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Abstract

Low-dose X-ray computed tomography (LDCT) imaging is highly recommended for use in the 

clinic because of growing concerns over excessive radiation exposure. However, the CT images 

reconstructed by the conventional filtered back-projection (FBP) method from low-dose 

acquisitions may be severely degraded with noise and streak artifacts due to excessive X-ray 

quantum noise, or with view-aliasing artifacts due to insufficient angular sampling. In 2005, the 

Correspondence to: Jianhua Ma, jhma@smu.edu.cn.

CONFLICT OF INTEREST DISCLOSURE
The authors have no relevant conflict of interest to disclose.

HHS Public Access
Author manuscript
Med Phys. Author manuscript; available in PMC 2018 March 01.

Published in final edited form as:
Med Phys. 2017 March ; 44(3): 1168–1185. doi:10.1002/mp.12097.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



nonlocal means (NLM) algorithm was introduced as a non-iterative edge-preserving filter to 

denoise natural images corrupted by additive Gaussian noise, and showed superior performance. It 

has since been adapted and applied to many other image types and various inverse problems. This 

paper specifically reviews the applications of the NLM algorithm in LDCT image processing and 

reconstruction, and explicitly demonstrates its improving effects on the reconstructed CT image 

quality from low-dose acquisitions. The effectiveness of these applications on LDCT and their 

relative performance are described in detail.
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1. Introduction

X-ray computed tomography (CT) is widely used in the clinic for diagnosis, screening, 

image-guided radiotherapy, and image-guided surgeries. CT scan is a radiation-intensive 

procedure 1, and its potential harmful effects including genetic and cancerous diseases have 

raised growing concerns in the medical physics community 2. Hence, many strategies have 

been proposed for dose reduction in CT scan to decrease radiation-associated risks 3–5. In 

addition to hardware improvements in CT systems, two additional cost-effective strategies 

have also been widely explored: (1) lowering the X-ray tube current and exposure time 

(milliampere-second (mAs)) or the X-ray tube voltage (kilovoltage peak (kVp)) settings to 

reduce the X-ray flux toward the patient (i.e., low-flux acquisition); (2) reducing the number 

of projection views per rotation (i.e., sparse-view acquisition). The first strategy would 

inevitably increase the projection data noise, and the resulting image by the conventional 

filtered back-projection (FBP) method (equipped on most of commercial CT systems) may 

be degraded with excessive noise and streak artifacts due to X-ray quantum noise. The 

second strategy would produce undersampled projection data and the image reconstructed 

by the FBP method usually suffers from view-aliasing artifacts due to insufficient angular 

sampling. The two strategies may be combined, leading to both noisy and undersampled 

projection data and further degrading the corresponding CT image reconstructed by the FBP 

method.

Numerous methods have been proposed to improve CT image quality from low-dose 

acquisitions, as illustrated in Fig. 1. For low-flux scanned data, the methods can work in 

either the image domain or the projection domain. One category of the image domain 

methods is the application of edge-preserving filter directly to the FBP reconstructed 

image 6–11. However, because noise and streak artifacts in the CT image are typically non-

stationary and unable to be modeled with a general distribution, it is difficult to effectively 

suppress them while fruitfully preserving fine structures and details. Another category 

includes regularized image restoration methods, which restore the FBP reconstructed image 

by optimizing an objective function consisting of a quadratic data-fidelity term and a 

regularization term 12, 13. The third category includes statistical image reconstruction (SIR) 

methods, which reconstruct the CT image by optimizing a penalized maximum likelihood 

(pML) criterion or penalized weighted least-squares (PWLS) criterion in the image 
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domain 14, 15. The projection domain methods can either denoise the projection data with 

edge-preserving filter 16–21 or estimate the ideal noiseless projection data by optimizing a 

pML/PWLS criterion in the projection domain 22–25. The denoised/restored projection data 

can then be reconstructed with the analytical FBP method. For sparse-view scanned data, the 

methods generally work in the image domain. The first method category attempts to 

suppress view-aliasing artifacts in the FBP reconstructed image with an edge-preserving 

filter, but is relatively ineffective when the view-aliasing artifacts are severe 26, 27. The 

second category includes regularized image restoration methods that are exactly the same as 

those of low-flux scanned data. The third category includes iterative reconstruction methods 

that typically exploit the compressed sensing or other sparse representations as prior 

knowledge to reconstruct CT image 28–30.

The nonlocal means (NLM) algorithm was originally proposed as a non-iterative edge-

preserving filter to denoise natural images corrupted by additive white Gaussian noise 31, 32. 

Essentially, it is one of the neighborhood filters which denoise each pixel with a weighted 

average of its neighboring pixels according to similarity. However, differently from previous 

neighborhood filters, the NLM filter calculates the similarity based on patches instead of 

pixels. The patch of a pixel can be defined as a squared region centered at that pixel. Using 

patch strengthens the NLM filter because the intensity of a single pixel can be very noisy. 

The authors compared the performance of the NLM filter with an array of denoising 

algorithms including the Gaussian filter, anisotropic filter, total variation (TV), Yaroslavsky 

neighborhood filter, and observed noticeable improvements over them. Motivated by this 

success, NLM-based regularization models 33–35 were also proposed and applied to various 

inverse problems including image denoising, image deblurring, image inpainting, image 

reconstruction, and image super-resolution reconstruction. Inspired by its success in natural 

image scenarios, researchers also extended its use to medical images including MRI 36–40, 

ultrasound 41, 42, PET 43–46, SPECT 47, and X-ray CT. Because noise distribution and other 

degradations may vary for different image types, special adaptation may be needed for each 

one of them. We specifically review the applications and adaptations of the NLM algorithm 

in low-dose X-ray CT (LDCT), and demonstrate how it improves the reconstructed CT 

image quality from low-dose acquisitions.

The remainder of this paper is presented as follows. In Section 2, we provide an overview of 

the NLM algorithm as a filter or regularization model. In Section 3, we explicitly illustrate 

different applications of the NLM algorithm in LDCT from low-flux or sparse-view 

acquisitions, for both three-dimensional and four-dimensional scans. After discussing 

several issues, we provide conclusions in Section 4.

2. Overview of the NLM algorithm

2.A. NLM filter

The NLM filter was originally proposed to denoise the natural images corrupted by additive 

white Gaussian noise 31, 32. The filter exploits the high degree of redundancy that typically 

exists in an image, and reduces image noise by replacing the intensity of each pixel with a 

weighted average of its neighbors according to similarity. Although the similarity 

comparison can be performed between any two pixels within the entire image, in practice, 
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this is typically limited to a fixed neighboring window area (called search-window (SW), 

e.g., 17×17 in two-dimensional (2D) case) of a target pixel for computational efficiency. 

Mathematically, the NLM filter can be described as:

(1)

where the vector û represents the noisy image to be smoothed, k denotes the pixel index 

within the SW of pixel j, wjk(û) is the weighting coefficient and satisfies the conditions 

0≤wjk(û)≤1 and Σk∈SWj wjk (û) = 1, and NLM(ûj) denotes the intensity of pixel j after the 

NLM filtering.

However, differently from previous neighborhood filters, the NLM filter calculates similarity 

based on patches instead of pixels. The patch of a pixel can be defined as a squared region 

centered at that pixel (called patch-window (PW), e.g., 5×5 in 2D case). Let P(ûj) denote the 

patch centered at pixel j and P(ûk) denote the patch centered at pixel k. The similarity 

between pixels j and k depends on the weighted Euclidean distance of their patches, 

, computed as the distance between two intensity vectors in high 

dimensional space with a Gaussian kernel (a>0 is the standard deviation of the Gaussian 

kernel) to weight the contribution to each dimension. The exponential function converts the 

distance to the weighting coefficient that indicates the interaction degree between two pixels. 

The normalized weighting coefficient is given as:

(2)

where h is the filtering parameter that controls the exponential function decay and the 

weighting coefficient. When h is small, the image tends to be weakly smoothed; when h is 

large, the image tends to be strongly smoothed. As previously reported 31, 32, the filtering 

parameter h is a function of the standard deviation of Gaussian noise in the image. And if we 

further consider the size of the patch-window, the filtering parameter h can be given as 40:

(3)

where τ and η are free scalar parameters, σ is the standard deviation of Gaussian noise, and |

PW| denotes the size of the patch-window.

2.B. NLM-based regularization models

Motivated by the success of the NLM filter, several NLM-based regularization models were 

also proposed for various inverse problems including image denoising, deblurring, and 

reconstruction. The first regularization model takes a general form as 33:
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(4)

where ϕ denotes a positive potential function and one common choice is ϕ(Δ) = Δ2/2, and ũ 
∈ ℝ J×1 represents a reference image. The weighting coefficient wjk(ũ) is computed on the 

reference image and given as:

(5)

The regularization in Eq. (4) is similar to the Markov random field (MRF) model-based 

regularization 48, but a different method is used to calculate the weighting coefficient. In this 

regularization, the weighting coefficient is smaller when the patch distance of pixel j and 

pixel k is larger, and vice versa. By this way, the sharp edges in the image can be better 

preserved.

Another general form of the NLM-based regularization is given as 34:

(6)

This regularization model is similar to that in Eq.(4), but the idea varies slightly. This model 

assumes that the intensity of each pixel can be approximated by a weighted average of its 

neighbors according to similarity, which is also the original thought of the NLM filter.

The third general form for the NLM-based regularization is described as 35:

(7)

This regularization model is inspired by both the NLM filter and the compressed sensing 

theory. With p=1, the regularization in Eq. (7) becomes the nonlocal TV regularization 49.

The weighting coefficients wjk(ũ) in Eqs. (4), (6), and (7) are calculated from reference 

image ũ. For the image denoising or deblurring problem, the current noisy or blurred image 

could be used as the reference image, and for tomographic image reconstruction, the FBP 

reconstructed image was explored to serve as the reference image 49. However, because the 

quality of the reference image is generally low, the resulting regularization may lead to a 

suboptimal solution.
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Alternatively, investigators modified the above regularization models by replacing wjk(ũ) 

with wjk(u), described as 43, 50:

(8)

This way, the regularization models eliminate the need for a specific reference image, and 

the weighting coefficients are computed on the unknown image u. However, direct 

optimization of the resulting objective function can be complicated. In practice, an empirical 

one-step-late implementation is usually employed in an iterative approach to obtain the 

solution. In this implementation, the weighting coefficients are computed on current image 

estimate, and are considered constants when the image is updated 43, 50. Although this 

strategy would inevitably increase the computational load, it may produce a more accurate 

solution as compared with the use of a low quality reference image.

3. Applications of the NLM algorithm in LDCT

The pixel intensity of a CT image reflects the X-ray attenuation coefficient for the scanned 

object or patient. Therefore, the conventional notation μ will be used instead of u which 

representing a general image. In this section, we explicitly review the various applications of 

the NLM algorithm in LDCT, for both three-dimensional and four-dimensional CT 

scanning.

3.A. Three-dimensional CT scanning

Three-dimensional CT scanning refers to both fan-beam CT and cone-beam CT scanning 

(either in axial or helical acquisition mode) commonly used in the clinic to produce 

tomographic images of specific patient volumes.

1. NLM-based image filtering

(1) Simple image filtering: The NLM filter can be directly applied to the FBP reconstructed 

low-flux CT images 6–11, which are typically degraded with noise and streak artifacts, as 

shown in Fig. 2(b). However, because noise and streak artifacts are non-stationary and 

cannot be modeled with a general distribution, it is difficult to determine the standard 

deviation σ in Eq. (3). The filtering parameter h is usually set as a global constant for the 

entire image, although this setting may lead to a suboptimal filtering result, because a 

spatially-invariant filtering may be too strong for some regions (blurring much) but too weak 

for others (filtering little) across the image 10. Recently, Li et al analytically derived a local 

noise level estimation method for low-flux CT images by considering noise propagation 

from the projection data to the FBP reconstructed images 10. Based on the estimated noise 

map, the filtering parameter h employed for each pixel can be adjusted proportionally to the 

local noise level:
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(9)

where σj denotes the estimated noise level of pixel j. This is one way to introduce spatial 

adaptivity into traditional NLM filtering, and this spatially-variant NLM filtering has 

demonstrated improved performance for low-contrast objects 10. Thaipanich and Kuo 

suggested to adaptively adjust the SW according to the local structure information as 

follows: a large SW in the smooth regions, a small SW in strong edge/texture regions, and a 

medium window for the other regions 51. This may be another way to introduce spatial 

adaptivity into NLM filtering, but the discrimination of the three different regions may be 

time-consuming and technically challenging, especially when the CT images are severely 

degraded. The third way to incorporate spatial adaptivity is to employ a fixed SW but 

exclude some patches that are very different from the patch of the central pixel. The 

selection process can be expressed as 40, 52:

(10)

where μLD ∈ ℝJ×1 represents the FBP reconstructed LDCT image, and J is the number of 

pixels in the image;  and  represent the mean and the variance, 

respectively, for the patch of pixel ; the parameters 0 < λ < 1 and 0 < ν < 1 can be 

chosen as, for example, λ = 0.5 and ν = 0.5. The rationale behind the adaptive SW and 

patch selection strategies is that increasing the number of patches tends to improve filtering 

in the smooth regions because they contain many similar patches; meanwhile it tends to 

either blur or remove details in the edge/texture regions that contain fewer similar patches. 

Therefore, both ways can make the NLM filtering be adaptive and improve the overall 

performance. Besides, Zheng et al explored the point-wise fractal dimension (PWFD) to 

achieve spatial adaptivity for NLM filtering of low-flux CT images 11. The PWFD can 

provide local structure information, that is, the pixels in the smooth regions exhibit PWFDs 

close to zero and pixels near the edge regions have relatively large PWFDs. They designed a 

new weighting coefficient for NLM filtering by considering both the traditional patch 

distance and the new PWFD difference.

While NLM filtering may suppress noise to a large extent, it is not as effective in removing 

the streak artifacts in low-flux CT images resulting from photon starvation, as demonstrated 

in Fig. 2(c). The streak artifacts are typically along the high-attenuation paths and appear as 

directional patterns. To solve this issue, Chen et al applied a directional one-dimensional 

nonlinear diffusion in the stationary wavelet domain to suppress the streak artifacts first, 
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followed by a NLM filtering step to reduce the noise 9. This approach showed advantages in 

streak artifacts suppression over simple NLM filtering.

The CT images reconstructed by the FBP method from sparse-view acquisition typically 

suffer from view-aliasing artifacts, as shown in Fig. 3(b). The view-aliasing artifacts in the 

images are also non-stationary, and the conventional NLM filtering generally cannot remove 

them without sacrifice of image details 26, 27.

(2) Previous high quality scan (preHQ)-guided image filtering: Repeated CT scans are 

required in clinical applications such as disease monitoring, longitudinal studies, and image-

guided radiotherapy. To optimize radiation dose utility, high quality scanning can be first 

performed to set up the reference, followed by a series of low-dose scans (e.g., low-flux or 

sparse-view acquisitions). In these applications, the previous high quality scan can be 

exploited as prior information because of the anatomical similarity between the 

reconstructed image series of the scans. Using previous high quality image to improve low-

dose scan reconstruction has recently drawn great interest 26, 53–60, some of which are based 

on the NLM algorithm. Because scans are acquired sequentially rather than simultaneously, 

misalignment or deformation may occur among the image series, so registration is usually 

needed to align the different scans. Fortunately, the NLM-based methods do not heavily 

depend on registration accuracy because of the patch-based search mechanism. A rough 

registration might be adequate in practice, although a more accurate one can reduce the 

computational load by allowing the use of a smaller SW.

Ma et al proposed a preHQ-guided NLM filtering method for CT image from low-flux 

acquisition, described as 61:

(11)

where μLD ∈ℝ J×1 represents the FBP reconstructed low-dose image, μpreHQ registered ∈ℝJ×1 

represents the previous high quality image registered to current low-dose image, wjk (μLD, 

μpreHQ registered) denotes the weighting coefficient, and  denotes the 

intensity of pixel j after filtering. Specifically, the weighting coefficient was given as 61:

(12)

One concern with this method is whether the registration accuracy may affect the filtering 

result. The red arrows in Fig. 2(d) indicate some structure deformations between Fig. 2(b) 

and Fig. 2(d). Without any registration between two images, the preHQ-guided NLM 

filtering result (as shown in Fig. 2(e)) of Fig. 2(b) using Fig. 2(d) as prior image still retains 

good image quality, revealing that image registration accuracy may not be an obstacle. After 
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comparing Fig. 2(c) with Fig. 2(e), we observed that preHQ-guided NLM filtering reduces 

noise and streak artifacts better than traditional NLM filtering.

Xu and Muller used a similar approach to explore the preHQ-guided NLM filtering method 

for sparse-view CT 26. But they found that using an artifact-free image μpreHQ registered and a 

low-dose image μLD with severe view-aliasing artifacts to calculate the weighting coefficient 

as in Eq. (12) may yield inferior filtering result, because of the challenge to perform patch 

matching. Thus, they proposed to transform μpreHQ registered into a tandem-image 

μpreHQ registered + degraded with view-aliasing artifacts resembling those in μLD, and then 

employed μpreHQ registered + degraded and μLD for patch matching. The preHQ-guided NLM 

filtering method for sparse-view CT with artifact-matched scheme can be described as 26:

(13)

In Eq. (13), the high quality image μpreHQ registered is still used to determine the pixel 

estimates although the degraded image μpreHQ registered + degraded is employed to calculate the 

weight coefficients. Fig. 3 illustrates that the filtering method in Eq. (13) is better than that 

in Eq. (11) for sparse-view CT image.

One potential drawback of the preHQ-guided NLM filtering method is that the pixel 

intensity of filtering result may resemble that of prior image when there are attenuation 

difference (e.g., due to kVp mismatch, detector difference, etc.) between the current low-

dose image and prior image. Fig. 4(a) and Fig. 4(b) illustrate the same transverse slices of 

the NCAT phantom as Fig. 2(a) and Fig. 2(d) except for different kVp settings. Because the 

attenuation coefficient of the X-ray in materials is energy-dependent, the pixel intensity of 

Fig. 2(a) and Fig. 4(a) at the same location is different, as indicated by the profiles in Fig. 

4(c). The preHQ-guided NLM filtering results of Fig. 2(b), using Fig. 4(a) and Fig. 4(b) as 

prior image, are shown in Fig. 4(d) and Fig. 4(e). It is observed that the pixel intensity of 

Fig. 4(d) and Fig. 4(e) are closer to the prior image in Fig. 4(a), rather than that of the 

ground truth image in Fig. 2(a). To mitigate this issue, a modified preHQ-guided NLM 

filtering method accounting for changes in pixel intensity was given as 61:
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(14)

where  is a local adjusting factor used to account 

for changes in pixel intensity due to different kVp settings. This strategy was also applied in 

perfusion CT imaging 54, 61, where the pixel intensity of different scans can change due to 

contrast enhancement. However, a large PW size may be desired to strengthen Cjk, because a 

small PW may lead to an imprecise estimation of . Using Eq. (14) and a large 

PW, the filtering results in Fig. 4(g) and Fig. 4(h) demonstrate higher intensity accuracy than 

those in Fig. 4(d) and Fig. 4(e), as indicated by the profiles. Meanwhile, we also observed 

that this strategy may still induce small pixel intensity inaccuracies, especially for relatively 

non-uniform regions. More sophisticated approaches may be required to further improve its 

performance.

Finally, we observed that the low-contrast objects and subtle structures in Fig. 2(e), Fig. 3(g)

(h) and Fig. 4(g)(h) are not as well-preserved as the high-contrast objects. One reason for 

this observation is that a fixed SW size and constant filtering parameter h were used for both 

cases, resulting in adequate filtering for high-contrast objects but excessive filtering for other 

regions. By using the adaptive filtering strategies illustrated in Section 3.A.1(1), the preHQ-

guided filtering results may be further improved, especially for low-contrast objects and 

subtle structures.

(3) Database-assisted image filtering: Because previous high quality image of the same 

patient may not always be available for some clinical applications, Xu et al extended to 

utilize a database of high quality CT images from other patients, for guided NLM image 

filtering 62. However, the CT images from other patients are typically less similar to the 

current low-dose image than those from the same patient. Therefore, the authors first picked 

a set of images from the database with similar anatomical structures to the current low-dose 

image, and registered them to the current low-dose image to construct the set of database 

priors. Then, they subdivided current low-dose image and database priors into blocks (e.g., 

129×129), and then performed block registration and guided NLM filtering in a blockwise 

fashion using Eq. (11). The reason for constructing a set of database priors rather than a 

single one is to considerably improve the ultimate filtering result, because one database prior 

unlikely matches the target image from a different patient. In their study, the authors found 

that three database priors are sufficient to faithfully restore all the features, for either low-

flux or sparse-view CT images 62.
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To avoid the need for error-prone image registration and massive image storage, Ha and 

Mueller also proposed to replace the high-quality image database with a database of high-

quality small patches (e.g., 7×7). Two types of patch database were investigated for NLM 

filtering of low-flux CT image 63, a localized patch database with anatomical region tags 

(e.g., lung, heart, spine) and a global patch database with no tags. For each pixel j in the low-

flux CT image, the patch is first extracted and matched with the database patches to find a 

certain number of most similar patches. Then, the patch database assisted NLM image 

filtering was expressed as 63:

(15)

where SPj denotes the selected patches from the database for pixel j, l indexes the selected 

patches, and  denotes the central pixel intensity of the lth selected patch. This method 

was validated on low-flux CT images, and demonstrated better recovery of the image 

features than the conventional NLM filtering. Also, the global patch database assisted 

filtering removed a lower amount of structural information than the localized patch database, 

because of a larger patch variety 63. Nevertheless, it is still unknown whether the method 

works on sparse-view CT images, which are degraded with severe view-aliasing artifacts and 

may jeopardize the search for matched patches from the database.

2. NLM-regularized image restoration

(1) Generic NLM-regularized image restoration: In addition to applying the filter directly 

to a FBP reconstructed LDCT image, the low-dose image can also be restored by solving the 

following problem:

(16)

where μLD represents the FBP reconstructed low-dose image, as defined above. The first 

term in Eq. (16) is a data-fidelity term, the second term is a regularization term, and β > 0 is 

a scalar control parameter that balances the two terms. Too small β may not eliminate noise/

streaks in LDCT image, while too large β may remove valuable image features.

The NLM-based regularization models illustrated in Section 2.B can be employed in Eq. 

(16) for the restoration of FBP reconstructed LDCT images. Hashemi et al explored the 

nonlocal TV regularization for low-flux CT image restoration with promising results 12. For 

sparse-view CT, while μLD is severely degraded with view-aliasing artifacts and some 

structures are hardly resolved, the resulting image restoration may only yield inferior image 

quality because of the challenge to find similar patches within the image.
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(2) preHQ-regularized image restoration: As discussed in Section 3.A.1(2), if a previous 

high quality CT image of the same patient is available, the prior image can be formulated 

into the NLM-based regularization models in Section 2.B, to generate the preHQ-induced 

NLM regularization models, which are given as 54, 58:

(17)

(18)

(19)

where

(20)

The preHQ-induced NLM regularizations in Eqs. (17)–(19) can all potentially be employed 

in Eq. (16) for the restoration of FBP reconstructed LDCT images. The prior image contains 

similar anatomical structures and provides excellent correspondence to a current low-dose 

image, further improving image restoration over the use of generic regularizations.

3. NLM-regularized image reconstruction

(1) Generic NLM-regularized image reconstruction: The NLM-based regularization 

models in Section 2.B can be also employed for statistical image reconstruction (SIR) of 

LDCT image. In practice, the SIR method either uses calibrated transmitted photons (before 

log-transform) with the pML criterion or calibrated line integrals (after log-transform) with 

the PWLS criterion 64. Because of its computational advantage, the PWLS criterion is a 

common choice and is described as:

(21)
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where y ∈ℝI×1 is the vector of the measured line integrals, and I is the total number of line 

integral measurements; μ ∈ℝJ×1 is the vector of attenuation coefficients of the object to be 

reconstructed, and J is the number of image pixels; A ∈ℝI×J is the system or projection 

matrix; Σ ∈ℝI×I is the covariance matrix, and because the measurement among different 

detector bins are assumed to be independent, the covariance matrix is diagonal and 

expressed as 64; the symbols T and -1 indicate transpose and inverse 

operators, respectively. The first term in Eq. (21) is a data-fidelity term that models the 

statistics of projection measurements, while the second term can be the NLM-based 

regularization demonstrated in Section 2.B.

Chen et al first explored the NLM-based regularization for Bayesian reconstruction of 

emission tomography 43 and X-ray CT 65, and impressive reconstruction results were 

observed in noise suppression and tissue feature preservation. Later, they also applied a joint 

estimation strategy to solve the convergence problem caused by the weight update in 

iterations 66. Zhang et al compared the performance of NLM-based regularization with 

traditional MRF model-based regularizations for SIR of LDCT, and found the NLM-based 

regularization can provide better noise reduction and resolution preservation for both 

phantoms and patient data 50, 67, 68.

Similarly to NLM filtering, the use of locally adaptive filtering parameter h in NLM-based 

regularization can also improve the image quality of the resulting reconstruction 68. While 

the local noise level in the SIR reconstructed image is difficult to estimate, an empirical 

approach to determine locally adaptive filtering parameter was given as 68:

(22)

where s and t are two constants. The rationale behind this mathematical expression is that 

the value of h should depend on the similarity between the patch of the target pixel and the 

patches within the corresponding SW. When SW contains many patches similar to P(μj), h 
needs to be decreased to reduce the influence of the other patches. Conversely, when very 

few similar patches exist in SW for P(μj), h needs to be increased to relax the selection 69.

Fig. 5 shows the reconstructed images from the low-dose projection data (20mAs, 120kVp) 

of a patient by the following methods: the FBP method, the FBP reconstruction followed by 

NLM filtering (referred to as FBP+NLM filtering), the NLM-regularized SIR using constant 

filtering parameter (referred to as PWLS-NLM), and the NLM-regularized SIR using 

adaptive filtering parameters in Eq. (22) (referred to as PWLS-adaptiveNLM). The FBP

+NLM filtering method cannot eliminate the streak artifacts within the image, but the two 

NLM-regularized SIR methods do not have such problem because of the statistical modeling 

of the projection data. As observed in the zoom-in views of three detailed regions, the 

PWLS-adaptiveNLM outperforms the PWLS-NLM on the reconstruction of subtle 

structures, demonstrating the need to introduce spatial adaptivity into NLM-based 

regularization. Nevertheless, besides adjusting the filtering parameter h, other approaches 
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may be used to make the NLM-based regularization adaptive, such as those mentioned in 

Section 3.A.1(1).

The NLM-regularized image reconstruction for sparse-view CT 27 can also be formulated as 

Eq. (21). While a penalized least-squares criterion (i.e., the covariance matrix Σ is set to be 

identity matrix) may be adequate in relatively high flux imaging application, a more accurate 

modeling of the projection measurements would be important for a limited number of X-ray 

photons in each detector bin 70. Thus, the PWLS criterion in Eq. (21) can be a better choice 

to account for the credibility of each measurement in both sparse-view and low-flux cases.

Fig. 6(a) illustrates one transverse CT image of a patient, which is reconstructed from 1160 

full projection views with the FBP method and serves as the ground truth for reference. Fig. 

6(b)–(e) shows the reconstructed images by the FBP method, FBP+NLM filtering, PWLS-

NLM and PWLS-adaptiveNLM, from 145 projection views which were evenly extracted 

from the 1160 projection views. The NLM-regularized image reconstructions can suppress 

the view-aliasing artifacts more effectively than the FBP and FBP+NLM filtering methods 

while retaining good image quality. Also, the PWLS-adaptiveNLM is superior to the PWLS-

NLM in preserving the subtle structures within the lung region, which may be of great 

importance for diagnosis.

(2) preHQ-regularized image reconstruction: The preHQ-induced NLM regularizations 

described in Section 3.A.2(2) were also used for low-flux and sparse-view CT image 

reconstruction as in Eq. (21) with promising reconstruction results 58, 71, 72. It was also 

demonstrated that they may outperform the generic NLM-based regularizations in terms of 

reconstructed image quality, or potentially yield good images from lower dose acquisition, 

because of the introduction of a previous high quality image 58,71,72. Finally, because 

optimization of the criterion in Eq. (21) is routinely performed by an iterative algorithm and 

the reconstructed image is updated after each iteration, the artifact-matched scheme may not 

be needed as in Section 3.A.1(2).

4. NLM-based projection data denoising—The NLM filter can also be applied to CT 

projection data before image reconstruction 16. The accessible projection data are commonly 

calibrated transmitted photons (before log-transform) or calibrated line integrals (after log-

transform) 64. The calibrated transmitted photons can be described by a Poisson distribution 

or ‘Poisson+Gaussian’ distribution with consideration of the electronic noise, while the 

calibrated line integrals can be approximated by a Gaussian distribution with a nonlinear 

signal-dependent variance 64. Therefore, the local noise level of the projection data can be 

easily determined. Taking the calibrated line integrals as an example, the variance of each 

measurement can be given as 73–75:

(23)
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where yi represents the line integral measurement along the ith X-ray path, ȳi and  are the 

mean and variance of yi, N̄
0i denotes the mean number of incident photons, and  denotes 

the variance of electronic noise. As a result, the filtering parameter h employed for each 

projection measurement can be adjusted adaptively as , which is 

similar to Eq. (3) but defined in the projection domain. The NLM-based projection data 

denoising can then be performed similarly as that in Eq. (1).

If the projection data of previous high quality scan and current LDCT scan are both 

available, the same strategy as that of the image domain in Eq. (11) can be potentially used 

to perform preHQ-guided projection data denoising. However, registration of the projection 

data can be more challenging than that of the images, which may impede its practical 

application.

The denoisied projection data can then be reconstructed by the FBP method. The CT 

projection data denoising is advantageous because noise is removed early in the pipeline 

preventing its propagation into the reconstruction process 17. However, the edges in the 

projection domain are usually not well defined as compared to those in the image domain, 

which may result in edge sharpness loss in the ultimate reconstructed image, as shown in 

Fig. 7(a).

5. NLM-regularized statistical projection restoration—NLM-based regularizations 

can also be used for statistical projection restoration of low-flux CT. Similar to the SIR 

methods, statistical projection restoration can optimize either the pML or PWLS criterion in 

the projection domain to estimate the ideal noiseless projection data from the acquired noisy 

ones 22–25. For instance, the PWLS criterion in the projection domain is given as:

(24)

where q∈ℝI×1 is the vector of ideal noiseless line integrals to be estimated, and U (q) 

denotes a penalty term in the projection domain. Although this projection restoration is also 

typically optimized by an iterative algorithm, the computational speed is far more rapid than 

that of the SIR.

Similar to the regularization model of Eq. (4) in the image domain, the corresponding NLM-

based regularization in the projection domain can be described as:

(25)

where the weighting coefficient is also computed as:

Zhang et al. Page 15

Med Phys. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(26)

Also, similar to the preHQ-induced NLM regularization model of Eq. (17) in the image 

domain, the corresponding regularization in the projection domain can be described as:

(27)

where ypreHQ registered ∈ℝ I×1 represents the projection data of previous high quality scan 

registered to the projection data of current low-dose scan, and the weighting coefficient is 

given as:

(28)

The other NLM-based regularization models can also be adapted from the image domain to 

the projection domain. And all regularization models can potentially be used for the 

statistical projection restoration of low-dose projection data with Eq. (24).

The restored projection data is then reconstructed by the analytical FBP method. The NLM-

regularized statistical projection restoration may have similar drawbacks to the NLM-based 

projection data denoising, that is, the ultimate FBP reconstructed image may lose edge 

sharpness, as illustrated in Fig. 7(b).

3.B. Four-dimensional CT scanning

For imaging respiratory motion-involved sites such as the thoracic and upper abdominal 

regions, four-dimensional CT (4D-CT) and four-dimensional cone-beam CT (4D-CBCT) 

have been widely used to resolve organ motions and reduce motion artifacts 13, 76, 77. To 

achieve low-dose imaging, the same strategies (i.e., low-flux or sparse-view acquisition) can 

be employed as in three-dimensional CT scanning. In 4D-CT and 4D-CBCT, the projection 

data can be sorted into different groups corresponding to different breathing phases. After 

phase binning, each phase image can be reconstructed independently with either analytical 

(e.g., FBP, FDK) or iterative reconstruction methods. Each phase image can also be 

improved with the methods presented in Section 3.A. However, these methods neglect the 

highly temporal correlation between the images at successive phases, which could 

potentially improve the image quality of each phase. The same anatomical features may 

exist in successive phases, with slight motion and deformation. Therefore, Li et al developed 

a partial temporal nonlocal means filter for 4D-CT, which uses a partial temporal profile to 
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determine the similarity between pixels and exploits redundant information in both temporal 

and spatial domains to achieve noise reduction 78. In addition, a temporal NLM (TNLM) 

method was proposed for image enhancement and reconstruction of 4D-CT and 4D-CBCT, 

to exploit the temporal redundancy among images at successive phases 13, 76, 77.

Let us divide a respiratory cycle into N phases labeled by n=1,2,...,N. The image of phase n 
is denoted by μ(n) ∈ℝJ×1, and a periodic boundary condition along the temporal direction is 

assumed, i.e., μ{N+1} = μ{1}. The TNLM regularization model is described as13, 76, 77:

(29)

where

(30)

And according to Section 2.B, the TNLM regularization model can also be given as:

(31)

(32)

It can be seen that the TNLM regularization models are very similar to those described in 

Section 3.A.2(2), although they exploit neighboring phases instead of a previous high quality 

image.

1. TNLM-regularized image restoration—Let g{n} ∈ℝJ×1 denote the reconstructed 

image of phase n by the analytical FBP/FDK method from the phase binned projection data. 

The TNLM-based image restoration or enhancement method for 4D-CT/4D-CBCT can be 

given as 13:

Zhang et al. Page 17

Med Phys. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(33)

2. TNLM-regularized image reconstruction—Let y{n} ∈ℝI×1 denote the vector of 

phase binned line integrals of phase n, A{n} ∈ℝI×J represent the projection matrix of phase n 
that maps the image μ{n} into a set of projections corresponding to various projection angles, 

Σ{n} ∈ℝI×I represent the covariance matrix for phase binned line integrals of phase n, then 

the TNLM-based image reconstruction method for 4D-CT/4D-CBCT can be described 

as 13, 76, 77:

(34)

Also, as discussed in Section 3.A.3(1), Eq. (34) may be replaced with the following form 

when the X-ray flux is relatively high:

(35)

In these optimization problems, the images at every phase are reconstructed altogether 

instead of independently.

Fig. 8 illustrates the 4D-CBCT images of the NCAT phantom from sparse-view acquisitions 

(30 projection views spanned evenly in 3600 rotation), by the following methods: analytical 

FDK reconstruction, TNLM-regularized image restoration or enhancement (referred to as 

TNLM-E) in Eq. (33), and TNLM-regularized image reconstruction (referred to as TNLM-

R) in Eq. (35). Both TNLM-E and TNLM-R methods mitigate the view-aliasing artifacts to 

a large extent, as compared with the FDK method. In the absence of other problems such as 
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data truncation, the TNLM-R method can yield higher image quality than the TNLM-E 

method 13.

Additionally, Kazantsev et al 79, 80 argued that structurally similar features may exist in 

much more distant time frames than simply adjacent ones, although the two neighboring 

frames have a higher probability to be structurally similar to the central frame. Therefore, 

they proposed to employ all available temporal data to improve the spatial resolution of each 

individual time frame. However, this approach would inevitably further increase the 

computational burden, although the patch selection as in Eq.(10) can be utilized to accelerate 

the process to some extent.

4. Discussions and Conclusions

This paper reviews various applications of the NLM algorithm in LDCT from low-flux and 

sparse-view acquisitions. The NLM algorithm can be used as a filter for image/projection 

filtering, which is a typical non-iterative procedure. The NLM algorithm can also be 

formulated as a regularization term for regularized image/projection restoration and image 

reconstruction, routinely performed by optimizing an objective function with an iterative 

algorithm. Based on the form of objective function, iterative algorithms including gradient 

descent, conjugate gradient, expectation maximization, iterative coordinate descent, 

separable paraboloidal surrogates 81 may be employed to obtain the solution. Moreover, 

acceleration techniques including ordered subsets 82, nonhomogeneous update 83, alternating 

direction method of multiplier 84, first-order method based on Nesterov’s algorithm 85 can 

also be combined. Generally, the computational load of the NLM-regularized strategies is 

much higher than that of the NLM-based filtering strategies due to iterations. Despite the 

increased computational time, CT image quality may be remarkably improved. For instance, 

NLM-regularized image reconstruction takes advantage of projection data (e.g., statistical 

modeling) and imaging geometry (e.g., projection matrix), and can produce better image 

quality than NLM-based filtering or restoration strategies, as demonstrated in Fig. 5, Fig. 7, 

and Fig. 8.

For CT from low-flux acquisitions, the NLM strategies for noise and streak artifacts 

reduction can operate in both image and projection domains. While the noise and streak 

artifacts in low-flux CT images cannot be modeled with a general distribution, the noise 

properties of low-flux projection data are fairly well understood 64. Comparing Fig. 7(a) 

with Fig. 5(b), it is found that the projection denoising performs better than the image 

denoising in terms of noise and streak artifacts suppression, for this specific patient study. 

This finding is consistent with the results from a study by Xia et al, who applied a partial 

diffusion equation based denoising technique for breast CBCT on both projection data and 

reconstructed images 86. However, projection denoising and statistical projection restoration 

may lose edge sharpness in the ultimate reconstructed image (as shown in Fig. 7), because 

the edges in the projection domain are usually not as well defined as those in the image 

domain. Compared Fig. 5(d) with Fig. 7(b), NLM-regularized statistical image 

reconstruction (operating in image domain) better preserves the edge/detail than the NLM-

regularized statistical projection restoration (operating in projection domain). This finding is 

also consistent with a previous study 87 which compared the performances of the image 
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domain and projection domain PWLS implementations using anisotropic diffusion filter-

based regularization. Overall, the NLM-regularized statistical image reconstruction in Eq. 

(21), which optimizes an objective function defined in the image domain and also takes 

advantage of noise properties of the projection data, seems to yield the best image quality of 

all NLM strategies.

While the use of previous high quality scan to improve current LDCT image reconstruction 

has become a research endeavor, one major limitation is that the previous high quality image 

usually needs be registered to a current low-dose image. The NLM-based strategies do not 

heavily depend on registration accuracy, hence a rough registration can be sufficient because 

of the patch-based search mechanism. Because direct filtering of the LDCT image is usually 

problematic, the introduction of a previous high quality image can significantly improve 

current low-dose image filtering, as shown in Fig. 2 and Fig. 3. Similarly, a previous high 

quality image can also be formulated into the NLM-based regularization models, to improve 

image restoration or reconstruction of the current LDCT. While generic NLM-regularized 

image restoration or reconstruction may already be able to generate good image quality for 

LDCT, preHQ-regularized image restoration or reconstruction can potentially further 

improve image quality or yield as good image from lower dose acquisition. Finally, although 

preHQ-guided projection data denoising and preHQ-regularized statistical projection 

restoration can be applied in theory, they may not be practical due to the following reasons: 

(1) the registration of the projection data is more challenging than the registration of the 

images; (2) it is more difficult to find sufficient similar patches in the projection data than in 

the images. Instead, the previous high quality scan-induced NLM strategies in the projection 

domain can be converted to the image domain strategies (i.e., preHQ-guided image filtering, 

preHQ-regularized image restoration, and preHQ-regularized statistical image 

reconstruction) after the FBP reconstruction of previous high quality projection data, so that 

the edge/detail of the resulting image can be better preserved.

Introducing spatial adaptivity to the NLM algorithm can be beneficial to improve the image 

quality of LDCT, especially for low-contrast objects and subtle structures, as illustrated in 

Fig. 5 and Fig. 6. The reason is that uniform smoothing strength can be too weak for some 

regions but too strong for others within the image, hence the need for spatially-variant 

adaptive smoothing. Spatial adaptivity can be incorporated into the NLM algorithm in 

different ways, including designing adaptive filtering parameter h, employing adaptive SW, 

excluding dissimilar patches within the SW. So far, these adaptive approaches have mainly 

been explored for generic NLM strategies but rarely for preHQ-induced NLM strategies for 

two main reasons: (1) it is more difficult to incorporate spatial adaptivity for preHQ-induced 

NLM strategies because of the introduction of previous high quality image; and (2) it is less 

important to incorporate spatial adaptivity because the previous high quality image can 

provide more correspondence to the current LDCT image for structure recovery. However, 

spatially-variant adaptive smoothing may still be beneficial for preHQ-induced NLM 

strategies and may be an interesting topic for further investigation. Finally, since anisotropic 

structure is commonly observed in real-world images, some anisotropic NLM algorithms 

were also proposed to improve the denoising performance, such as substituting the square 

patches of fixed size by spatially adaptive shapes 88, using image gradient information to 

estimate the edge orientation 89, and incorporating structure tensor into weighing 
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calculation 90. Investigation on these strategies for LDCT applications can be another 

interesting research topic.

While NLM-based strategies have been successfully used in the LDCT scenario, two 

drawbacks include sophisticated parameter tuning and heavy computational burden. For 

NLM-based image/projection filtering, four parameters generally need to be tuned: SW size, 

PW size, standard deviation a of the Gaussian kernel, and filtering parameter h. More 

parameters may be needed when the adaptive scheme is used. And for NLM-regularized 

image/projection restoration or image reconstruction, an additional parameter (scalar control 

parameter β) needs to be selected. Determining the optimal values for these parameters is 

challenging, and in practice, they are usually set empirically via the extensive trial-and-error 

process. It was found that SW size, PW size and standard deviation a do not usually have 

noticeable effects on the reconstructed image when set in a reasonable range; filtering 

parameter h and control parameter β need to be manually tuned. Also, the superior 

performance of NLM-based strategies is offset by the cost of increased computational time. 

One time-consuming procedure is the calculation of patch distance within a large SW. 

Various schemes have been proposed to speed up this process, including preselecting 

patches 52, 91, neglecting Gaussian kernel 92, 93, taking advantage of symmetry 10, and 

employing GPU for parallel processing 10, 94. For NLM-regularized image reconstruction, 

employing an iterative algorithm to optimize the objective function is also time-consuming 

because of multiple re-projection and back-projection operation cycles in the projection and 

image domains. Many software 15, 83–85 and hardware 95–99 approaches have been 

investigated to substantially reduce the reconstruction time. With advancements in fast 

computation through the development of dedicated software and hardware, the 

computational burden may be not a major challenge in the future, and the NLM-based 

strategies may move closer for clinical use.

We have only reviewed the applications of the NLM algorithm in a standard LDCT scenario 

(low-flux or sparse-view acquisition), however, it may also be applied to other low-dose 

problems such as interior CT and short-scan CT, or to suppress artifacts caused by other 

imperfections. Moreover, the NLM algorithm may also be used in perfusion CT 54, 61, 78, 100, 

dual-energy CT 101, 102, and multi-energy CT 103 scenarios, although special adjusting 

strategies are needed to account for changes in pixel intensity due to contrast perfusion or 

energy differences. We hope this review will motivate more studies in the fields.

Finally, it is worth mentioning that many other filters may potentially be applied to LDCT in 

similar manners as demonstrated in this review, and the NLM filter is essentially one of 

them. Because of patch use, NLM-based strategies may yield better image quality than 

traditional filters-based strategies. Recently, sparse dictionary learning 104, 105 has drawn 

great interest, which also takes advantage of the patches and can be considered as an 

extension of the NLM algorithm 106. Successful applications of dictionary learning have 

been reported in the LDCT scenario for projection denoising 107–109, image 

denoising 110–112 and reconstruction 113–115. For instance, Chen et al 112 proposed an image-

domain artifact suppressed dictionary learning method to suppress the streak artifacts and 

noise in LDCT image, which designed novel discriminative dictionaries to cancel the streak 

artifacts in high-frequency bands. Xu et al 114 used the dictionary learning-based 
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sparsification as regularization term in SIR for LDCT, and demonstrated superior 

performance in noise reduction and structural feature preservation. The other strategies 

reviewed in this paper may also be explored for dictionary learning in the future.
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Fig. 1. 
Overview of the methods proposed to improve CT image quality from low-dose 

acquisitions. It is noted that statistical image reconstruction for low-flux CT and iterative 

reconstruction for sparse-view CT are grouped into image-domain methods herein, because 

their objective function is typically a function of the reconstructed image. But strictly 

speaking, they should be considered as combined image-domain and projection-domain 

methods.

Zhang et al. Page 29

Med Phys. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Illustration of the preHQ-guided NLM image filtering for low-flux CT: (a) one transverse 

slice of the NCAT phantom; (b) FBP reconstruction from simulated noisy projection data; 

(c) traditional NLM filtering of low-dose image in Fig. 2(b), SW=332, PW=52, h=0.015; (d) 

another transverse slice of the NCAT phantom serving as the prior image for preHQ-guided 

NLM filtering of low-dose image in Fig. 2(b); (e) corresponding preHQ-guided NLM 

filtering result, SW=332, PW=52, h=0.007; (f) profile comparison between the ground truth 

Fig. 2(a) and the filtering result Fig. 2(e).
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Fig. 3. 
Illustration of the preHQ-guided NLM image filtering for sparse-view CT: (a) one transverse 

CT image of a patient; (b) FBP reconstruction from sparse-view projection data; (c) 

conventional NLM filtering of low-dose image in (b); (d) a deformed version of (a) serving 

as the prior image for preHQ-guided NLM filtering; (e) prior image registered to (a); (f) 

registered prior image with simulated view-alising artifacts; (g) the corresponding preHQ-

guided NLM filtering result with Eq. (11); (h) corresponding preHQ-guided NLM filtering 

result with Eq. (13). (Figure reprinted from the work of Xu and Mueller 26)
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Fig. 4. 
Illustration of the preHQ-guided NLM image filtering for low-flux CT: (a) the same 

transverse slice of NCAT phantom as Fig. 2(a) except for different kVp setting; (b) the same 

transverse slice of NCAT phantom as Fig. 2(d) except for different kVp setting; (c) profile 

comparison between Fig. 2(a) and Fig. 4(a); (d) preHQ-guided NLM filtering of Fig. 2(b) 

using Eq. (11) with Fig. 4(a) as prior image, SW=332, PW=132, h=0.007; (e) preHQ-guided 

NLM filtering of Fig. 2(b) using Eq. (11) with Fig. 4(b) as prior image, SW=332, PW=132, 

h=0.007; (f) profile comparison between Fig. 2(a) and the filtering results in Fig. 4(d) and 

Fig. 4(e); (g) preHQ-guided NLM filtering of Fig. 2(b) using Eq. (14) with Fig. 4(a) as prior 

image, SW=332, PW=132, h=0.007; (h) preHQ-guided NLM filtering of Fig. 2(b) using Eq. 
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(14) with Fig. 4(b) as prior image, SW=332, PW=132, h=0.007; (i) profile comparison 

between Fig. 2(a) and the filtering results in Fig. 4(g) and Fig. 4(h).
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Fig. 5. 
One reconstructed slice of a patient from low-flux projection data: (a) FBP reconstruction; 

(b) FBP reconstruction followed by NLM filtering (SW=172, PW=52, h=0.012); (c) PWLS-

NLM reconstruction (SW=172, PW=52, h=0.008); (d) PWLS-adaptiveNLM reconstruction 

(SW=172, PW=52, s=1×10−3, t=4×10−6). All images are displayed with the same window. 

(Figure reprinted from the work of Zhang et al 68)
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Fig. 6. 
A reconstructed slice of one patient dataset: (a) FBP reconstruction from the full 1160 

projection views; (b) FBP reconstruction from 145 projection views; (c) FBP+NLM filtering 

from 145 projection views (SW=172, PW=52, h=0.01); (d) PWLS-NLM reconstruction from 

145 projection views (SW=172, PW=52, h=0.006); (e) PWLS-adaptiveNLM reconstruction 

from 145 projection views (SW=172, PW=52, s=1×10−3, t=4×10−6). All the images are 

displayed with the same window.
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Fig. 7. 
One reconstructed slice from the same low-flux projection data as Fig. 5: (a) NLM-based 

projection data denoising followed by FBP reconstruction (SW=52, PW=32, ε=15); (b) 

NLM-regularized statistical projection restoration followed by FBP reconstruction (SW=52, 

PW=32, ε=3).
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Fig. 8. 
4D-CBCT images of the NCAT phantom at the maximum inhale (MI) and the maximum 

exhale (ME) phases generated by three different methods from sparse-view acquisitions. 

(Figure reprinted from the work of Jia et al 13)
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