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Abstract

While the potential for small amounts of motion in functional magnetic resonance imaging (fMRI) 

scans to bias the results of functional neuroimaging studies is well appreciated, the impact of in-

scanner motion on morphological analysis of structural MRI is relatively under-studied. Even 

among “good quality” structural scans, there may be systematic effects of motion on measures of 

brain morphometry. In the present study, the subjects’ tendency to move during fMRI scans, 

acquired in the same scanning sessions as their structural scans, yielded a reliable, continuous 

estimate of in-scanner motion. Using this approach within a sample of 127 children, adolescents, 

and young adults, significant relationships were found between this measure and estimates of 

cortical gray matter volume and mean curvature, as well as trend-level relationships with cortical 

thickness. Specifically, cortical volume and thickness decreased with greater motion, and mean 

curvature increased. These effects of subtle motion were anatomically heterogeneous, were present 

across different automated imaging pipelines, showed convergent validity with effects of frank 

motion assessed in a separate sample of 274 scans, and could be demonstrated in both pediatric 

and adult populations. Thus, using different motion assays in two large non-overlapping sets of 

structural MRI scans, convergent evidence showed that in-scanner motion—even at levels which 

do not manifest in visible motion artifact—can lead to systematic and regionally specific biases in 

anatomical estimation. These findings have special relevance to structural neuroimaging in 

developmental and clinical datasets, and inform ongoing efforts to optimize neuroanatomical 

analysis of existing and future structural MRI datasets in non-sedated humans.
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INTRODUCTION

Substantial subject movement during brain magnetic resonance imaging (MRI) acquisition 

decreases scan quality, leading to blurring of gray matter/white matter boundaries and 

difficulty in identifying crisp borders of brain structures of interest. This issue is especially 

relevant for pediatric neuroimaging studies given the inverse relationship between in-scanner 

motion and age [Satterthwaite et al., 2012]. Conventionally, scans demonstrating obvious 

motion artifacts are not included in quantitative morphology studies. However, scans that 

show a small amount of motion artifact but can still be processed by automated image 

analysis software are often included. If this “micro-motion” is different between compared 

groups of interest (e.g., young vs. old, male vs. female, and patient vs. control) it may 

confound neuroimaging findings attributed to age, sex, or clinical status. Thus, it is 

important to ascertain the effects of micro-motion on commonly quantified imaging metrics 

such as gray and white matter volumes, cortical thickness, and cortical surface area. 

Particularly relevant is discerning the direction (i.e., increased or decreased) and regional 

specificity of micro-motion induced change.

The issue of subject motion has received recent focus for functional neuroimaging methods 

more extensively than for structural MRI (sMRI). In contrast to sMRI, the focus in 

functional MRI (fMRI) is mostly on motion that occurs in between acquired image volumes 

[Friston et al., 1996; Hajnal et al., 1994]. Subjects with high amounts of motion are 

generally excluded from statistical analyses. In addition, almost all fMRI analyses include a 

realignment step to correct for small movements taking place in the 1–3 seconds between 

acquisitions [Cox and Jesmanowicz, 1999; Freire et al., 2002; Friston et al., 1995; Jenkinson 

and Smith, 2001; Oakes et al., 2005], and the parameters from this realignment step are also 

commonly included as nuisance regressors in the experimental model [Johnstone et al., 

2006]. In particular for resting state fMRI studies of functional connectivity, differential 

motion can result in spatially heterogeneous differences between groups of subjects that 

persist even after the above motion correction procedures [Power et al., 2012; Satterthwaite 

et al., 2012; Van Dijk et al., 2012], although these biases may be reduced or even eliminated 

by the use of innovative MR sequences [Kundu et al., 2013; 2014] or post-processing 

pipelines [Jo et al., 2013; Patel et al., 2014].

Within-volume motion is a particular problem for high-resolution structural scans, which 

may require minutes rather than seconds to collect whole brain images. The physics of 

distortions caused by motion within the acquisition of a single image have been well 

documented [Morelli et al., 2011; Wood and Henkelman, 1985]. Motion can result in 

blurring and/or ghosting artifacts, a series of displaced image repetitions usually in the 

phase-encoded direction, depending on the location of the motion in K-space. These types of 

artifacts have been demonstrated to impair the diagnostic quality of clinically acquired MRI 

[Dantendorfer et al., 1997; Morelli et al., 2011; Wood and Henkelman, 1985]. In addition, 

simulated motion has been predicted to affect automated measures of brain atrophy 

[Camara-Rey et al., 2006; Preboske et al., 2006]. Previously, we showed that estimates of 

gray matter volume are reduced in categorically low quality scans [Blumenthal et al., 2002]. 

This motion-related bias in gray matter estimation was recently replicated by a study using 
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surface-based morphometry to analyze cortical volume (CV) in scans from participants 

performing an in-scanner motion task [Reuter et al., 2015].

The present study seeks to refine our understanding of motion-related biases in 

morphometric analyses of neuroimaging data by extending previous work in several ways. 

First, to model the effects of naturalistic rather than consciously produced motion, we use 

motion estimated from fMRI scans acquired serially with structural scans to estimate 

subjects’ extent of motion during scanning sessions. This methodology could readily be used 

as a post hoc quality control measure in many previously published and ongoing studies. 

Second, to better specify the mechanism for motion effects on cortical volume estimation, 

we quantified relationships between motion and distinct subcomponents of cortical volume

—cortical thickness and surface area—in addition to cortical curvature [Desikan et al., 2006; 

Fischl et al., 2004b], which may reflect differential cortical expansion during development 

[Ronan and Fletcher, 2014]. Third, we assess the stability of motion-related biases in 

anatomical estimation across two distinct image-processing platforms and developmental 

windows. Fourth, we assess the convergent validity of two different assays of motion effect, 

(i) variation in the fMRI proxy described above amongst scans without visible motion 

artifact, and (ii) an independent contrast between two groups with qualitatively different 

motion ratings based on visual inspection of raw scans. Fifth, given the observation that 

motion induces regionally heterogeneous biases in anatomical estimation, we provide a 

cortex-wide map of the relationship between local brain displacement and overall motion. 

Finally, we harness the wide age-range of our sample to place observed motion effects on 

anatomy in the context of age-related anatomical variation. This comparison is critical given 

the special importance of motion effects for developmental neuroimaging studies seeking to 

map maturational changes in brain anatomy.

METHODS

Participants

All scans included in this study were gathered as part of the National Institute of Mental 

Health Intramural Research Program Study of Pediatric Brain Development {Giedd:

2015kp}. Analyses relating interindividual differences in micro-motion to anatomy 

conducted in a sample of 127 unrelated typically developing individuals with raw scans that 

did not have any visible signs of motion artifact (age 6–33 years, 64 female subjects). A 

subanalysis of these data was also performed excluding pediatric subjects (n = 51, age 18–

33, 23 female subjects). In an independent analysis, anatomical comparisons of groups with 

categorically distinct quality ratings (based on visual inspection of raw scans) were 

conducted in a sample of 274 scans of unrelated individuals aged 5–34 years (Table I).

Image Acquisition

All MRI scans were acquired using a 1.5 T General Electric Signa MRI at the NIH Clinical 

Center (Bethesda, MD). Structural scanning consisted of a T1-weighted spoiled gradient 

echo sequence: echo time (TE) 5 ms; relaxation time (TR) 24 ms; flip angle 45°; matrix 256 

× 256 × 124; FOV 24 cm. During the same scanning session, two 3-minute echoplanar 

imaging (EPI) scans were acquired with participants lying quietly with eyes closed: TR 2.3 
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s; TE 40 ms; voxel 3.75 × 3.75 × 5 mm; matrix size 64 × 64; FOV 240 × 240 mm; 27 

interleaved slices. The order of acquisition was the same for all participants in the study, 

with the acquisition of the structural scan always preceding the acquisition of the EPI scans. 

The EPI scans took place approximately 5–10 minutes following the structural scans. In 

addition to being counseled extensively on the importance of remaining still in the scanner, 

all of the subjects were partially restrained with the use of foam pads to the left and to the 

right of the head.

Morphological Analysis

Each scan was processed using two well validated, commonly used automated routines for 

MRI analysis: the Montreal Neurological Institute’s CIVET pipeline (version 1.1.10) and 

FreeSurfer (version 5.1). For the CIVET analysis, images were registered into a standardized 

stereotaxic space by means of a linear transformation and corrected for intensity non-

uniformities [Collins et al., 1994; Sled et al., 1998]. A neural net classifier segmented the 

spatially transformed and corrected volumes into white matter, GM, cerebrospinal fluid, and 

background [Tohka et al., 2004]. Inner and outer cortical surfaces were modeled using 

triangular meshes generated by a constrained Laplacian algorithm (CLASP) [Kim et al., 

2005]. In order to estimate cortical structure in native space, we applied an inverse 

transformation matrix to the cortical surfaces [Im et al., 2006]. Automated parcellation of 

the cortical surface was performed to extract lobar estimates [Im et al., 2008] of gray matter 

volume, cortical thickness and surface area.

In the FreeSurfer analysis, raw images were corrected for intensity nonuniformities [Sled et 

al., 1998] and skull-stripped to remove non-brain tissue using a watershed/surface 

deformation procedure [Ségonne et al., 2004].White matter and subcortical gray matter were 

segmented [Fischl et al., 2002, 2004a] and the gray/white and gray/CSF surfaces were 

modeled using a procedure that includes automated topology correction [Fischl et al., 2001; 

Ségonne et al., 2007] and surface deformation following intensity gradients to define sharp 

boundaries between tissue classes [Dale et al., 1999; Fischl et al., 1999]. Automated 

parcellation of the cortical surface into 33 gyral regions per hemisphere were combined to 

yield lobar estimates of gray matter volume, mean cortical thickness, surface area, and 

mean/Gaussian curvature [Desikan et al., 2006; Fischl et al., 2004b] as detailed in 

Supporting Information Table 2.

None of our image processing steps involved manual intervention. This decision was made 

to ensure technical reproducibility of our study as criteria for training, implementation and 

monitoring of manual interventions can vary between and within laboratories.

Quantifying Subject Motion

The EPI scans were used to classify subjects according to how much they tended to move 

during the scanning session. AFNI [Cox, 1996] and FSL [Jenkinson and Smith, 2001; 

Jenkinson et al., 2002] were used for image processing. The first four EPI volumes were 

discarded, and the scans were skull-stripped and motion corrected with a series of rigid body 

transforms, using the mean across the time series as the reference volume. As a summary 
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measure of motion we used the “framewise displacement” (FD) based on the six parameters 

from this motion correction procedure [Power et al., 2012]:

where Δdix = d(i − 1)x − dix. Rotational displacements were converted from degrees to 

millimeters by calculating displacement on the surface of a sphere of radius 50 mm.

This procedure yielded a single continuous estimate of “micro-motion” for each participant 

in Tier 1.

We also performed a voxel-specific estimate of displacement. The series of affine 

transformations from the motion correction was applied to each voxel separately, and the 

average displacement was calculated as the average frame-to-frame Euclidean distance 

travelled by each voxel. These values were transformed into MNI stereotactic standard space 

via a two-step process: from each functional scan to that subject’s structural scan using 6 

degrees of freedom transformation, and from each structural scan to MNI space using 12 

degrees of freedom transformation [Jenkinson and Smith, 2001; Jenkinson et al., 2002]. 

These subject maps were averaged to yield a population map, which was filtered to include 

only voxels within gray matter regions in FSL’s Harvard–Oxford cortical probabilistic atlas, 

using a 25% threshold. Finally, for visualization the voxel values were projected on the 

CIVET triangular mesh using nearest-neighbor interpolation.

Statistical Analysis

All structural scans in the NIH study of normal development are rated on an ordinal 1–4 

scale by an expert rater [Blumenthal et al., 2002]. Our analysis of the effect of small 

amounts of in-scanner motion consisted only of subjects with 1st tier structural scans who 

also received fMRI during the same scanning session (for demographic information see 

Table I). For each brain region and morphological property, a linear model was fit using the 

continuous estimates of micro-motion derived from the fMRI scans as the independent 

variable and age and gender as covariates [R Core Team, 2012]. In other words, we tested 

the hypothesis that inter-subject estimates of regional morphological properties, for example, 

frontal lobe gray matter volume, are affected by intersubject variability in in-scanner motion.

In an additional analysis, we explored the effect of grossly observable motion artifact 

(henceforth “frank motion”), using a sample of 136 subjects with categorically lower quality 

(2nd tier) structural scans (see Table I for demographic information). These 2nd tier scans 

were age- and gender-matched to another sample of subjects with 1st tier scans, and paired t-
tests were used to compare the output of the morphological analysis. Statistical tests were 

corrected for multiple comparisons using FDR-adjusted P values [Benjamini et al., 2006].

Figure 1 provides examples of 1st (both low and high average motion estimates) and 2nd tier 

scans, along with examples of the cortical surfaces generated for these scans.

This study used the high-performance computational capabilities of the NIH Biowulf Linux 

cluster (http://biowulf.nih.gov).
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RESULTS

Micro-Motion Within Tier 1 Scans

During the same scanning session, motion during one resting-state EPI scan was highly 

correlated with motion in a second EPI scan (Pearson’s r = 0.66, P<1.0e-15), suggesting that 

this is a reliable estimate of motion during the scanning session (Fig. 2A). The inverse 

relationship between age and fMRI motion did not reach statistical significance in this data 

(r = −0.06, P = 0.5), although larger studies have previously demonstrated that such a 

relationship does exist on average [Satterthwaite et al., 2012]. There was a positive effect for 

gender such that male subjects on average moved more than female subjects (male mean 

motion = 0.09 mm, sd = 0.05, n = 64; female mean motion = 0.07 mm, sd = 0.04, n = 63; t = 

−2.27, P = 0.02). There was no evidence for an interaction between age and gender.

Micro-Motion and Lobar Anatomy

There were significant relationships between micro-motion and lobar estimates of gray 

matter volume for both CIVET and FreeSurfer within the frontal and temporal lobe, and for 

CIVET in the occipital lobe (P<0.05; see Table II). For both pipelines, micro-motion was 

inversely correlated with volume, such that increased motion resulted in evidently smaller 

cortical regions. The inverse relationship between subject motion and parietal lobe volume 

did not reach statistical significance in either pipeline.

For CIVET, there was some evidence that the inverse relationship between micro-motion 

and gray matter volume was due to an association with estimates of cortical thickness but 

not estimates of cortical surface area. In particular, there was a trend toward an inverse 

relationship between micro-motion and estimates of cortical thickness in the frontal lobe, 

occipital lobe and temporal lobe (FDR-corrected P = 0.053; see Table II), the same regions 

with significant relationships with motion and volume.

Micro-motion also showed a negative relationship with estimates of lobar cortical thickness 

in FreeSurfer, but these associations did not approach statistical significance. Analysis of 

lobar curvature estimates in FreeSurfer revealed a statistically significant positive 

association between micro-motion and mean curvature of the frontal lobe (FDR-corrected P 
= 0.03; see Table II). In contrast, relationships between micro-motion and Gaussian 

curvature in FreeSurfer were not significant.

We next reanalyzed the lobar measures including only the 58 adult subjects greater than 18 

years old. This was to assess whether our initial findings could have been driven by children, 

who previous evidence suggests both move more then and are morphologically different 

from adults. A we had statistically controlled for linear effects of age in analyses combing 

all ages, it is possible that residual nonlinear effects could have driven some of our results. 

However, our adult-only analyses replicated findings of possible motion bias discovered in 

the larger sample (Table III).
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Micro-Motion and Lobar Anatomy in the Context of Age

It is notable that the effects of age were robust to co-varying for the effect of micro-motion 

on estimates of morphological properties. Indeed, compared with the impact of micro-

motion on morphological properties, the impact of age was substantially larger in terms of 

both statistical significance and effect size. For example, in terms of the estimated effect of a 

standard deviation change in age or a standard deviation change in micro-motion, the 

estimated effect of age on morphology was on average approximately three times that of the 

effect size of micro-motion (sample mean age = 16.8 years, sd = 6.9 years; mean micro-

motion = 0.08 mm, sd = 0.04 mm; for details see Table IV).

Micro-Motion and Vertex-Based Properties

At the vertex level across approximately 80,000 vertices output by the CIVET pipeline and 

the approximately 330,000 vertices output by the FreeSurfer pipeline, the strongest 

relationship between cortical thickness and micro-motion occurred in medial frontal, lateral 

occipital, anterior temporal, orbitofrontal, and dorsolateral prefrontal regions of cortex (Fig. 

3). In contrast, there was not a significant relationship observed between estimates of 

cortical surface area and micro-motion.

Frank Motion and Cortical Anatomy

The effect of micro-motion within high quality scans converged overall with the categorical 

result of comparing lower and higher quality scans, although these frank motion effects were 

more strongly significant. Across the approximately 80,000 CIVET vertices and the 

approximately 330,000 FreeSurfer vertices, the most affected brain regions included medial 

frontal, lateral occipital/inferior parietal, anterior temporal, orbital/inferior frontal, and 

dorsolateral prefrontal regions of cortex (Fig. 4). In all of these areas, lower quality scans 

were associated with thinner cortical surfaces. The exception to the convergence between the 

processing pipelines was in the area of calcarine fissure for the FreeSurfer pipeline only, 

where scans with frank motion were estimated by the pipeline as having increased cortical 

thickness. This points’ to the possibility of some pipeline by scan quality interaction effects 

in terms of the bias inflicted by frank motion if not micro-motion. Lobar averages of 

morphological properties calculated with the CIVET pipeline and the FreeSurfer pipeline 

similarly converged overall with the continuous effects described above, although effect 

sizes were larger for frank motion (Table V).

Heterogeneity of Motion Across the Cortex

One possible reason for anatomical heterogeneity in motion-related artifact is that in-scanner 

motion itself is not uniform about the brain. Displacement of an object in three-dimensional 

(3D) space can be described as a set of three translations and three rotations. Although 

translations affect all voxels equally, the impact of a rotation depends on the distance from 

the voxel to the axis of rotation. Due to cushioning on either side of the head during 

scanning sessions, pitch rotations (nodding) are more common than yaw or roll rotations. As 

shown by the voxel-wise estimates of framewise displacement, this results in greater average 

motion in anterior portions of the brain (Fig. 5). In fact, there is a partial but incomplete 
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overlap between areas of the brain that move the most, and areas of the brain that appear to 

be most susceptible to motion-related artifact (Figs. 3 and 4).

DISCUSSION

Our findings clarify motion effects on morphometric analyses of brain sMRI data in several 

important ways. We demonstrate that in-scanner “micro-motion,” measured using serially 

acquired fMRI scans, is associated with reduced sMRI estimates of gray matter volume. 

Further, we demonstrate that in-scanner micro-motion may also bias estimates of cortical 

thickness and the curvature of the cortical surface. We demonstrate consistency in these 

motion effects across image-processing pipelines, developmental windows, and motion 

assays. Finally, we demonstrate that there is partial though incomplete overlap between the 

areas of the brain that undergo greater displacement due to rotational head movements and 

the areas of the brain that appear to be more susceptible to motion-induced artifact, 

particularly frontal and temporal areas with a relative sparing of the parietal lobe. Taken 

together, these results add weight to the mounting notion that in-scanner motion is not just a 

source of error in sMRI analysis but can bias results in an anatomically heterogeneous and 

“biologically plausible” fashion.

The motion-related biases we report have a number of consequences for structural 

neuroimaging research, especially studies concerned with age, sex, and clinical effects. In 

many experimental contexts it is probable that children move more than adults, boys move 

more than girls, and patients move more than healthy individuals. Although the effect sizes 

found in the present study are smaller than those reported by many clinical and 

developmental studies, it is possible that some reportedly morphological differences could 

actually be due to motion-related confounds, and conversely that genuine biological 

differences could be masked by artifacts. Notably, the effects of age do appear to outweigh 

those of subtle in-scanner motion, suggesting that previous reports of the developmental 

trajectories of morphological properties during childhood and adolescence are unlikely to be 

due entirely to spurious motion effects [Raznahan et al., 2011]. However, the precise impact 

of motion on previous reported studies is difficult to assess. For example, if in-scanner 

motion, cortical thickness, and surface area all vary with age—with developmentally varying 

contributions of thickness and surface area to changes in volume [Raznahan et al., 2011]—

then the effect of motion on estimates of cortical volume is likely to represent a complex 

interaction of all of these factors. Of note a recent article suggests that motion artifact in 

structural scans of younger children does have the potential to alter estimated developmental 

trajectories of cortical thickness [Ducharme et al., 2015].

Our findings combine with prior reports [Reuter et al., 2015] to suggest that motion-related 

biases are likely to be largely stable across machines and image-processing pipelines. Other 

factors do have the potential to interact with subject motion to adversely affect estimates of 

anatomical metrics, include noise of the electronics of the MRI system, subject’s 

physiological noise, partial volume effects, imaging gradient non-linearities, and spatial 

magnetic inhomogeneities. Variations in the placement of a subject’s head in reference to the 

isocenter, together with gradient non-linearities, reduce the reliability of anatomical metrics 

[Jovicich et al., 2006]. Although rigorous image quality control is critical for all structural 
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brain imaging studies, motion-related bias does appear to be robust to standard quality 

control procedures [Reuter et al., 2015]. It would be valuable to quantify potential mitigating 

and exacerbating influences in future work.

Our results identify several similarities between the effects of micro-motion and frank 

motion on automated measures of brain anatomy (e.g., spatial and directional overlap of 

effects on cortical thickness in medial/superior prefrontal and lateral temporal cortices), but 

also some differences (e.g., effects of frank motion, but not micro-motion on cortical 

thickness at the temporo-occipital junction). Also, with respect to micro-motion, there is an 

imperfect correspondence between the spatial distribution of mean local displacement at the 

group level, and the surface distribution of correlations between inter-individual differences 

in local displacement and inter-individual differences in local cortical thickness. These 

observations highlight the need for further studies to clarify how different species of in-

scanner motion impact image processing. An integral part of this effort will be comparing 

and contrasting different candidate assays [Magnotta et al., 2006; Mortamet et al., 2009] for 

each dimension of motion which emerges as having a distinct impact on image processing.

Looking forward, there are a number of approaches that could be taken to assess and to 

address motion-related artifacts in sMRI studies. First, our use of fMRI motion proxy lends 

itself easily to the reanalysis of previously acquired datasets to test for potential motion-

related bias, without the need for intervention at the level of image acquisition. But even 

though fMRI motion is likely to be highly predictive of sMRI motion, its use as a proxy has 

limitations as any dataset will include outliers for whom this proxy measure is inaccurate. 

Moreover, it is intuitive that the consistency in motion between portions of a scan may 

decrease with time. In the present study for example, because the EPI scans were on average 

closer together in time than the EPI scans were to the structural scan, it is possible that the 

consistency of motion between the structural scans and the EPI scans was less than 

consistency of motion between the two EPI acquisitions.

A number of research groups have developed innovative scanning and image processing 

techniques that have the potential to limit, and in the future possibly even eliminate, motion-

related artifacts in sMRI. Most simply, shorter imaging sequences make it easier for subjects 

to remain still throughout a scan. Some retrospective correction procedures also use 

“navigator” sequences that acquire additional data during scans to extract information about 

subject motion [Ehman and Felmlee, 1989; Korin et al., 1990]. Alternately, “autofocusing” 

methods use a trial-and-error approach during k-space reconstruction to account for possible 

motion displacement [Atkinson et al., 1997; 1999; Manduca et al., 2000; McGee et al., 

2000]. External sensors have the potential to provide information about in-scanner motion 

independent of the MR imaging process [Zaitsev et al., 2006; Ooi et al., 2009; Qin et al., 

2009]. Prospective motion correction procedures modify the pulse sequence during image 

acquisition in response to subject-motion [Kuperman et al., 2011; Norris, 2001; van der 

Kouwe et al., 2006; Weih et al., 2004; Welch et al., 2002; White et al., 2010]. But despite 

these encouraging technological developments, it is not yet possible to eliminate motion 

artifact, and the vast majority of studies do not employ these corrective procedures. At the 

extreme, the benefits of scanning under sedation likely outweigh the risks/costs in some 

experimental contexts.
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In summary, this work supports the conclusion that in-scanner motion is a source of bias in 

sMRI studies. Although it is unlikely that alterations in estimates of brain anatomy 

previously attributed to age or gender are due entirely to motion artifact, this possible source 

of bias in between-group studies of brain anatomy should be given consideration in future 

studies analogously to efforts to reduce motion artifact in fMRI studies. A range of currently 

implemented image processing pipelines and quality control procedures appear to be 

insufficient to entirely mitigate these effects, although new methodologies offer hope for 

future improvements. In the meantime, using fMRI motion as a proxy measure for in-

scanner motion enables a reasonable, preliminary quantification of the potential for motion-

related bias.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Example of 1st tier scans and 2nd tier scans (less micro-motion, more micro-motion and 

frank motion) along with their cortical surface models as generated by CIVET. [Color figure 

can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Alexander-Bloch et al. Page 14

Hum Brain Mapp. Author manuscript; available in PMC 2016 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://wileyonlinelibrary.com


Figure 2. 
This figure illustrates the consistency of motion across fMRI scans within the same scanning 

session, and the association of motion with age and gender. Motion was estimated as the 

average frame-to-frame displacement, calculated using a series of 6-degrees-of-freedom 

linear transformations. Following (Power et al., 2012), we used the formula, FDi = |Δdix| + |

Δdiy| + |Δdiz| + |Δαi| + |Δβi| + |Δγi|, where Δdix = d(i − 1)x − dix. Rotational displacements 

were converted from degrees to millimeters by calculating displacement on the surface of a 

sphere of radius 50 mm. (A) The average frame-to-frame displacement for two fMRI scans 

within the same scanning session. (B, C) The frame-to-frame displacement of the two scans 

were averaged to show the relationship with age and gender. N = 436 fMRI scans, 218 

scanning sessions, 200 individual subjects (107 female), 127 families; mean age = 15.9 

years, sd = 6.2, range = 5–34.
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Figure 3. 
The relationship between micro-motion and cortical thickness. Subject motion was 

estimated using the average frame-to-frame displacement from an fMRI scan acquired in the 

same scanning session as the structural scan (Power et al., 2012). (A) Cortical thickness was 

estimated at vertices across the brain using the CIVET pipeline (left) and the FreeSurfer 

pipeline (right). The correlation coefficient between motion and thickness was calculated 

for the residuals of a linear model that included age and gender as covariates. No vertices 

remained statistically significant after FDR-correction for multiple comparisons. N = 127 

subjects (63 females); mean age = 16.8 (sd = 6.9, range = 6–34); one scan per family. (B) 

Sample vertices from within the left temporal lobe and the right motor cortex (CIVET 

pipeline) illustrate the relationship between micro-motion and cortical thickness.
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Figure 4. 
The relationship between frank motion and cortical thickness. (A) 136 scans visually ranked 

as Tier 1 (frank motion absent) were gender- and age-matched with 136 scans ranked as Tier 

2 (frank motion present) (average age difference between matched scans = ~1 week). Paired 

t-tests were calculated between matched samples, comparing cortical thickness estimated at 

vertices across the brain the CIVET pipeline (left) and FreeSurfer pipeline (right). (B) 

Anatomical regions whose relationship with scan quality was statistically significant after 

FDR-correction for multiple comparisons. (C) Sample vertices from within the left 
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dorsolateral frontal cortex (CIVET pipeline) and right calcarine sulcus (FreeSurfer pipeline) 

illustrate the relationship between frank motion and cortical thickness.
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Figure 5. 
Micro-motion on a voxel-by-voxel basis. The affine transformation from volumetric motion 

correction were applied to each voxel separately to estimate the frame-to-frame 

displacement for each voxel. For each voxel this value was averaged across the scan, to yield 

subject-level maps. These maps were transformed into MNI standard space and averaged 

across subjects. For illustrative purposes, voxel values were projected onto the CIVET 

triangular mesh using nearest-neighbor interpolation.
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TABLE I

Demographic information

High quality
sMRI with fMRI in

same scanning session

Categorically lower quality sMRI scans, and matching high quality
sample

Tier 1 Tier 2 P value

N 127 136 136

Age (years) Mean = 16.8
SD = 6.9

Range = 6–34

Mean = 10.7
sd = 5.6

range = 5–30

Mean = 10.7
sd = 5.6

range = 5–30

~1

Gender 63 Female 64 female 64 female ~1
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TABLE IV

Comparison of effect sizes (standardized regression coefficients, β) for age and for micro-motion on estimates 

of cortical gray matter volume, surface area, cortical thickness and surface curvature (CIVET pipeline and 

FreeSurfer pipeline)

Anatomical
metric

Civet processing
pipeline

FreeSurfer processing
pipeline

β age β motion β age β motion

Lobar volume

Frontal −0.55 −0.18 −0.54 −0.18

Parietal −0.57 −0.08 −0.61 −0.10

Temporal −0.40 −0.17 −0.30 −0.18

Occipital −0.42 −0.16 −0.41 −0.10

Lobar surface area

Frontal −0.39 −0.18 −0.12 −0.19

Parietal −0.40 −0.06 −0.23 −0.14

Temporal −0.33 −0.12 −0.09 −0.16

Occipital −0.27 −0.10 −0.16 −0.09

Lobar cortical thickness

Frontal −0.59 −0.15 −0.64 −0.03

Parietal −0.64 −0.07 −0.68 0.04

Temporal −0.50 −0.18 −0.28 −0.14

Occipital −0.43 −0.16 −0.57 −0.01

Lobar mean curvature

Frontal −0.27 0.24

Parietal −0.38 0.11

Temporal −0.59 0.05

Occipital −0.34 0.05

Lobar Gaussian curvature

Frontal 0.12 0.07

Parietal −0.17 0.01

Temporal −0.25 0.13

Occipital −0.22 −0.08

Standardized regression coefficients, β, are normalized by the standard deviation of the independent and dependent variables, to facilitate 
comparison between effect sizes. Each coefficient reflects the number of standard deviations the dependent variable is estimated to change per 
standard deviation of the independent variable. All models were fit in R. N = 127 subjects (63 females); mean age = 16.8 (sd = 6.9, range = 6–34); 
average framewise motion = 0.08 mm (sd = 0.04, range = 0.03–0.27); one scan per family.
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