

outcomes are aggregated. Further, we observed a reduction in standard deviation for the 

trend-in-trend method when the number of strata increases from five to ten, as shown in 

Table 4.

Application

We applied the trend-in-trend method to Clinformatics™ Data Mart Database 

(OptumInsight, Eden Prairie, MN) to examine association between rofecoxib and AMI, 

severe hypoglycemia, and non-vertebral bone fracture. The University of Pennsylvania’s 

Institutional Review Board determined that this study met the eligibility criteria for IRB 

reviews exemption authorized by 45 CFR 46.101, category 4. Definition of these outcomes 

are described in the supplementary materials. We first identified all persons age 18 years or 

older in Optum who received one or more prescriptions for rofecoxib during the study 

period from April 1, 2000 through Dec 30, 2004. For each rofecoxib-exposed person 
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episode, we ascertained the first month and the last month of their continuous enrollment 

episode (or episodes, for persons with multiple enrollment episodes) during the study period. 

Thus, the unit of observation was the enrollment episode, defined as a period of continuous 

enrollment for a person. A person could contribute multiple episodes. For each rofecoxib-

exposed episode, we randomly sampled, without replacement, nine rofecoxib-unexposed 

enrollment episodes with an enrollment start date on or before no more than one year of the 

rofecoxib-exposed subject’s enrollment start date, and with an enrollment end date on or 

after the rofecoxib-exposed subject’s enrollment end date. The rationale for this criterion 

was to ensure sufficient overlap in follow-up calendar time for exposed and unexposed 

subjects. Thus, the analysis set contained ten times as many total episodes as there were 

rofecoxib-exposed enrollment episodes. This was done to improve computational efficiency 

versus including the entire study population.

We then fit a logistic regression to estimate the cumulative probability of exposure using 

age, sex, diagnosis of rheumatoid arthritis, and diagnosis of osteoarthritis as explanatory 

variables. Diagnosis codes for these variables are listed in the supplementary materials. For 

rofecoxib-exposed subjects, these covariates were measured at their first prescription date. 

For control subjects, these covariates were measured the same date as their corresponding 

exposed subjects. The c-statistic was 0.61, which produced good separation of exposure 

prevalence across quintiles, as shown in Figure 3. The estimated coefficients and standard 

deviations (as shown in parentheses) are 0.0228 (0.0001) for continuous age, 0.1458 

(0.0027) for female sex, 2.4418 (0.0124) for rheumatoid arthritis, and −0.6444 (0.0191) for 

osteoarthritis.

The trend-in-trend method yielded an OR (95% confidence interval) for rofecoxib and AMI 

of 1.2 (1.1, 1.4), which is consistent with the results of prior epidemiologic studies: a 2005 

meta-analysis yielded a pooled relative risk of 1.2 (1.1, 1.3) for cohort and nested case-

control studies,12 and a more recent meta-analysis reported a pooled relative risk of 1.3 (1.2, 

1.5).13 The ORs for the negative control outcomes, severe hypoglycemia and non-vertebral 

bone fracture (neither of which is thought to be affected by rofecoxib), were 1.1 (0.92, 1.3) 

and 0.84 (0.64, 1.1), which are both consistent with no effect.14

Discussion

We describe a novel hybrid ecologic–epidemiologic study design called the trend-in-trend 

design, provide a mathematical derivation of the resulting odds ratio, use simulation to 

confirm that the results are less biased (albeit somewhat less precise) than those of a cohort 

study when there is unmeasured confounding, and apply that method to reproduce one 

positive and two null associations using real-world data. The results of the empiric study 

using real-world data show that the design is readily applicable and produces expected 

results.

Importantly, the trend-in-trend design avoids the Achilles’ heel of most epidemiologic 

studies of healthcare interventions: conflation of receiving a treatment with needing that 

treatment. Unlike cohort studies, the trend-in-trend design does not assume no unmeasured 

confounders, but instead examines changes in outcome occurrence as a function of changes 
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in exposure prevalence across strata with differential time-trends in exposure. Therefore, the 

results of a trend-in-trend study will be unconfounded unless there are unmeasured factors 

affecting outcome for which there are time-trends in prevalence that are correlated with 

time-trends in exposure across the strata defined by exposure trend. This could occur if there 

are co-interventions for which the trend in use is positively correlated with trends in use of 

the exposure, or alternatives for which the trend in use is negatively correlated with trends in 

use of the exposure. As the scenarios that would produce a confounded trend-in-trend 

estimate are a subset of those that would produce a confounded cohort estimate, the trend-in-

trend design is more resistant to confounding. However, the trend-in-trend design is feasible 

only if there is a strong time-trend in exposure prevalence. Similarly, the effect estimates 

produced using calendar period as an IV will be biased if there is any time-trend in an 

unmeasured causal factor, whereas a trend-in-trend study will be biased only if changes in 

the prevalence of such a factor are correlated with changes in exposure prevalence across 

cumulative probability of exposure strata. The trend-in-trend design therefore relaxes the 

assumptions under which use of calendar time as an IV is valid.

The causal contrast examined by the trend-in-trend approach deserves discussion. It is the 

instantaneous effect of use of the exposure of interest rather than the exposure(s) (if any) that 

the increasing (or declining) trend in use of the exposure of interest displaced (or was 

displaced by). In the example of rofecoxib, this is likely to be some combination of 

nonselective nonsteroidal anti-inflammatory drugs, opioids, and no treatment. Thus, the 

trend-in-trend results may not mimic the results of placebo-controlled trials evaluating the 

study treatment. Nevertheless, the causal contrast with the alternatives that it displaces or is 

displaced by is arguably more relevant from a public health perspective.

The main limitations of the trend-in-trend method are the need for a strong trend in exposure 

prevalence and the reduced statistical precision that accompanies group-level rather than 

individual-level analyses. Limitations of the current study include the modest range of 

scenarios simulated and the fact that there is no empirical example with a causal effect 

known with complete certainty.

Additional work is needed to improve the utility of the trend-in-trend design. Such work 

should address control for measured factors for which there may be time-trends that are 

correlated with time-trends in exposure across cumulative probability of exposure strata, 

examination of treatment effect heterogeneity, sequential analysis methods to allow multiple 

looks while limiting type-1 error, and estimation of statistical power and detectable 

alternative.
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Figure 1. 
Trend of simulated exposure over 20 calendar quarters. The exposure prevalence goes from 

0% in the first quarter to 5% in the 15th quarter and then goes down to almost 0% in the 20th 

quarter.
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Figure 2. 
Simulated trends in exposure prevalence for the stratified subgroups based on cumulative 

probability of exposure quintiles. Each quintile of cumulative probability of exposure 

exhibits a different trend of exposure prevalence over time. The top quintile has the most 

dramatic change from base level to peak while the bottom quintile barely changes.
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Figure 3. 
Trends in rofecoxib exposure for the stratified groups using the Optum Clinformatics 

Database.
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