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Abstract

Myalgic encephalomyelitis (ME) is a complex, heterogeneous illness of unknown etiology. The 

search for biomarkers that can delineate cases from controls is one of the most active areas of ME 

research; however, little progress has been made in achieving this goal. In contrast to identifying 

biomarkers that are directly involved in the pathological process, an immunosignature identifies 

antibodies raised to proteins expressed during, and potentially involved in, the pathological 

process. Although these proteins might be unknown, it is possible to detect antibodies that react to 

these proteins using random peptide arrays. In the present study, we probe a custom 125,000 

random 12-mer-peptide microarray with sera from 21 ME cases and 21 controls from the U.S. and 

Europe and used these data to develop a diagnostic signature. We further used these peptide 

sequences to potentially uncover the naturally occurring candidate antigens to which these 

antibodies may specifically react with in vivo. Our analysis revealed a subset of 25 peptides that 
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distinguished cases and controls with high specificity and sensitivity. Additionally, BLAST (Basic 

Local Alignment Search Tool) searches suggest these peptides primarily represent human self-

antigens and endogenous retroviral sequences and to a minor extent, viral and bacterial pathogens.
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Introduction

Myalgic encephalomyelitis (ME), also commonly referred to as chronic fatigue syndrome or 

ME/CFS, is a heterogeneous illness characterized by a number of physical symptoms and 

comorbid conditions including neurocognitive dysfunction, systemic inflammation, innate 

immune activation, and gastrointestinal abnormalities [1]. Current estimates suggest that as 

many as 2.5 million individuals suffer from ME, with an annual productivity loss in excess 

of $9 billion in the United States alone, underscoring the importance of ME as a major 

public health concern both economically and socially.

Exactly what causes ME is unknown at this time; however, a number of potential triggers are 

associated with the development of the disease including physical trauma, emotional 

distress, infection, and chemical exposure [2–4]. Familial studies and genetic screening 

studies indicate that a genetic predisposition also plays an important role in the 

pathophysiology of ME [5–8]. Presently, there are no unique physical symptoms or 

reproducible biomarkers that can delineate this disease. For this reason, a diagnosis can only 

be made when an individual meets a series of inclusion and exclusion criteria, typically 

through a lengthy and expensive diagnostic process [9, 10]. Although the search for potential 

biomarkers has been one of the most active areas of ME research, little progress has been 

made in achieving this goal. Here, we report the progress in applying the immunosignature 

technology to this problem.

While not universally prevalent, a number of clinical observations such as natural killer 

(NK) cell dysfunction, viral reactivation, and inflammatory cytokine production have been 

consistently reported in the ME literature over the years and support an organic basis for this 

disease [11–15]. However, the mechanisms responsible for these observations remain 

elusive, but, if identified, this knowledge would lead to a greater understanding of ME 

pathology, potentially leading to effective treatment options.

Antibodies are glycoproteins, produced by B-lymphocytes (B-cells) and plasma cells, in 

response to foreign molecules (antigens), such as those found in bacteria and viruses. As the 

central component of humoral immunity, they limit the spread of infection by binding to and 

neutralizing the pathogen or by activating other adaptive immune responses. B-cells also 

produce antibodies directed against self-antigens, but they are normally removed in the bone 

marrow early in their development. Although on rare occasion, however, this system fails 

leading to autoimmunity.
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Identifying the antigens to which antibodies react with during the course of a disease may 

lead to a greater understanding of the humoral immune response associated with that 

disease. For instance, ascertaining a dominant epitope may help in the development of an 

effective vaccine or identifying reactive antigens that are homologous to self-proteins may 

reveal autoimmune pathology [16]. Immunosignatures (IMS) are screens of serum 

antibodies using random peptide arrays, and this technique has been used successfully to 

identify biomarkers in diseases that are difficult to diagnose such as cancer, valley fever, and 

Alzheimer’s disease [17–19].

In the present study, we utilized a microarray consisting of 125,000 random peptide 

sequences to screen the serum of healthy control subjects and those who present with 

symptoms consistent with a diagnosis of ME. Our data identified an IMS that accurately 

delineated ME cases from controls with 92.9% specificity and 97.6% sensitivity. 

Additionally, BLAST searches suggest that these peptides have sequence homology 

primarily to human self-antigens and endogenous retroviral sequences, but also to a minor 

extent, viral and bacterial antigens. This proof-of-concept study potentially represents the 

first step toward a specific and sensitive diagnostic for ME and also may provide important 

knowledge regarding the pathophysiology of the disease.

Materials and Methods

Study subjects

For this study, a total of 42 subjects were recruited from across the United States (U.S.) and 

Europe. ME cases consisted of 11 U.S. and 10 European subjects and controls consisted of 

12 U.S. and 10 European subjects. Informed consent was obtained from each participant 

according to a human subjects protocol approved by the University of Nevada Biomedical 

Institutional Review Board (protocol B12-031). The cases identified as having ME were 

physician diagnosed and met the Carruthers et al. criteria for ME as well as the 1994 Fukuda 

et al. criteria for CFS [9, 10, 20].

Microarray

Serum samples from respective cases and controls were diluted 1:1 in glycerol and stored at 

−20 °C until analyzed. The 125,000 random 12-mer peptide microarrays were manufactured 

according to the methods of Leguti et al. [21] and blocked in 0.5% BSA (Sigma, St. Louis, 

MO) and 1XPBS, pH 7.2. Samples were diluted to 1:1000 in 1XPBS, 0.5% BSA, 0.05% 

Tween20 pH 7.2 and exposed to the microarrays for 1 hr at 37 °C with gentle agitation. 

After 1 hr, the arrays were washed in distilled water 3×, and incubated with 4 nM of 

AlexaFluor 555-conjugated goat-anti Human IgG (H & L), and 5 nM of AlexaFluor 647-

conjugated goat anti-human IgM heavy chain (Thermo Fisher) for 1 hr at room temperature, 

then washed 3× in distilled water, 1× in 90% isopropyl alcohol, and dried in a centrifuge. 

Slides were scanned on an Innopsys 1100 scanner at 0.5 um resolution, and TIFF images 

were aligned in GenePix 6.0.
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Data analysis

Peptide expression data were subjected to the following quality control steps. First, array 

images were evaluated for clearly identifiable spatial variation, including streaks and 

bubbles. Peptide array background values were subtracted from signal values in both Cy3 

and Cy5 channels using simple background subtraction. Before normalization, peptides with 

an incidence of high-background values were filtered. Specifically, peptides having more 

than 50% incidence in either channel of negative background-corrected values (signal-

background) were excluded. The remaining raw values were normalized first within each 

array via the median method, and then between arrays using the Aquantile method, with the 

limma package in R [22].

Normalized data were then averaged across replicated peptides and replicated samples. 

Peptides were again filtered after normalization and averaging for high incidence of low 

signal intensities with respect to background intensities. (These are seen as missing values in 

the data, as normalization includes a logarithmic transform that is not applicable to negative 

values.) Specifically, any peptide having more than 25% missing values for either cohort was 

excluded.

This final data set (103,385 peptides) was analyzed using the data mining algorithm Random 

Forest [23] in a progressive stepwise process of reduction using each respective peptide 

sequence as the predictive variable and subject status (ME case or control) as the target 

variable. For each iteration, 5000 random decision trees were built using ½ the square root 

of N with a minimal of two parental nodes at each branch. Small classes were upweighted to 

equal the size of the largest target class and “out of bag” testing with replacement was 

employed to test the model. In the first step, the top 30% of peptides were selected and 

rescreened; then the top 40% of peptides were rescreened. In a final step, multiple iterations 

were preformed systematically removing the least contributing peptides until the signature 

did not improve.

In order to potentially identify the biological antigens to which the synthetic random 

peptides represent, the penultimate iteration, consisting of 233 peptides, were searched 

against viral, bacterial, human, and endogenous retroviral proteins, each derived from the 

NCBI nr database using the ncbi-blast+ BLASTP protein sequence similarity search tool (v. 

2.4.0). The virus protein database was produced by filtering nr for virus species with human 

hosts as recorded at NCBI Taxonomy. Similarly, the bacterial protein database was 

generated by restriction of nr to the subset of bacterial species identified within the PATRIC 

database to be associated with human hosts (http://www.patricdb.org). The human protein 

database contained those found in NCBI RefSeq. The HERV protein database was generated 

by the combination of nr proteins self-identified in human endogenous retroviral lineages 

with a set of HERV-like proteins reported as proteins of Homo sapien origin. BLAST 

parameters were set as follows: wordsize 2; window_size 15; threshold 16; PAM30 scoring 

matrix; gapopen 9; gapextend 1; evalue 1000; maximum reported alignments per high-

scoring pair (HSP) of query/subject (max_hsps) 1; and minimum query coverage by HSP 

percent (qcov) 34. Additional BLAST output format options were set to record NCBI 

taxonomic identifiers (taxids) of proteins and the BLAST traceback operations (btop), a text 

string that encodes the alignment, mismatch, and gap information. Hits lacking any 
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ungapped subalignment of five or more amino acid identities were identified using btop 

information and excluded from the analysis set. Species and genus taxa of subject proteins 

were mapped to each protein from the reported taxids with ETE Toolkit (http://

etetoolkit.org; v3.0.0b35); a Python framework for phylogenetic tree analysis. In order to 

limit biasing as a result of protein size, we implemented a simple metric adjustment (Adj.) 

whereby the number of amino acids in a given protein was divided by the number of 

peptides having homology to that protein. Potentially conserved peptide motifs were 

investigated using the multiple sequence alignment tool Clustal X [24].

Results

Classification by Random Forest

In order to test whether differences exist between the antibody profiles of ME cases and 

controls, analysis was carried out using the Random Forest (RF) classification algorithm. 

The RF algorithm uses an ensemble of unpruned classification or regression trees produced 

through bootstrap sampling of the training data set and random feature selection in tree 

generation. Prediction is made by a majority vote of the predictions of the ensemble. The 

strength of the analysis was evaluated by “out of bag” sampling with replacement of the 

original data. RF is an attractive method since it handles both discrete and continuous data; it 

accommodates and compensates for missing data; and it is invariant to monotonic 

transformations of the input variables. The RF algorithm is well suited for peptide 

microarray analysis in that it can handle highly skewed values well and weighs the 

contribution of a given peptide according to its relatedness with others.

Through multiple iterations of RF processing, we identified a signature of 25 peptides that 

was able to identify ME cases from controls with 92.9% specificity and 97.6% sensitivity 

(Table 1). Each peptide was ranked according to its contribution to the signature, with the 

top peptide being ranked at 100 and subsequent peptides ranked relative to this peptide. The 

relative contribution of these 25 peptides and their sequence is given in Figure 1. We 

conclude that, at least based on the analysis with this small sample set, IMS can distinguish 

ME from non-ME samples.

Homology BLAST search and sequence alignment

In order to potentially identify the biological antigens to which the synthetic random 

peptides may represent, we developed an analytical pipeline and used this to search the 233 

peptides from our penultimate RF iteration against the human proteome. Additionally, we 

have previously reported that gastrointestinal plasmacytoid dendritic cells (pDCs) produce 

proteins that are consistent with human endogenous retroviral sequences [25]; therefore, we 

also included these sequences in our search. Finally, we used this pipeline to search for 

homology to bacterial and viral antigens of pathogens known to infect humans.

Our initial analysis identified over 5,000 human protein sequences that met our search 

criteria. When filtered to limit those proteins that were identified by four or more random 

peptides, this number was reduced to 166 proteins. In an attempt prevent overrepresentation 

of larger proteins, which have a greater chance of having homologous sequences to a given 
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random peptide, we used the simple metric of dividing the number of amino acids of the 

protein by the number of peptides that were homologous to that protein. The top 30 human 

proteins, adjusted for size, are given in Table 2. Among the likely most relevant human 

proteins identified in this search were proteins involved in mitochondrial function (AMACR, 

ETFDH, SLC25A40), lipid metabolism (AGK, ACOXL, CEL SEC23A), neurological 

function (APBA3, ASIC1, GABRB3, STAC) and immune responses (CD274, LGMN, MX1, 

MX2).

Previous studies have proposed that human endogenous retroviral (HERV) elements may be 

associated with neurological diseases including multiple sclerosis [26], amyotrophic lateral 

sclerosis [27], and schizophrenia [28]. With this, and our previous studies in mind, we 

included HERV sequences in our homology search. Nine HERV sequences were identified 

with sequence homology to at least two of our top 233 random peptide sequences; the most 

relevant HERV sequence showed homology to seven of the 233 peptides (Table 3). 

Importantly, the seven sequences were not randomly represented throughout the HERV 

sequence but largely converged the same position in the protein, as revealed by Clustal X 

alignment (Figure 2). Further analysis showed that this conserved motif is well represented 

in 40 of the 233 random peptides (Figure 3), suggesting that this motif significantly 

contributes to the observed IMS.

Immunoreactivity to a given synthetic random peptide may be the result of cross-reactivity 

to pathogen-derived antigens encountered during an infection. To explore this possibility, we 

surveyed our top 233 random peptides against the proteomes of bacteria and viruses known 

to infect humans. As before, the proteins were filtered to limit those that were hit by multiple 

peptides; however, the threshold was reduced to three peptides. When adjusted for protein 

size, the six most significant viral proteins with sequence homology to our random peptides 

were the gp120 protein of HIV (six hits); followed by the polyprotein of GB virus Ccpz 

(three hits); the envelope glycoprotein I of Human herpesvirus 2 (four hits); the 

Phosphoprotein of Canine distemper virus (four hits); the RNA-dependent RNA polymerase, 

Rodent Paramyxovirus (three hits); and finally the outer capsid protein of Porcine rotavirus 

C (three hits). When adjusted for protein size, the most significant bacterial peptides with 

sequence homology to our top random peptides were a hypothetical protein from Serratia 
marcescens (four hits); a diaminopimelate aminotransferase from Paenibacillus senegalensis 
(five hits); the peptidase M16 of Anaerofustis stercorihominis (three hits); the type IV 

secretion protein Rhs of Hafnia alvei (three hits); and the SusC/RagA family TonB-linked 

outer membrane protein of Bacteroides nordii (three hits). Numerous other human pathogens 

were identified that contained homologous sequences to our random peptides, but were 

excluded because of our adjusting metric (data not shown).

Discussion

In this report we present a “proof of concept” study that random peptide arrays show utility 

in delineating ME cases from healthy controls. The ultimate goal of this work is the 

development of a non-subjective clinical tool for diagnosing patients with ME. To this end, 

we utilized a random-peptide array, which has previously produced IMS for other chronic 

and complicated diseases that are difficult to diagnose such as cancer, valley fever, and 
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Alzheimer’s disease [17–19]. Given the complexity and the size of the data set, we elected to 

use the machine learning data-mining algorithm Random Forest to identify potential 

candidates that may lead to a diagnostic signature. Using “out of bag” testing with 

replacement, our model was able to predict cases and controls with 92.9% specificity and 

97.6% sensitivity using 25 peptides. Finally, we developed an analytical pipeline to BLAST 

these peptides against the human, HERV, virus and bacteria proteomes for sequence 

homology, in order to explain the underpinnings of the IMS. This pilot study supports the 

premise that immunosignatues represent a viable approach to achieve our overarching goal 

of developing a diagnostic tool, and further potentially identify naturally occurring antigens 

to these antibodies.

A number of studies have attempted to identify a reproducible biomarker for ME [29–33]. In 

particular, serum or plasma cytokine and chemokine analyses have shown promise, in that 

several investigators, including our group, have reported clear differences when comparing 

ME cases to healthy controls [11, 15, 34–36]. Additionally, cytokine differences may 

provide valuable information regarding the pathophysiology of the disease. For instance, 

previous studies have suggested that ME is characterized by a Th2 shift [37, 38]; an 

observation that may explain the prevalence of persistent viral infections associated with this 

disease [39]. However, most cytokines that are produced in response to innate immune 

activation, as is seen with ME, are not consistently expressed [40]. In contrast, serum 

antibodies are much more stable. For example, most IgG subclasses have half-lives of more 

than 20 days [41].

Immunosignatures have been used successfully to provide understanding to the 

pathophysiology of chronic diseases. For example, Restrepo et al. reported that plasma 

antibodies from subjects with Alzheimer’s disease (AD) could be used to provide an IMS 

that can distinguish AD cases from non-AD controls reproducibly over time [42]. It was also 

shown that eight of the 50 signature random peptides have the ability to react with antibodies 

initially raised against native amyloid-β [19], a protein shown to be significantly involved in 

Alzheimer's disease [43].

These observations raise the possibility that an IMS may provide clues to the 

pathophysiology of ME. However, in contrast to AD, there are no proteins known to be 

ubiquitous in the pathological process of ME with which to test. Although we have 

identified a number of peptides that accurately identify ME cases from controls, divining 

naturally occurring homologous peptides is challenging. An antibody typically covers 

approximately 15 amino acids of its cognate epitope; however, only about five or six amino 

acids contribute to the ΔG° of antigen/antibody binding [44, 45] and these amino acids may 

not necessarily be contiguous. Therefore, the natural antigen is likely to be very short and 

may contain gaps in the primary sequence. In an attempt to overcome these obstacles, we 

developed a custom analytical pipeline to conduct BLAST searches against the NCBI human 

protein database. In addition to annotated human proteins, we also queried against HERV 

proteins as well as proteins from bacteria and viruses known to infect humans. As it was 

probable that very large proteins would be more likely to be identified over smaller proteins 

by random chance, we implemented a metric to adjust for this issue. Interestingly and 

somewhat unexpectedly, we identified a number of protein hits in the human database. 
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Previous studies by Fluge et al. showed that anti-CD20 B-cell depleting drug, Rituximab, 

showed efficacy in treating subjects with ME [46, 47]. Although the mechanism responsible 

for this observation remains to be elucidated, it does suggest that self-reactive antibodies 

may contribute to the pathophysiology of this disease. Indeed, several studies have reported 

self-reactive antibodies in subjects with ME [48–50] so our results are potentially consistent 

with this supposition.

Previously, we reported that gut-associated pDCs in subjects with ME were immunoreactive 

to antibodies that react with endogenous retroviral proteins [25]. Other studies have also 

reported retroviral protein sequences in subjects with neurological and autoimmune disease; 

however, the meaning of these observations has yet to be resolved [28, 51, 52]. Nonetheless, 

these sequences, if uniquely expressed in a disease state, may prove to be a useful 

biomarker. We thus included the HERV databases in our query space and observed seven of 

our significant peptides displayed sequence homology to the HERV-H LTR-associating 

protein 1 precursor (HHLA1). If dispersed through the protein, the probability of seven 

random peptides hitting this sequence would be exceedingly small. However, upon further 

examination, it was discovered that all seven peptides represented a largely conserved 

sequence (LSGVLS) in the HERV protein. A similar and overlapping conserved sequence 

motif (GVALSG) was observed in at least 40 of the 233 top peptides identified by our RF 

analysis. This observation raises two important issues. First, the discovery of this conserved 

peptide motif may represent a critical discovery in resolving the pathophysiology of ME, 

assuming it is confirmed in other cohorts and it is shown to be unique to ME. Secondly, 

because this motif is short and present in many pathogens we cannot say with absolute 

certainty that we have identified the naturally occurring antigen that gave rise to the 

antibodies that react with this motif. When this sequence is considered in isolation, we have 

observed it within several other proteins, in particular the bacteria genus Burkholderia and 

also in the human protein calcium voltage-gated channel protein CACNA2D3 (Table 2). 

Further studies will be required to identify with greater certainty the native antigen to this 

conserved motif.

Lastly, we BLASTed the 233 random peptides identified by RF against the proteomes of 

viruses and bacteria known to infect humans. The most prevalent viral hit was to the gp120 

protein of Human immunodeficiency virus 1. This sequence was homologous to the 

conserved motif; therefore, it is likely the result of cross-reactivity to antibodies raised to 

HERVs or another similar sequence. Of the bacterial hits that have been previously 

associated with ME the type IV secretion protein Rhs of Hafnia alvei was identified in our 

search. H. alvei is Gram-negative, facultative anaerobic intestinal bacteria. A previous study 

by Maes et al. reported that ME cases have elevated serum IgA and IgM antibodies to H. 
alvei, that likely result from intestinal bacterial translocation [53]. Given the diversity of 

gastrointestinal bacteria, it may be possible that antibodies raised to translocated bacterial 

products could potentially cross-react with self-proteins. Indeed, a number of studies have 

identified gastrointestinal comorbidity and/or an altered gut microbiome as a potential 

associating factor with ME [54–58]. However, at this point, it has yet to be determined if 

these observations are cause or effect.
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In conclusion, the data presented in this report represents a “proof-of-concept” study that 

random peptide arrays show utility in delineating ME cases from healthy controls. 

Additionally, our study has identified a conserved peptide motif that is preferentially 

recognized by serum antibodies in a large number of ME cases over that of healthy controls. 

This study warrants further investigations using additional ME cohorts as well as cohorts of 

subjects with other chronic diseases with overlapping symptomology.
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Figure 1. 
Random Forest Prediction. Horizontal bars represent the relative importance that each 

random peptide contributes to the final diagnostic signature.
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Figure 2. 
Clustal X alignment of seven random peptides homologous to HERV-H LTR-associating 

protein 1 precursor.
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Figure 3. 
Clustal X Alignment. Clustal X alignment of 40 random peptides showing the largely 

conserved motif of GVALSG.
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Table 1

Results of 21 ME cases and 21 controls each screened for reactivity with IgG and IgM.

Actual
Class

Total
Class

Percent
Class

Predicted Classes

Control
N = 44

ME Case
N = 44

Control 42 97.62% 41 1

ME Case 42 92.86% 3 39

Total: 84

Average: 95.24%

Overall % Correct: 95.24%

Specificity 92.86%

Sensitivity/Recall 97.62%

Precision 93.18%

F1 statistic 95.35%
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