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Abstract

Childhood poverty is a risk factor for poorer cognitive performance during childhood and 

adulthood. While evidence linking childhood poverty and memory deficits in adulthood has been 

accumulating, underlying neural mechanisms are unknown. To investigate neurobiological links 

between childhood poverty and adult memory performance, we used functional magnetic 

resonance imaging (fMRI) during a visuospatial memory task in healthy young adults with 

varying income levels during childhood. Participants were assessed at age 9 and followed through 

young adulthood to assess income and related factors. During adulthood, participants completed a 

visuospatial memory task while undergoing MRI scanning. Patterns of neural activation, as well as 

memory recognition for items, were assessed to examine links between brain function and 

memory performance as it relates to childhood income. Our findings revealed associations 

between item recognition, childhood income level, and hippocampal activation. Specifically, the 

association between hippocampal activation and recognition accuracy varied as a function of 

childhood poverty, with positive associations at higher income levels, and negative associations at 

lower income levels. These prospective findings confirm previous retrospective results detailing 

deleterious effects of childhood poverty on adult memory performance. In addition, for the first 

time, we identify novel neurophysiological correlates of these deficits localized to hippocampus 

activation.
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1. Introduction

Childhood poverty is a risk factor for problems in cognition (Adler et al. 2012; Bradley & 

Corwyn 2002; Hackman et al. 2010; Hackman & Farah 2009), which likely contribute to 

robust income achievement gaps, deficits in math and reading, increased school drop-out, 

and decreased graduation rates among the poor (Brooks-Gunn & Duncan 1997; Duncan 

2012). The impact of poverty is complex and linked to various environmental risk factors, 

including parenting, school, and neighborhood quality (Brooks-Gunn & Duncan 1997), that 

often co-occur. Living in poverty is more stressful, which can have detrimental effects on 

cognitive development (Evans 2003) and working memory (Evans & Schamberg 2009). 

Thus, poverty-related factors may impact brain function and cognitive development. Since 

these factors both co-occur and interact, it is very difficult to isolate single factors that lead 

to developmental differences from the overall effects of the complex construct of poverty as 

a whole, both experimentally and conceptually.

Deficits in memory encoding and recognition are hallmarks of poverty effects in children 

(Farah et al. 2006; Noble et al. 2007) and adults (Herrmann & Guadagno 1997). The 

association between family income and memory performance is mediated, in part, by 

chronic stress exposure (Evans & Schamberg 2009; Evans 2003). Findings linking poverty 

and its associated risk factors to cognitive impairment, including poorer memory (Lipina & 

Posner 2012; Raizada & Kishiyama 2010), highlight the potentially key role of the 

hippocampus. The hippocampus plays both a central role in memory (Scoviille & Milner 

1957; Jarrard 1993; Vann & Albasser 2011; Lavenex & Lavenex 2009) and is sensitive to 

chronic stress during early development (McEwen & Magarinos 2001; Meaney et al. 1991; 

Lupien et al. 2009). Previous studies demonstrate that hippocampus might be especially 

vulnerable to early poverty, as adverse life events occurring in childhood (~age 8–9) are 

associated with altered hippocampal development, potentially influencing mental health 

symptoms in adulthood (Schalinski et al. 2016). Some (Hanson et al. 2011; Hanson et al. 

2014; Luby et al. 2012; Luby et al. 2013),, but not all studies (Hanson et al. 2013), link 

specific poverty-associated factors (e.g. maternal support, environmental stress) to altered 

hippocampus, amygdala, and cortical brain volume. Much remains to be learned about 

complex interactions between poverty, hippocampal function and memory performance.

There is strong evidence linking stronger recruitment of hippocampus with better memory 

recall (Wong et al. 2013; Bergmann et al. 2016), and visuospatial memory tasks are most 

commonly used in this context (De Rover et al. 2011; Wong et al. 2013; Longoni et al. 

2013). Thus, we had hypothesized that childhood income might affect both hippocampal 

recruitment and visuospatial memory performance, in subjects that experienced low income 

as children. One possibility is that the effect of childhood income on memory recognition is 

directly mediated by hippocampal function, but it is also possible that childhood poverty 

moderates the relationship between hippocampal function and memory performance, 
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altering the “normal” relationship between the two. We therefore set out to further assess 

how childhood poverty-related variability impacts hippocampal function during visuospatial 

memory performance in adults. This is one of the first prospective longitudinal studies 

examining links between brain function and cognitive abilities associated with income. We 

used an existing, prospective longitudinal cohort to test the following hypotheses: (1) 

Childhood income will positively relate to visuospatial memory performance; (2) 

Visuospatial memory performance will be reflected in hippocampal activation; and (3) The 

association between memory recognition and hippocampal activation will differ across 

income levels.

2. Materials and Methods

2.1 Subjects

Fifty-four adults from age 20 to 27 (M = 23.72, SD = 1.31) participated in this study within 

the context of an ongoing, larger longitudinal study examining associations between income 

and child development (Kim et al. 2015; Javanbakht et al. 2015; Evans 2003; Kim et al. 

2013; Sripada et al. 2014; Evans et al. 2016; Liberzon et al. 2015). Eleven of the 54 

participants did not have data on at least one of our measurements of interest (e.g. income to 

need ratio in adulthood), and thus were not included in the analyses. This resulted in a total 

of 43 participants with data on all measures. For the sample reported here, 54% were male 

and 91% were Caucasian. Poverty was defined according to US census calculations using 

income to need ratios at age 9. An income to need ratio below 1.0 is typically considered 

below the poverty line, with the average American household reporting an income to need 

ratio around 2.0. In our sample, income to need ratios at age 9 ranged from 0.16 to 4.30 (M 
= 1.75, SD = 1.11), with an equal number of subjects raised below (N = 26) and above (N = 

28) the poverty line. Income to needs ratios in adulthood were reported from 0.29 to 9.11 (M 
= 2.82, SD = 2.21). For the analyses reported here, we used the earliest available data point 

in this cohort (income to needs at age 9), to examine links between childhood poverty 

specifically and adult cognitive abilities. All participants were right handed, had no prior or 

current treatment for psychiatric disorders, neurological conditions, or MRI 

contraindications.

2.2 Procedures

All of the procedures were approved by the Institutional Review Boards of Cornell 

University, the University of Michigan, and the Veterans Affairs Ann Arbor Healthcare 

System. Written consent was obtained from all subjects. MRI scanning was performed with 

a Philips 3-T Achieva X-series MRI (Philips Medical Systems). T1-weighted anatomical 

images (FOV = 256 X 256 mm, slice thickness= 1 mm, 0 mm gap) were completed for slice 

localization, Talairach transformation, and coregistration. Gradient echo blood oxygen level 

dependent (BOLD) scans (contiguous axial slices; TR/TE = 2000/30 ms, flip angle = 90°, 

FOV = 220 X 220 mm, slice thickness = 3mm3, 0 mm gap, 42 slices) were completed to 

assess brain function during tasks. E-prime v2.0 was used to present stimuli and record 

responses (Psychology Software Tools, Pittsburgh, PA). Participants viewed stimuli through 

MRI-compatible liquid crystal display goggles (NordicNeuroLabs http://

www.nordicneurolab.com) and responded to stimuli using an MRI-compatible button box.
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During BOLD scanning, participants completed a two-part visuospatial memory task 

involving an encoding phase and a recognition phase. During encoding, participants viewed 

92 line drawings in one of four quadrants of the screen depicting common objects, animals, 

and plants. They had to indicate whether each image was “alive” or “not alive”. Each image 

was on the screen for 1000 ms plus the response time of the participant (not to exceed an 

additional 2000 ms). Inter-stimulus intervals (ISIs) were jittered 3000–7000 ms. During 

recognition testing (starting 10–15 minutes following the end of encoding), participants were 

presented with 59 images previously viewed and 45 new images in random order. They had 

to indicate whether the image was “old” or “new”. For “old” images, participants would also 

indicate where it was initially presented (top left, top right, bottom left, bottom right). 

Images were presented until the participant made their response(s). ISIs were 1000 ms in 

duration. The sequence of encoding and recall was repeated, resulting in 2 runs for each 

portion of the task. Reaction time and accuracy were measured on all trials (Figure 1).

2.3 Data Scoring and Analysis

Signal detection, a method that accounts for response bias to provide a more precise measure 

of accuracy, was used for item recall (Stanislaw & Todorov 1999). Participant responses 

were identified as hits (image old and responded “old”), misses (image old and responded 

“new”), false alarms (image new and responded “old”) and correct rejections (image new 

and responded “new”). D-Prime (d′) was calculated for each subject: d′ = NORMSINV(H) 

– NORMSINV(F). Greater values for d′ indicate better accuracy. We also calculated a 

measure of response bias (C): . Positive values for C indicate 

a propensity to respond “new”, while negative values indicate a propensity to respond “old”. 

For both formulas, H = hit rate and F = false alarm rate. Analyses were conducted using 

IBM SPSS (v. 21) to examine associations between income, d′, and brain function during 

encoding and recognition.

MRI data processing and analysis were performed using the statistical parametric mapping 

extension for MATLAB (SPM8; www.fil.ion.ucl.ac.uk/spm). Images were motion corrected, 

slice-time corrected, realigned to the first scan in each run, co-registered with the T1 

structural image, normalized to the Montreal Neurological Institute (MNI) template brain, 

resampled to 3 mm3 voxels and smoothed with a 5 mm3 kernel. Motion parameters for all 

six planes (x, y, z, roll, pitch, yaw) were examined, and any run with greater than 3mm of 

motion in any direction was discarded before analysis. Two runs were excluded from 

analysis due to excessive motion. All 6 motion parameters were entered as nuisance 

regressors. Maximum motion per run ranged from 0.16 – 2.98 mm (M = 0.65, SD = 0.59). 

Motion was not associated with childhood income (p = 0.58). MRI analyses were conducted 

in three steps, as described below. This method was conducted for encoding and recognition 

portions of the task separately.

Step 1—First, we ran a whole brain analysis to examine regions of activation associated 

with visuospatial memory across all our subjects, irrespective of accuracy on the task or 

income levels. We included all trial types in this contrast (modeled this as all trials minus the 

implicit baseline) to identify activation associated with visuospatial memory in general. We 

included all subjects’ data, and consistent with prior studies, this contrast yielded 
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hippocampus which was our a priori region of interest, based on childhood poverty 

literature. We also observed activation in additional regions associated with visuospatial 

memory, task performance and salience processing (Talairach & Tournoux, 1988) (See Table 

1). Activation clusters in our ROI – hippocampus, were small volume corrected and clusters 

that met FWE SVC criteria at p < .05 were identified as significant peaks. As expected, we 

identified significant peaks in hippocampus during both encoding and recognition.

Step 2—Next, to specifically examine the relationships between childhood income, 

hippocampal activation, and memory performance, we extracted beta weights from a 10mm 

sphere around the significant peaks in hippocampus for each individual subject, as defined in 

step 1, and ran a regression in SPSS with extracted hippocampal beta weight, childhood 

income, and their interaction as predictors of task accuracy (d′). This analysis controlled for 

other variables that were found to be correlated with childhood income, including verbal IQ 

(PPVT score) and adult income levels. For a similar approach, see Whittle et al., 2016. All 

regressors were mean centered and examined for outliers prior to analysis. Univariate 

outliers were defined as any value exceeding 3 standard deviations of the mean for that 

measure, and we examined Mahalanobis distance to screen for multivariate outliers. None of 

our data points met this criteria, thus all points of measurement were included in the 

analyses.

Step 3—Finally, as an exploratory analysis, we submitted each of the other regions 

associated with visuospatial memory identified in step 1 to the regression analysis described 

in step 2. This included activation in rostral anterior cingulate cortex (rACC), dorsal anterior 

cingulate cortex (dACC), insula, thalamus, visual cortex, posterior cingulate cortex (PCC), 

and dorsolateral prefrontal cortex (dlPFC; see Table 1).

3. Results

3.1 Descriptive Data

Across all participants, as expected, reported income was higher in adulthood as compared 

to childhood (t(42) = 3.4, p = .001). Income to needs ratio at age 9 was positively correlated 

with income to need ratio in adulthood (r = 0.32, p = .04), such that lower income at age 9 

predicted lower income levels in adulthood. Income to needs ratio at age 9 was also 

positively correlated with PPVT score (Dunn & Dunn 2007), such that those with lower 

childhood income levels had lower verbal IQ scores (r = 0.28, p = .04). Thus, we controlled 

for adult income to needs ratio and PPVT scores in all analyses. Income at age 9 was not 

correlated with item recognition (d′), response bias (C), or reaction time (ps > .09). RT was 

correlated with d′, such that faster reaction times predicted better item recognition (r = 0.30, 

p = .03).

3.2 Neural Activation during Encoding

During encoding, (task minus baseline contrast, p < .05 FWE SVC) a significant activation 

cluster was identified in the hippocampus (x, y, z = −33, −28, −14). Activation in this region 

was not related to income or recognition accuracy (d′), and the income x hippocampal 

activation interaction on recognition accuracy was not significant (ps > .09). Activation in 
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other brain regions associated with the Encoding task (Table 1a) were also not significantly 

related to income or recognition accuracy (ps > .06).

3.3 Neural Activation during Recognition

During recognition (task minus baseline contrast, p < .05 FWE SVC) a significant activation 

cluster was identified in the hippocampus, as expected (x, y, z = 33, −13, −11; Figure 2). The 

association between childhood income and hippocampal activation was at the cutoff for 

significance, B = −1.00, t = −2.0, p = .05. There was no significant association between 

recognition accuracy and hippocampal activation, B = −.42, t = −1.2, p = .25, thus the 

mediation model could not be formally tested, as the proposed mediator (hippocampal 

activation) was not associated with the proposed outcome (recognition accuracy). However, 

the interaction between childhood income and hippocampal activation on recognition 

accuracy (d′) was significant, B = 0.96, t = 2.6, p = .01, suggesting that the association 

between hippocampus activation and recognition accuracy differs across levels of childhood 

income. Specifically, as income increased, the association between hippocampal activation 

and accuracy became stronger and more positive, while as income decreased, the association 

between hippocampal activation and accuracy became more negative (Figure 3). Adult 

income and verbal IQ measured on the PPVT, which were entered as nuisance covariates in 

this analysis, were not associated with hippocampal activation (p’s > .69).

Activation in other brain regions associated with the Recognition task (Table 1b) were 

explored, to determine whether patterns of activation were associated with income or task 

performance. Activations in the task-related regions, including rACC, dACC, insula, 

thalamus, visual cortex, PCC, and dlPFC, were not associated with income or recognition 

accuracy.

3.4 Hippocampal Volume

We repeated the regression analysis described above to examine relationships between 

hippocampal volume (total, right, and left), childhood income to need ratio, and performance 

on the visuospatial memory task (d′). No relationships were observed between our variables 

of interest and hippocampal volume (p’s > .21).

4. Discussion

The purpose of this study was to investigate neural mechanisms underlying deficits in 

visuospatial memory in young adults with a history of childhood poverty. While the 

relationship between childhood income and visuospatial memory performance mirrored 

previous reports (Evans & Schamberg 2009; Herrmann & Guadagno 1997) of adults with a 

history of childhood poverty performing more poorly on a visuospatial recognition task, this 

relationship did not reach significance in our sample. This is not entirely unexpected, as our 

study involving complex neuroimaging, included less subjects than the studies that examined 

cognitive functions only.

The interaction we observed between childhood income and hippocampal function on 

visuospatial memory performance reveals a novel and interesting link between hippocampal 

function in association with visuospatial memory performance and history of childhood 
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poverty. We demonstrate here that toward higher levels of childhood income, there was an 

expected positive association between hippocampal activation and memory performance. 

Conversely, toward lower levels of childhood income, the association between memory 

performance and hippocampal activation was negative (i.e. more activation was associated 

with poorer memory performance). We did not detect an association between neural 

activation in the hippocampus during encoding and performance on the subsequent 

recognition task, across all the subjects, in contrast to a previous report of hippocampal 

engagement in both information encoding and recognition (Wong et al. 2013).

These findings suggest a possible “disconnect” between hippocampal activation as observed 

on fMRI and performance on a visuospatial recognition task in adults with a history of 

poverty. One relatively straight forward explanation of our findings is that while increased 

activation in the higher childhood income participants reflects effective activation of 

hippocampus (i.e. stronger activation leads to better performance), activation in the lower 

childhood income participants reflects effort associated with difficulty that is not leading to 

improved performance. These results link previous findings, which separately documented 

associations between poverty and poorer memory performance (Farah et al. 2006; Noble et 

al. 2007), and poverty and hippocampal structure (Hanson et al. 2011). These findings are 

also consistent with data from the animal literature that rodents raised in conditions to model 

poverty had less capacity for plasticity in hippocampus, which was related to poorer 

performance on memory and learning tasks (Hackman, Farah & Meaney 2010).

Exploratory analysis aimed to identify activation in other brain regions involved in encoding 

and recognition, associated with income or recognition accuracy. In our sample, multiple 

brain regions previously implicated in memory processes, like prefrontal cortex, inferior 

frontal gyrus, and visual cortex (Preston & Eichenbaum 2013; Wong et al. 2013) were 

activated during encoding and recognition tasks, but none of these regions were associated 

with childhood income or recognition accuracy.

There are important limitations of this study. Like the majority of studies examining early 

life risk factors, our study reveals links and associations, and should not be interpreted as 

evidence of causation. While the prospective and objective nature of the assessments confer 

confidence in our findings, they do not exclude the possibility of additional unaccounted 

factors contributing to the observed associations. Because poverty is a complex construct, 

encompassing multiple interacting variables like parental education, parenting style, school 

and home environment, nutrition, etc., it was not possible to isolate a single specific 

mechanism that influences brain function and cognitive performance. Mediation models 

may assist with this in the future, but our sample size provided limited power for this type of 

analysis. It is important to note here, that examining effects of isolated variables might not 

constitute the single best strategy either, since the interaction between multiple factors 

within the construct of childhood poverty might be the most salient contributing factor 

(Evans 2003). In addition, we used a “convenience sample” from an existing longitudinal 

prospective cohort that had been followed up already for 15 years, and income was only 

measured at four year intervals beginning at age 9. Therefore, we chose the earliest possible 

data point available for this cohort. Although income in our sample and similar samples 

tends to remain stable over time (Evans & Schamberg 2009), we are unable to provide direct 
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evidence of early childhood poverty prior to age 9. We did not examine performance on 

other (non-visuospatial) memory tasks or other cognitive tasks, and do not know whether 

deficits in performance and/or the related differences in brain function would extend to other 

tasks. In addition, since subjects were tested only once as young adults, we were unable to 

investigate whether the reported deficits would persist into later adulthood.

Despite the limitations, this is the first study to our knowledge to document differences in 

the associations between brain function and visuospatial memory performance in healthy 

young adults as a function of childhood income levels. We used prospective data collection 

over the course of a longitudinal study, which is a significant advantage over previous 

studies using retrospective data. Our real time data collection allowed for assessment of 

income at multiple time points across development. Although it has long been known that 

poverty is related to a number of negative outcomes in adulthood, this is the first study 

demonstrating associations between visuospatial memory deficits associated with 

differences in hippocampal function during encoding and recognition, occurring independent 

of current adult income. Given prior reports of hippocampal recruitment associated with 

better memory performance (Wong et al. 2013; Bergmann et al. 2016), these results suggest 

that early experiences of poverty set disadvantaged children on a trajectory of altered 

neurological functioning that, among other things, may result in compromised memory later 

in life. Future investigations will need to examine specific mechanisms underlying the links 

between poverty, neural function, and cognitive performance.
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Figure 1. 
Example trials from Encoding and Recognition
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Figure 2. 
Neural activation during recognition. Activation in the circled hippocampal region of interest 

was extracted for further analysis.
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Figure 3. 
Results of regression analysis demonstrating variations in the association between accuracy 

and hippocampal activation across income levels. For illustrative purposes, we divided 

participants into two groups (non-poverty, poverty) based on the continuous income 

measure, to graph the income x hippocampal function interaction on d′. The non-poverty 

group (blue dots) represent adults with no history of poverty, while the poverty group (red 

dots) represent those who reported living below the poverty line at age 9.
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Table 1

Significant regions of activation during A) Encoding and B) Recognition (k = 10 contiguous voxels, alpha 

level = .001uncorr). Abbreviated regions include anterior cingulate cortex (ACC), dorsal ACC (dACC), rostral 

ACC (rACC), middle frontal gyrus (MFG), posterior cingulate cortex (PCC), prefrontal cortex (PFC) 

dorsolateral PFC (dlPFC), inferior frontal gyrus (IFG), orbitofrontal cortex (OFC).

A. Encoding

All Trials - Baseline

Region x, y, z z k

Insula −39, −4, 10 7.07 185

dlPFC −36, −25, 52 12.5 848

Hippocampus −33, −28, −14 4.13 16

MFG −24, 32, 43 −5.62 96

dACC −3, 8, 49 9.91 415

PCC 3, −37, 43 −7.54 1391

Visual Cortex 6, −76, 1 12.73 2539

rACC 9, 50, −8
24, 32, 37

−6.73
−5.50

767
185

B. Recognition

All Trials - Baseline

Region x, y, z z k

dlPFC −45, 5, 37 10.24 513

Insula −39, −4, 7 5.07 179

Thalamus −18, −31, 1 7.59 308

PCC −15, −70, 52 −9.04 872

rACC −12, 47, −5 −5.19 508

dACC −6, 11, 46 11.76 282

Visual cortex −3, −91, 4 9.57 3243

Hippocampus 33, −13, −11 4.08 41
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