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Purpose—Whole exome and genome sequencing have transformed the discovery of genetic 

variants that cause human Mendelian disease, but discriminating pathogenic from benign variants 

remains a daunting challenge. Rarity is recognised as a necessary, although not sufficient, criterion 

for pathogenicity, but frequency cutoffs used in Mendelian analysis are often arbitrary and overly 

lenient. Recent very large reference datasets, such as the Exome Aggregation Consortium (ExAC), 

provide an unprecedented opportunity to obtain robust frequency estimates even for very rare 

variants.

Methods—We present a statistical framework for the frequency-based filtering of candidate 

disease-causing variants, accounting for disease prevalence, genetic and allelic heterogeneity, 

inheritance mode, penetrance, and sampling variance in reference datasets.

Results—Using the example of cardiomyopathy, we show that our approach reduces by two-

thirds the number of candidate variants under consideration in the average exome, without 

removing true pathogenic variants (false positive rate<0.001).

Conclusion—We outline a statistically robust framework for assessing whether a variant is ‘too 

common’ to be causative for a Mendelian disorder of interest. We present precomputed allele 

frequency cutoffs for all variants in the ExAC dataset.

Keywords

Variant interpretation; Clinical Genomics; Allele frequency; Cardiomyopathy; Inherited 
Cardiovascular Conditions; ExAC

INTRODUCTION

Whole exome and whole genome sequencing have been instrumental in identifying causal 

variants in Mendelian disease patients1. As every individual harbors ~12,000–14,000 

predicted protein-altering variants2, distinguishing disease-causing variants from benign 

bystanders is perhaps the principal challenge in contemporary clinical genetics. A variant’s 

low frequency in, or absence from, reference databases is recognised as a necessary, but not 

sufficient, criterion for variant pathogenicity3,4. The recent availability of very large 

reference databases, such as the Exome Aggregation Consortium (ExAC)2 dataset, which 

has characterised the population allele frequencies of 10 million genomic variants through 

analysis of exome sequencing data from over 60,000 humans, provides an opportunity to 

obtain robust frequency estimates even for rare variants, improving the theoretical power for 

allele frequency (AF) filtering in Mendelian variant discovery efforts.

In practice, there exists considerable ambiguity around what AF should be considered “too 

common”, with the lenient values of 1% and 0.1% often invoked as conservative frequency 

cutoffs for recessive and dominant diseases respectively5. Population genetics, however, 

dictates that severe disease-causing variants must be much rarer than these cutoffs, except in 

cases of bottlenecked populations, balancing selection, or other special circumstances6,7.

It is intuitive that when assessing a variant for a causative role in a dominant Mendelian 

disease, the frequency of a variant in a reference sample, not selected for the condition, 

should not exceed the prevalence of the condition8,9. This rule must, however, be refined to 
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account for different inheritance modes, genetic and allelic heterogeneity, and reduced 

penetrance. In addition, for rare variants, estimation of true population AF is clouded by 

considerable sampling variance, even in the largest samples currently available. These 

limitations have encouraged the adoption of very lenient AF filtering approaches10,11, and 

recognition that more stringent approaches that account for disease-specific genetic 

architecture are urgently needed8.

Here we present a statistical framework for assessing whether variants are sufficiently rare to 

cause penetrant Mendelian disease, while accounting for both architecture and sampling 

variance in observed allele counts. We demonstrate that AF cutoffs well below 0.1% are 

justified for a variety of human disease phenotypes and that such filters can remove an 

additional two-thirds of variants from consideration compared to traditionally lenient 

frequency cutoffs, without discarding true pathogenic variants. We present pre-computed AF 

filtering values for all variants in the ExAC database, for comparison with user-defined 

disease-specific thresholds, which are available through the ExAC data browser and for 

download, to assist others in applying this framework.

METHODS

Defining the statistical framework

We define a two-stage approach to determine whether a variant observed in a reference 

sample is too common to cause a given disease. First, we define a maximum population AF 

that we believe is credible for a pathogenic variant, given the genetic architecture of the 

disease in question. Second, we determine whether the observed allele count in our reference 

sample is consistent with a variant having this frequency in the population from which the 

sample was drawn.

For a penetrant dominant Mendelian allele to be disease causing, it cannot be present in the 

general population more frequently that the disease it causes. Furthermore, if the disease is 

genetically heterogeneous, it must not be more frequent than the proportion of cases 

attributable to that gene, or indeed to any single variant. We can therefore define the 

maximum credible population AF (for a pathogenic allele) as:

where maximum allelic contribution is the maximum proportion of cases potentially 

attributable to a single allele, a measure of heterogeneity.

For recessive conditions, the maximum AF is defined as:

where maximum genetic contribution represents the proportion of all cases that are 

attributable to the gene under evaluation, and maximum allelic contribution represents the 
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proportion of cases attributable to that gene that are attributable to an individual variant (see 

Supplementary Methods for full derivation).

Disease prevalence estimates were obtained from the literature and taken as the highest 

value reported. Cardiovascular disease variants were modeled with a penetrance of 0.5, 

corresponding to the reported penetrance of the HCM variant used to illustrate our 

approach12 and the minimum found across a range of variants/disorders.

We do not know the true population AF of any variant, having only an observed AF in a 

finite population sample. Moreover, confidence intervals around this observed frequency are 

problematic to estimate given our incomplete knowledge of the frequency spectrum of rare 

variants, which is skewed towards very rare variants. For instance, a variant observed only 

once in a sample of 10,000 chromosomes is much more likely to have a frequency < 

1:10,000 than a frequency >1:10,000.2

To address this, we begin by specifying a maximum true AF value we are willing to consider 

in the population (using the equation above), from which we can estimate the probability 

distribution for allele counts in a given sample size (see Supplementary Methods). This 

allows us to set an upper limit on the number of alleles in a sample that is consistent with a 

given underlying population frequency. For example, a variant with a true population AF of 

0.0001 would be expected to occur in a sample of 100,000 alleles ≤15 times with a 

probability of 0.95.

We therefore computed a maximum tolerated allele count (AC) as the AC at the upper bound 

of the one-tailed 95% confidence interval (95%CI AC) of a Poisson distribution, for the 

specified maximum credible AF, given the sample size (observed allele number, AN).

Pre-computing filtering allele frequency values for ExAC

We can reverse this process to determine the maximum true population AF that is consistent 

with a particular observed sample AC, and we applied this to the ExAC dataset (version 

0.3.1). In order to pre-compute af_filter values for all variants in ExAC, we apply a two-step 

approach to the AC and AN values for each of the five major continental populations, and 

take the highest result from any population (more explanation in Supplementary Methods).

1. We use R’s uniroot function to find an AF value (though not necessarily the 

highest AF value) for which the 95%CI AC is one less than the observed AC.

2. We loop, incrementing by units of millionths, and return the highest AF value 

that still gives a 95%CI AC less than the observed AC.

We used adjusted AC and AN, meaning variant calls with GQ≥20 and DP≥10.

Simulated Mendelian variant discovery analysis

To simulate Mendelian variant discovery, we randomly selected 100 individuals from each 

of five major continental populations and filtered their exomes against filtering AFs derived 

from the remaining 60,206 ExAC individuals. The subset of individuals was the same as that 

previously reported2. Predicted protein-altering variants are defined as missense and 
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equivalent (including in-frame indels, start lost, stop lost, and mature miRNA-altering), and 

protein-truncating variants (nonsense, essential splice site, and frameshift).

Variant curation

Pathogenic and non-conflicted variants were extracted from ClinVar (July 9, 2015 release) as 

described previously2. ExAC counts were determined by matching on chromosome, 

position, reference, and alternate alleles. For all variants above the proposed maximum 

tolerated allele count for HCM, literature from both HGMD and PubMed was reviewed and 

the level of evidence supporting pathogenicity was curated according to ACMG criteria3.

Calculating odds ratios for HCM variant burden

322 HCM patients and 852 healthy volunteers (both confirmed by cardiac MRI) recruited to 

the NIHR Royal Brompton cardiovascular BRU were sequenced using the IlluminaTruSight 

Cardio Sequencing Kit13 on Illumina MiSeq and NextSeq platforms. This study had ethical 

approval (REC: 09/H0504/104+5) and informed consent was obtained for all subjects. The 

number of rare variants in the eight sarcomeric genes associated with HCM (MYBPC3, 

MYH7, TNNT2, TNNI3, MYL2, MYL3, TPM1 and ACTC1) were calculated for all protein 

altering variants (frameshift, nonsense, splice donor/acceptor, missense and in-frame 

insertions/deletions), with case/control odds ratios calculated separately for non-overlapping 

ExAC AF bins with the following breakpoints: 4x10−5, 1x10−4, 5x10−4 and 1x10−3. Odds 

Ratios were calculated as OR=(cases with variant/cases without variant)/(controls with 

variant/controls without variant).

RESULTS

Application and validation in hypertrophic cardiomyopathy

Defining maximum credible population AF—We illustrate our generalisable approach 

using the dominant cardiac disorder hypertrophic cardiomyopathy (HCM), which has an 

estimated prevalence of 1 in 500 in the general population14. As there have been previous 

large-scale genetic studies of HCM, with series of up to 6,179 individuals14,15, we can 

assume that no newly identified variant will be more frequent in cases that those identified to 

date (at least for well-studied ancestries), allowing us to define the maximum contribution of 

any single variant to the disorder. In these series, the largest proportion of cases is 

attributable to the missense variant MYBPC3 c.1504C>T (p.Arg502Trp), found in 104/6179 

HCM cases (1.7%; 95%CI 1.4–2.0%)14,15. We therefore take the upper bound of this 

proportion (0.02) as an estimate of the maximum allelic contribution in HCM (Table 1). Our 

maximum expected population AF for this allele, assuming penetrance 0.5 as previously 

reported12, is 1/500 x 1/2 (dividing prevalence per individual by the number of 

chromosomes per individual) x 0.02 x 1/0.5 = 4.0x10−5, which we take as the maximum 

credible population AF for any causative variant for HCM (Table 1).

Controlling for sample variation—To apply this threshold while remaining robust to 

chance variation in observed allele counts, we ask how many times a variant with population 

AF of 4.0x10−5 can be observed in a random population sample (Methods). At a 5% error 

rate, this yields a maximum tolerated allele count of 9, assuming 50% penetrance (5 for fully 
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penetrant alleles) for variants genotyped in the full ExAC cohort (sample size=121,412 

chromosomes). The MYBPC3:c.1504C>T variant is observed 3 times in ExAC 

(freq=2.49x10−5;Table 1).

To facilitate these calculations, we have produced an online calculator (http://cardiodb.org/

alleleFrequencyApp) that will compute maximum credible population AF and maximum 

sample allele count for a user-specified genetic architecture, and conversely allow users to 

dynamically explore what genetic architecture(s) might be most compatible with an 

observed variant having a causal role in disease.

Assessing the accuracy of our approach—For all diseases with case series that 

permitted us to define the genetic architecture, the commonest variant in the case series was 

well within the calculated maximum allele count in ExAC (Table 1).

To assess the HCM thresholds empirically, we explored the ExAC AF spectrum of 1132 

distinct autosomal variants, identified in 6179 published HCM cases referred for diagnostic 

sequencing, and individually assessed and clinically reported according to international 

guidelines14,15. 477/479 (99.6%) variants reported as ‘Pathogenic’ or ‘Likely Pathogenic’ 

fell below our threshold (Figure 1), including all variants with a clear excess in cases. The 2 

variants historically classified as ‘Likely Pathogenic’, but prevalent in ExAC in this analysis, 

were reassessed using contemporary ACMG criteria: there was no strong evidence in 

support of pathogenicity, and they were reclassified in light of these findings (Table S1). 

This analysis identifies 66/653 (10.1%) VUS that are very unlikely to be causative for HCM.

The above analysis applied a single global allele count limit of 9 for HCM, however, as AFs 

differ between populations, filtering based on frequencies in individual populations may 

provide greater power2. For example, a variant relatively common in any one population is 

unlikely pathogenic, even if rare in other populations, provided the disease prevalence and 

architecture is consistent across populations. We therefore compute a maximum tolerated 

AC for each distinct sub-population of our reference sample, and filter based on the highest 

AF observed in any major continental population (see Methods).The tightness of the 

Poisson distribution used to compute maximum tolerated allele count is a function of sample 

size, and thus our approach is more conservative when allele number is lower, thus avoiding 

inappropriately filtering variants due to chance observation of a few alleles in a smaller sub-

population or at a poorly genotyped site (see Supplementary Note 3).

To further validate this approach, we examined all 601 variants identified in ClinVar16 as 

“Pathogenic” or “Likely Pathogenic” and non-conflicted for HCM. 558 (93%) were 

sufficiently rare when assessed as described. 43 variants were insufficiently rare in at least 

one ExAC population, and were therefore re-curated. 42 of these had no segregation or 

functional data sufficient to demonstrate pathogenicity in the heterozygous state, and would 

be classified by the contemporary ACMG framework as VUS at most. The remaining variant 

(MYBPC3:c.3330+5G>C) had convincing evidence of pathogenicity, though with uncertain 

penetrance (see Supplementary Methods), and was observed twice in the African/African 

American ExAC population. This fell outside the 95% confidence interval for an underlying 

population frequency <4x10−5, but within the 99% confidence threshold: a single outlier due 
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to stochastic variation is unsurprising given that these nominal probabilities are not corrected 

for multiple testing across 601 variants. In light of our updated assessment, 20 variants were 

reclassified as Benign/Likely Benign and 22 as VUS according to the American College for 

Medical Genetics and Genomics (ACMG) guidelines for variant interpretation3 (Table S1).

After curating variants above our calculated HCM threshold, the false positive rate was 

0/477 (0.000; 95%CI 0.000–0.008) and 1/559 (0.002; 95%CI 0.000–0.010) for the published 

HCM cohort and ClinVar data respectively.

Extending this approach to other disorders—This framework relies on estimation of 

the genetic architecture of a condition, which may not be well described. For diseases where 

large case series are absent, we can estimate the genetic architecture parameters by 

extrapolating from similar disorders and/or variant databases.

Where disease-specific variant databases exist, we can use these to estimate the maximum 

allelic contribution. For example, Marfan syndrome is a rare connective tissue disorder 

caused by variants in the FBN1 gene. The UMD-FBN1 database17 contains 3077 variants in 

FBN1 from 280 references (last updated 28/08/14). The most common variant is in 30/3006 

records (1.00%; 95CI 0.53–1.46%), which likely overestimates its contribution to disease if 

related individuals are not systematically excluded. Taking the upper bound of this 

frequency as our maximum allelic contribution, we derive a maximum tolerated allele count 

of 2 (Table 2). None of the five most common variants in the database are present in ExAC.

Where no mutation database exists, we can use what is known about similar disorders to 

estimate the maximum allelic contribution. For the better-characterised cardiac conditions in 

Table 1, the maximum proportion of cases attributable to any one variant is 6.7% (95CI 4.1–

9.2%; PKP2:c.2146–1G>C found in 24/361 ARVC cases15). We therefore propose the upper 

bound of this confidence interval (rounded up to 0.1) as a reasonable estimate of the 

maximum allelic contribution for other genetically heterogeneous cardiac conditions, unless 

there is disease-specific evidence to alter it. For Noonan syndrome and Catecholaminergic 

Polymorphic Ventricular Tachycardia (CPVT - an inherited cardiac arrhythmia syndrome) 

with prevalences of 1 in 100018 and 1 in 10,00019 respectively, this translates to maximum 

population frequencies of 5x10−5 and 5x10−6 and maximum tolerated ExAC allele counts of 

10 and 2 (Table 2).

Finally, if the allelic heterogeneity of a disorder is not well characterised, it is conservative 

to assume minimal heterogeneity, so that the contribution of each gene is modeled as 

attributable to one allele, and the maximum allelic contribution is substituted by the 

maximum genetic contribution (i.e the maximum proportion of the disease attributable to 

single gene). For classic Ehlers-Danlos syndrome, up to 40% of the disease is caused by 

variation in the COL5A1 gene20. Taking 0.4 as our maximum allelic contribution, and a 

population prevalence of 1/20,00020 we derive a maximum tolerated ExAC AC of 5 (Table 

2).

Here we have illustrated frequencies analysed at the level of the disease. In some cases this 

may be further refined by calculating distinct thresholds for individual genes, or even 
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variants. For example, if there is one common founder mutation but no other variants that are 

recurrent across cases, then it would make sense to have the founder mutation as an 

exception to the calculated threshold.

Application to recessive diseases—So far we have considered diseases with a 

dominant inheritance model. Our framework is readily modified for application in recessive 

disease, and to illustrate this we consider the example of Primary Ciliary Dyskinesia (PCD), 

which has a prevalence of up to 1 in 10,000 individuals in the general population21.

Intuitively, if one penetrant recessive variant were to be responsible for all PCD cases, it 

could have a maximum population frequency of . We can refine our evaluation 

of PCD by estimating the maximum genetic and allelic contribution (see Methods). Across 

previously published cohorts of PCD cases22–24, DNAI1 IVS1+2_3insT was the most 

common variant with a total of 17/358 alleles (4.7% 95CI 2.5–7.0%). Given that ~9% of all 

patients with PCD have disease-causing variants in DNAI1 and the IVS1+2_3insT variant is 

estimated to account for ~57% of variant alleles in DNAI122, we can take these values as 

estimates of the maximum genetic and allelic contribution for PCD, yielding a maximum 

expected population AF of  This 

translates to a maximum tolerated ExAC AC of 322. DNAI1 IVS1+2_3insT is itself present 

at 56/121108 ExAC alleles (45/66636 non-Finnish European alleles). A single variant 

reported to cause PCD in ClinVar occurs in ExAC with AC > 332 (NME8 NM_016616.4:c.

271–27C>T; AC=2306/120984): our model therefore indicates that this variant frequency is 

too common to be disease-causing, and consistent with this we note that it meets none of the 

current ACMG criteria for assertions of pathogenicity, and would reclassify it as VUS (see 

Supplementary Methods).

Pre-computing threshold values for the ExAC populations—For each ExAC 

variant, we defined a “filtering AF” that represents the threshold disease-specific “maximum 

credible AF” at or below which the disease could not plausibly be caused by that variant. A 

variant with a filtering AF ≥ the maximum credible AF for the disease under consideration 

should be filtered, while a variant with a filtering AF below the maximum credible remains a 

candidate. This filtering AF is not disease specific: it can be applied to any disease of 

interest by comparing with a user-defined disease-specific maximum credible AF (Figure 2). 

This value has been pre-computed for all variants in ExAC (see Methods and 

Supplementary Methods), and is available via the ExAC VCF and browser (http://

exac.broadinstitute.org).

To assess the efficiency of our approach, we calculated the filtering AF on 60,206 exomes 

from ExAC and applied these filters to a simulated dominant Mendelian variant discovery 

analysis on the remaining 500 exomes (see Methods). Filtering at AFs lower than 0.1% 

substantially reduces the number of predicted protein-altering variants in consideration, with 

the mean number of variants per exome falling from 176 to 63 at cutoffs of 0.1% and 

0.0001% respectively (Figure 3a). Additionally, we compared the prevalence of variants in 

HCM genes in cases and controls across the AF spectrum, and computed disease odds ratios 

for different frequency bins. The odds ratio for disease-association increases markedly at 
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very low AFs (Figure 3b) demonstrating that increasing the stringency of a frequency filter 

improves the information content of a genetic result.

DISCUSSION

We have outlined a statistically robust framework for assessing whether a variant is ‘too 

common’ to be causative for a Mendelian disorder of interest. To our knowledge, there is 

currently no equivalent guidance on the use of variant frequency information, resulting in 

inconsistent thresholds across both clinical and research settings. Furthermore, though 

disease-specific thresholds are recommended8, in practice the same thresholds may be used 

across all diseases, even where they have widely differing genetic architectures and 

prevalences. We have shown the importance of applying stringent AF thresholds, in that 

many more variants can be removed from consideration, and the remaining variants have a 

much higher likelihood of being relevant. We also show, using HCM as an example, how 

lowering this threshold does not remove true dominant pathogenic variants.

To assist others in applying our framework, we have precomputed a ‘filtering AF’ for all 

variants across the ExAC dataset. This is defined such that if the filtering AF of a variant is 

at or above the user-defined “maximum credible population AF” for the disease in question, 

then that variant is not a credible candidate (in other words, for any population AF below the 

threshold value, the probability of the observed allele count in the ExAC sample is <0.05). 

Once a user has determined their “maximum credible population AF”, they may remove 

from consideration ExAC variants for which the filtering AF is greater than or equal to than 

the chosen value.

Our method is designed to be complementary to and used along side other gene and variant 

level methods to filter and prioritise candiate variants (e.g. gene level constraint25, amino 

acid conservation26,27 and missense prediction algorithms28,29) along with segregation and 

functional data.

We recognise several limitations of our approach. First, we are limited by our understanding 

of the prevalence and genetic architecture of the disease in question: this characterisation 

will vary for different diseases and in different populations, though we illustrate approaches 

for estimation and extrapolation of parameters. In particular, we must be wary of 

extrapolating to or from less-well characterised populations that could harbour population-

specific founder mutations. While incomplete knowledge of the genetic architecture of a 

disease of interest will limit this or any approach to evaluate a specific variant that has been 

observed at low frequency in a reference population, our framework and accompanying web 

tool do at least transparently define the range of disease architectures that are compatible 

with the observed data. For example, many neurological disorders have Mendelian forms as 

well as idiopathic forms with genetic risk factors of modest effect sizes, high allelic and 

genetic heterogeneity, and/or dramatic variability in the penetrance of different 

variants9,30–32. Reference population allele frequency information alone can never 

definitively show that a variant possesses no association to disease, but it can still provide 

sensible constraints. The calculations described here can be used to show that a variant could 
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could only be causal if the prevalence of the disease is higher than published estimates, or its 

penetrance is below a specified value33.

Secondly, it is often difficult to obtain accurate penetrance information for reported variants, 

and it is also difficult to know what degree of penetrance to expect or assume for newly 

discovered pathogenic variants. Although we would argue that variants with low penetrance 

have questionable diagnostic utility, our calculator app allows a user to define a range of 

compatible penetrance for a given AF (see Supplementary Methods), and implements 

methods to estimate variant penetrance from prevalence data in case and control cohorts as 

previously described9.

Thirdly, while we believe that ExAC is depleted of severe childhood inherited conditions, 

and not enriched for cardiomyopathies, it could be enriched relative to the general 

population for some conditions, including Mendelian forms of common diseases such as 

diabetes or coronary disease that have been studied in contributing cohorts. Where this is 

possible, the maximum credible population AF should be derived based on the estimated 

disease prevalence in the ExAC cohort, rather than the population prevalence.

Finally, although the resulting AF thresholds are more stringent than those previously used, 

they are likely to still be very lenient for many applications. For instance, we base our 

calculation on the most prevalent known pathogenic variant from a disease cohort. For 

HCM, for which more than 6,000 people have been sequenced, it is unlikely that any single 

newly identified variant, not previously catalogued in this large cohort, will explain a 

similarly large proportion of the disease as the most common causal variant, at least in well-

studied populations. Future work may therefore involve modeling the frequency distribution 

of all known variants for a disorder, to further refine these thresholds.

The power of our approach is limited by currently available datasets. Increases in both the 

ancestral diversity and size of reference datasets will bring additional power to our method 

over time. We have avoided filtering on variants observed only once, because a single 

observation provides little information about true AF (see Supplementary Methods). A ten-

fold increase in sample size, resulting from projects such as the US Precision Medicine 

Initiative, will separate vanishingly rare variants from those whose frequency really is ~1 in 

100,000. Increased phenotypic information linked to reference datasets will also reduce 

limitations due to uncertain disease status, and improve prevalence estimates, adding further 

power to our approach.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Plot of ExAC allele count (all populations) against case allele count for variants classified as 

VUS, Likely Pathogenic or Pathogenic in 6179 HCM cases. The dotted lines represent the 

maximum tolerated ExAC allele counts in HCM for 50% (dark blue) and 100% penetrance 

(light blue). Variants are colour coded according to reported pathogenicity. Where 

classifications from contributing laboratories were discordant the more conservative 

classification is plotted. The inset panel shows the full dataset, while the main panel expands 

the region of primary interest.
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Figure 2. 
A flow diagram of our approach, applied to a dominant condition, and using ExAC as our 

reference sample. First, a disease-level maximum credible population allele frequency is 

calculated, based on disease prevalence, heterogeneity and penetrance. To evaluate a specific 

variant, we determine whether the observed variant allele count is compatible with disease 

by comparing this maximum credible population AF against the (pre-calculated) filtering 

allele frequency for the variant. *while filtering allele frequency has been pre-computed for 

ExAC variants, the same framework can be readily applied using another reference sample.
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Figure 3. 
The clinical utility of stringent allele frequency thresholds. (a) The number of predicted 

protein-altering variants (definition in Methods) per exome as a function of the allele 

frequency filter applied. A one-tailed 95% confidence interval is used, meaning that variants 

were removed from consideration if their AC would fall within the top 5% of the Poisson 

probability distribution for the user’s maximum credible AF (x axis). (b) The odds ratio for 

HCM disease-association against allele frequency. The prevalence of variants in sarcomeric 

HCM-associated genes (MYH7, MYBPC3, TNNT2, TNNI3, MYL2, MYL3, TPM1 and 

ACTC1, analysed collectively) in 322 HCM cases and 852 healthy controls were compared 

for a range of allele frequency bins, and an odds ratio computed (see Methods). Data for 

each bin is plotted at the upper allele frequency cutoff. Error bars represent 95% confidence 

intervals. The probability that a variant is pathogenic is much greater at very low allele 

frequencies.
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