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Abstract

Functional magnetic resonance imaging (fMRI) studies have shown altered brain dynamic 

functional connectivity (DFC) in mental disorders. Here we aim to explore DFC across a spectrum 

of symptomatically-related disorders including bipolar disorder with psychosis (BPP), 

schizoaffective disorder (SAD) and schizophrenia (SZ). We introduce a group information guided 

independent component analysis (GIG-ICA) procedure to estimate both group-level and subject-

specific connectivity states from DFC. Using resting-state fMRI data of 238 healthy controls 

(HCs), 140 BPP, 132 SAD and 113 SZ patients, we identified measures differentiating groups 

from the whole-brain DFC and traditional static functional connectivity (SFC), separately. Results 
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show that DFC provided more informative measures than SFC. Diagnosis-related connectivity 

states were evident using DFC analysis. For the dominant state consistent across groups, we found 

22 instances of hypoconnectivity (with decreasing trends from HC to BPP to SAD to SZ) mainly 

involving post-central, frontal and cerebellar cortices as well as 34 examples of hyperconnectivity 

(with increasing trends HC through SZ) primarily involving thalamus and temporal cortices. 

Hypoconnectivities/hyperconnectivities also showed negative/positive correlations, respectively, 

with clinical symptom scores. Specifically, hypoconnectivities linking postcentral and frontal gyri 

were significantly negatively correlated with the PANSS positive/negative scores. For frontal 

connectivities, BPP resembled HC while SAD and SZ were more similar. Three connectivities 

involving the left cerebellar crus differentiated SZ from other groups and one connection linking 

frontal and fusiform cortices showed a SAD-unique change. In summary, our method is promising 

for assessing DFC and may yield imaging biomarkers for quantifying the dimension of psychosis.
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fMRI; dynamic functional connectivity; ICA; schizophrenia; schizoaffective disorder; bipolar 
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1. Introduction

Schizophrenia (SZ), schizoaffective disorder (SAD), and bipolar disorder with psychosis 

(BPP) have overlapping clinical symptoms, familial co-occurrence and shared genetic risk 

(Cardno and Owen, 2014; Cosgrove and Suppes, 2013; Pearlson, et al., 2016). SZ is a 

psychotic disorder characterized by persistent psychotic symptoms (e.g., delusions and 

hallucinations) and decreased function. BPP is marked by presence of mania and 

concomitant psychosis. Over 100 years ago, Kraepelin (Ebert and Bar, 2010) distinguished 

between SZ and BPP primarily based on longitudinal course and long-term outcome, but 

noted that cross-sectional symptoms including delusions, hallucinations, and mood 

disturbance were found in patients with both diagnoses (Pearlson, 2015). Indeed, Kraepelin 

in 1920 lamented that his two-psychosis model failed to adequately capture distinct 

disorders. Kasanin (Kasanin, 1933) introduced SAD, which combines features of both SZ 

and mood disorders, to elucidate this apparent symptom overlap by postulating an additional 

diagnostic category. Differentiating BPP, SAD and SZ can be difficult based on 

phenomenological features alone. Considering the difficulty of differential diagnosis and 

lack of consensus, biological, in addition to symptomatic, measurements may be useful for 

differentiating these clinical syndromes. So far, most biological measures also fail to 

uniquely differentiate the psychoses, suggesting that more work is needed to understand the 

relationships between these clinical syndromes and neurobiology (Clementz, et al., 2015; 

Clementz, et al., 2016; Pearlson, et al., 2016).

Both structural (Mathew, et al., 2014) and functional imaging (Meda, et al., 2015) have been 

used to explore abnormalities in BPP, SAD and SZ. Previous work (Glahn, et al., 2008) 

found reduced gray matter density in SZ patients relative to healthy controls (HCs) in 

multiple brain regions. Gradual gray matter density deficits in BPP, SAD and SZ patients, as 

well as in their biological relatives were reported (Ivleva, et al., 2013). Functional 
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connectivities and functional networks derived from resting-state fMRI data also have been 

used to investigate these disorders. Khadka et al. (Khadka, et al., 2013) analyzed data of SZ, 

BPP and their unaffected first-degree relatives using independent component analysis (ICA), 

and identified significant alterations in seven functional networks. Our previous work (Du, et 

al., 2014; Du, et al., 2015b) studying networks decoded by ICA found brain differences 

among BPP, SAD and SZ in multiple networks (including the default mode and salience 

networks), and observed that HCs and BPP patients clustered into one group while SAD and 

SZ patients clustered into another group. Using a regions of interest (ROIs)-based method, 

Argyelan et al. (Argyelan, et al., 2014) investigated differences among HCs, SZ and BPP 

patients in whole-brain functional connectivities, and found that SZ patients had 

significantly lower connectivity strengths than HCs, and BPP group showed intermediate 

connectivity strengths between SZ group and HC group. While decreased connectivity 

strength has been found in SZ (Lynall, et al., 2010), some work has also reported increased 

connectivity strength (Whitfield-Gabrieli, et al., 2009; Zhou, et al., 2007) in SZ. So far, brain 

function impariments among BPP, SAD and SZ are still unclear. It is uncertain whether there 

are progressively network alterations from HC to BPP to SAD to SZ, and what kinds of 

distinct versus shared impairments are related to these disorders. In addition, all the above 

mentioned connectivity and network studies used the blood-oxygen-level dependent 

(BOLD) signal over the entire scan time to estimate, assuming functional connectivities (or 

networks) are stationary.

Connectivity patterns can be time-varying over periods of tens of seconds, evident during a 

few minutes of resting-state scans (Allen, et al., 2014; Calhoun, et al., 2014; Di and Biswal, 

2013; Du, et al., 2016; Hutchison, et al., 2013; Kiviniemi, et al., 2011; Yaesoubi, et al., 

2015; Zalesky, et al., 2014). It is possibly theoretically useful to capture these non-stationary 

connectivity patterns for a better understanding of the influence of disease on brain 

connectivity (Damaraju, et al., 2014; Du, et al., 2016; Miller, et al., 2016; Rashid, et al., 

2014; Yu, et al., 2015). In the present study, we aim to apply a novel ‘chronnectome’ 

approach (Abrol, et al., 2016; Calhoun, et al., 2014) to study BPP, SAD and SZ. We expect 

that dynamic functional connectivity (DFC) derived from resting-state fMRI data would help 

clarify the nature of neural deviations across the psychosis spectrum.

Among different dynamic connectivity estimation models, the sliding time window method 

(Hutchison, et al., 2013) is the most popular. This technique computes functional 

connectivities using the windowed BOLD time series, resulting in time-varying connectivity 

patterns along different windows and thereby revealing implied connectivity states (Allen, et 

al., 2014). The diverse connectivity states may yield promising biomarkers for psychosis. To 

extract connectivity states, researchers have employed various methods including clustering 

and decomposition techniques. Connectivity states extracted using different methods may 

have discrepant patterns due to their different assumptions (Calhoun, et al., 2014). 

Furthermore, while connectivity states obtained from clustering approaches have the same 

scale with real connectivity strength, post-processing may be needed for connectivity states 

estimated using decomposition methods. Researchers used K-means to extract connectivity 

states by grouping connectivity patterns from different windows into several clusters (Allen, 

et al., 2014; Damaraju, et al., 2014; Du, et al., 2016). K-means could converge exponentially 

slow for data with extensive noise and fall into local optimum. Principal component analysis 
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(PCA) (Leonardi, et al., 2013) has been used to decompose the window-direction 

concatenated connectivity patterns of all subjects into spatially uncorrelated components, of 

which the principle components are considered to be the group-level (common) primary 

connectivity states across subjects. Using Fisher discrimination dictionary learning (FDDL) 

(Li, et al., 2014), time-varying connectivity patterns were decoded by sparse representation 

over connectivity states. The supervised machine learning method required prelabeling each 

connectivity pattern as guidance. Miller et al. (Miller, et al., 2016) applied spatial ICA on the 

window-direction concatenated connectivity patterns of all subjects to estimate spatial 

independent components (ICs), which reflected the group-level connectivity states. 

Temporal ICA (Yaesoubi, et al., 2015) also has been used to decompose the dynamic 

connectivity series of all subjects to compute temporal ICs, and the corresponding mixing 

coefficients of ICs were regarded as the group-level connectivity states. Most previous work 

using decomposition techniques only compared the group-level connectivity states among 

different groups. Little discussion is given about obtaining the subject-specific connectivity 

states with individual characteristics.

In this study, we introduce a novel ICA method, group information guided ICA (GIG-ICA) 

(Du and Fan, 2013), to extract connectivity states from dynamic connectivity patterns. 

Different from the previous decomposition approaches, our method enables computation of 

states at both group-level and subject-level. GIG-ICA first computes the group-level 

connectivity states by analyzing the intra-group subjects’ dynamic connectivity, and then 

guided by the group-level states, it correspondingly estimates the subject-specific 

connectivity states that are independent from each other. Therefore, the resulting subject-

specific states can simultaneously capture inter-subject variability and within-group 

similarity. In this paper, we applied GIG-ICA to analyze dynamic connectivity derived from 

resting-state fMRI data of HC, BPP, SAD and SZ subjects. Then, based on measures from 

dynamic connectivity, we explored the ability of the outcomes describe the psychosis 

continuum. In addition, we also performed conventional static functional connectivity (SFC) 

analysis to see if DFC could provide more informative information than SFC.

2. Materials and methods

We analyzed resting-state fMRI data of the aforementioned four groups. Firstly, the whole-

brain dynamic connectivities of each subject were calculated using the sliding time window 

approach. Then, we applied GIG-ICA to each group’s dynamic connectivity patterns to 

extract both group-level and subject-specific connectivity states. Subsequently, we 

investigated inter-group differences in the group-level connectivity states, the fluctuations of 

connectivity states, and the dominant subject-specific connectivity states. Finally, we 

conducted traditional static connectivity analyses on the same dataset for a comparison.

2.1. Materials

Resting-state fMRI data from 623 subjects including 238 HCs, 140 BPP, 132 SAD, and 113 

SZ patients were analyzed. There were no significant group differences of age or sex (p = 

0.31 for sex examined by Chi Square test; p = 0.19 for age examined by analysis of 

variance). The data were provided from participants in the multi-site Bipolar and 
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Schizophrenia Network on Intermediate Phenotypes (BSNIP) study (Meda, et al., 2014; 

Meda, et al., 2015; Tamminga, et al., 2013). Subjects were recruited and scanned at six sites 

(Baltimore, Boston, Chicago, Dallas, Detroit, and Hartford). The scanning period was about 

five minutes for all sites. All subjects were psychiatrically stable and on stable medication 

regimens at the time of study. Participants were instructed to rest with eyes closed and stay 

awake. Demographic information is shown in Table 1. The detailed imaging acquisition 

parameters for each site can be found in supplementary Table S1.

We preprocessed the fMRI data of each subject using a Data Processing Assistant for 

Resting-State fMRI (DPARSF) toolbox (Yan and Zang, 2010) based on Statistical 

Parametric Mapping (SPM8) (http://www.fil.ion.ucl.ac.uk/spm). The first six volumes were 

discarded, and then the remaining images were slice-time corrected and realigned to the first 

volume for head-motion correction. The output of realignment demonstrated that the head 

motion was slight in all subjects (the translations were less than 3mm, and rotation did not 

exceed 3° in all axis through the whole scanning process, see Table 1). Subsequently, we 

spatially normalized the images to the Montreal Neurological Institute (MNI) EPI template 

(Friston, et al., 1995), resliced them to 3mm×3mm×3mm voxels, and smoothed them with a 

Gaussian kernel with a full-width at half-maximum (FWHM) of 8 mm. Detrending and 

filtering (0.01Hz-0.08Hz) (Auer, 2008; Cordes, et al., 2001; Zuo, et al., 2010) were then 

performed. Finally, nuisance covariates including six head motion parameters, white matter 

signal, cerebrospinal fluid signal and global mean signal (Fox, et al., 2005) were regressed 

out.

2.2. Method

2.2.1. Computing dynamic functional connectivity via a sliding time window 
method—For each subject, we computed whole-brain time-varying connectivity matrices 

based on m (m = 116) regions of interest (ROIs) from the automated anatomical labeling 

(AAL) template (Tzourio-Mazoyer, et al., 2002) using a sliding time window method (Allen, 

et al., 2014; Hutchison, et al., 2013). Fig. 1(A) shows an example of estimation. The indices 

(IDs) and names of ROIs are included in supplementary Table S2. Firstly, the averaged 

BOLD time-series Yi in ROI Yi, the windowed time-series Yi. Here, n and w denote the 

number of windows and the window ID, respectively. According to previous work (Allen, et 

al., 2014; Zalesky and Breakspear, 2015), a tapered window was created by convolving a 

rectangle (width = 20 TRs) with Gaussian kernel (σ = 3 TRs) and moved in step of 1 TR. 

For different sites, the window length ranged from 30s to 60s, which has been shown to be 

reasonable for capturing non-stationarity in connectivity strengths (Abrol, et al., 2016; 

Allen, et al., 2014; Damaraju, et al., 2014; Zalesky and Breakspear, 2015). Supplementary 

Table S1 includes the value of n for each site. Thirdly, for each window w, we calculated a 

connectivity matrix Rw (size: ) that included the connectivity strengths between all 

pairs of . Consistent with previous studies (Allen, et al., 2014; 

Damaraju, et al., 2014), we initially estimated the regularized inverse covariance matrix 

(Smith, et al., 2011) based on graphical LASSO model (Friedman, et al., 2008). For 

improving accuracy of dynamic connectivity estimation, LASSO imposed sparsity by 

placing a L1 norm penalty on the inverse covariance matrix to decrease noise effect of short 

time series in each window. When using the graphical LASSO, the regularization (penalty) 
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parameter was optimized separately for each subject by evaluating the log-likelihood in a 

cross-validation framework (see details in the supplementary materials). After that, the 

covariance matrix was calculated based on the regularized inverse covariance matrix, and 

then was transformed into the correlation matrix that was taken as the estimation of Rw. 

Thus, for each subject, n matrices denoted by Rw  were obtained, 

representing the subject’s dynamic connectivity patterns during the whole scan period.

2.2.2. Extracting functional connectivity states via GIG-ICA—Instead of focusing 

only on the group-level connectivity states, we applied GIG-ICA method (Du and Fan, 

2013) to the window-direction concatenated dynamic connectivity patterns of multiple 

subjects to extract the inherent connectivity states at both group-level and subject-level. 

Considering the subtle differences among groups, GIG-ICA was applied to each of the four 

groups separately.

Due to the symmetry of the connectivity matrix, all connectivity strengths among m ROIs 

corresponding to the wth window can be converted to a vector containing only upper 

triangular  elements in Rw. Thus, the time-varying connectivity patterns 

of the kth subject can be represented by a window-by-connectivity matrix  (size: 

). Consequently, the window-direction concatenated dynamic connectivity patterns 

of all subjects can be represented by  where N is the number of 

subjects in one group.

At the first step of GIG-ICA (Fig. 1(B)), we applied the Infomax algorithm (Amari, et al., 

1996; Bell and Sejnowski, 1995) to the Fisher-transformed X to estimate the group-level 

connectivity states. To decrease the influence of initialization randomness in ICA, we 

applied ICASSO technique (Himberg, et al., 2004) by running ICA multiple times and then 

finding reliable ICs. In our work, we selected the most stable run from 20 runs of ICA 

according to an improved method (Ma, et al., 2011) and then regarded the components 

associated with the most stable ICA run as the reliable ICs (see supplementary materials), 

which is different from the original ICASSO technique (Himberg, et al., 2004) taking the 

centrotypes of multiple runs as reliable ICs. Note that before the group-level ICA, a two-step 

PCA (including subject-level PCAs and group-level PCA) was performed for data reduction. 

In our study, the principal component numbers preserved in the subject-level and group-level 

PCAs were set to be the same for simplification. Thus, we obtained

(1)

where  includes the estimated group-level (common) ICs, 

representing the group-level connectivity states (GSs). M denotes the number of states. 

Greater M will preserve more variances from individual-subject dynamic connectivity. In 

order to simplify state matching and consequent comparisons among different groups, M 

was determined to be the same number for all groups in our study. It is known that the 

selection of number of components is always difficult in blind signal decomposition 

problem, since different rules could result in different numbers. In dynamic connectivity 
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analyses using fMRI data, many previous studies (Damaraju, et al., 2014; Miller, et al., 

2016; Rashid, et al., 2014; Yaesoubi, et al., 2015) applied spatial ICA, temporal ICA, PCA 

and K-means to estimate connectivity states with the number of states as 5. Considering the 

similarity between our method and spatial ICA (Miller, et al., 2016), we also set M to 5, 

under which relatively high variance was preserved in individual PCAs (mean of the 

preserved variance percentage = 72%). Furthermore, we also evaluated the reliability of the 

estimated connectivity states under conditions of 20 ICA runs in one ICASSO, 100 

additional ICASSO runs, and 100 subsets of original samples using different settings (M = 

2, 4, 5, 6 and 10). We found that the parameter 5 yielded greater reliability than bigger 

number (i.e., 6 and 10) while preserving acceptable variance compared to smaller number 

(i.e., 2 and 4). The relevant results can be found in Fig. S1–Fig. S3. Next, each state  (size: 

) was Z-scored to zero mean and unit variance for the following analysis. In 

equation (1),  contains N mixing matrices corresponding to N 

subjects. For the kth subject, the associated mixing matrix is  (size: ). Given 

, the lth column of  (i.e., ) represents the subject-specific 

fluctuation (SF) of the lth GS (i.e., ) in the kth subject’s dynamic connectivity. Since  is 

the loading (or weight) coefficients in ICA, the sum of the absolute value of  can reflect 

the state’s importance to the kth subject’s dynamic connectivity. Therefore, we measured the 

contribution of each GS to all subjects’ dynamic connectivity using , 

where  is the lth column of A. We term the GS with the greatest contribution the dominant 

GS, which included the most information (i.e., power) across the entire time-varying 

connectivity patterns of all subjects.

At the second step of GIG-ICA (Fig. 1(C)), based on the identified dominant GS and the 

individual-subject Fisher-transformed ), we estimated the corresponding 

dominant subject-specific connectivity state (SS) for each subject. Using a multiple-

objective optimization function (2), the method simultaneously optimizes the independence 

of the subject-specific IC (i.e., SS) as well as the correspondence between the subject-

specific IC (i.e., SS) and the group-level IC (i.e., GS). To simplify description, we use  to 

denote the identified dominant GS and  to denote the corresponding dominant SS to 

estimate.

(2)

Here,  denotes one subject-specific IC of the kth subject.  is the whitened 

.  is the unmixing vector. v is a Gaussian variable with zero mean and unit variance. 
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 is a nonquadratic function. , the negentropy of the estimated  with updates on 

, serves to measure the independence of .  denotes the expectation of variable. 

, which equals to the Pearson correlation between  and , was used to 

measures the similarity between  and . Solving the optimization function results in the 

optimal , which represents the dominant SS of the kth subject. The algorithm 

automatically generates Z-scored  (Du and Fan, 2013), which can be compared across 

subjects. From the above derivation,  is the corresponding SF of .

Hence, for each group we obtained five GSs, among which one GS was identified as the 

dominant GS. For each subject, we computed the dominant SS and SFs. It is worth noting 

that four groups of GSs may have diverse patterns and could not be very corresponding 

across groups, since they were estimated separately for each group. In order to make the 

GSs, the associated SFs and the dominant SS to be comparable across groups, we matched 

the results of the four groups using a greedy search rule (see supplementary materials).

2.2.3. Investigating group differences in the group-level states and the states’ 
fluctuations—We expected to examine whether BPP, SAD and SZ display disorder-related 

connectivity states and whether the fluctuations of states show different features among 

groups. In order to show the overall difference in the GSs’ connectivity patterns, we 

visualized them using the BrainNet Viewer toolbox (Xia, et al., 2013). Furthermore, in order 

to assess the similarity of GSs across different groups, we computed Pearson correlation 

coefficients among the matched GSs, and took the mean of the absolute correlations as their 

similarity measure.

We investigated the states’ fluctuations from two aspects. (1) To assess the variability of 

each state’s SF for each subject, we computed the fractional amplitude of low frequency 

fluctuation (fALFF) of the normalized SF (with zero mean and unit variance) using its low-

frequency (<0.0125Hz) to high-frequency (>0.025Hz) power ratio (Du, et al., 2015a). For 

each state, we then compared the fALFF across groups using analysis of covariance 

(ANCOVA) (p < 0.05 with Bonferroni correction for multiple comparisons, i.e., p-value 

threshold = 0.05/number of states) with age, gender, and site information as covariates and 

two-tailed two-sample t-tests (p < 0.05 with Boneferroni correction, i.e., p-value threshold = 

0.05/number of group pairs). Additionally, we also compared the differences in fALFF 

among different states in each group using analysis of variance (p < 0.05 with Bonferroni 

correction, i.e., p-value threshold = 0.05/number of groups). (2) We evaluated the activation 

mode of the states. For each state, the positive (or negative) values of all subjects’ SFs were 

thresholded by preserving half number of windows with greater absolute values using a 

manner similar to previous work (Yaesoubi, et al., 2015), and then the percentage of the 

positively (or negatively) active windows to all windows was calculated for each subject. 

Afterwards, for each state, we compared the positively (or negatively) active percentage 

among groups via ANCOVA (p < 0.05 with Bonferroni correction, i.e., p-value threshold = 

0.05/number of states) with age, gender, and site information as covariates and then two-
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tailed two-sample t-tests (p < 0.05 with Boneferroni correction, i.e., p-value threshold = 

0.05/number of group pairs).

As mentioned in section 2.2.2, we tested the reliability of the estimated GSs of each group 

using different ICASSO runs. For each group, we repeated additional 100 ICASSO runs, 

each of which resulted in M GSs. Then, we computed the similarity among  GSs 

obtained from both original and additional 100 ICASSO runs.

Furthermore, we also evaluated if the estimated GSs of each group are stable when using 

different samples. For each group, we generated 100 permutations, each of which randomly 

included 80% of the original subjects. In each permutation run, we applied the group-level 

ICA (as shown in Fig. 1(B)) to analyze the selected subjects’ dynamic connectivity, resulting 

in new GSs of the group. For each group, we further investigated similarity among those 

new GSs obtained from 100 permutations as well as the relationship between the GSs from 

the original subjects and the GSs from 100 permutations. (1) We computed Pearson 

correlation coefficients among the  new GSs. (2) We projected the estimated GSs 

from both 100 permutations and the original subjects into a 2D-plane using the t-Distributed 

Stochastic Neighbor Embedding (t-SNE) projection method (van der Maaten and Hinton, 

2008). (3) We averaged the corresponding GSs from 100 permutations, and then calculated 

Pearson correlation coefficient between each mean GS and the relevant GS obtained from 

the original subjects. Note for each permutation run, we matched the resulting states with the 

original states using a greedy rule for facilitating comparison.

2.2.4. Investigating group differences in the functional connectivities of the 
dominant state—Considering that the dominant state contained the most information of 

dynamic connectivity patterns, we compared the dominant connectivity state across groups 

in detail. We expected to explore the following aspects. (1) Whether functional connectivity 

(FC) strengths are impaired in those diagnoses. If true, which brain regions are involved in 

the altered FCs? (2) What kinds of deficits are related to symptomatology across diagnoses? 

Whether there is a gradual alteration from HC to BPP to SAD to SZ? Which impairments 

are common or unique?

In order to investigate differences among the four diagnostic groups, we performed 

ANCOVA (p < 0.01 with Bonferroni correction, i.e., p-value threshold = 0.01/number of all 

ROI pairs) with age, gender, and site information as covariates on each element (reflecting 

one FC’s strength) in the dominant SS. For each significantly discriminative FC, we further 

explored difference between any paired groups in the connectivity strength using a two-

tailed two-sample t-test (p < 0.01 with Bonferroni correction, i.e., p-value threshold = 0.01/

number of group pairs). Furthermore, for each discriminative FC, we computed the 

correlation (p < 0.05 with Bonferroni correction, i.e., p-value threshold = 0.05/number of 

symptom scores) between the connectivity strengths and the symptom scores (displayed in 

Table 1) for patients to explore their association.

We also tested medication effects using two types of analyses. First, we converted all 

available anti-psychotic data to their respective chlorpromazine (CPZ) dosage equivalents 

for 244 patients with available dose-level medication data, as prescribed by Andreasen et al 
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(Andreasen, et al., 2010). We then used a multiple linear regression model to evaluate 

associations between CPZ measures and strengths of each FC (p < 0.05 with Bonferroni 

correction, i.e., p-value threshold = 0.05/number of all ROI pairs). Second, we recoded 

available medication data into a binary “on”/”off” format for main drug classes (anti-

psychotics, anti-depressants, mood stabilizers, anxiolytic/sedatives/hypnotic, and anti-

cholinergic/anti-parkinsonian). Then, for each drug class, we performed a two-tailed two-

sample t-test (p < 0.05 with Bonferroni correction, i.e., p-value threshold = 0.05/number of 

all ROI pairs) to examine group differences in FC strengths between the patients taking a 

particular medication and patients not taking the medication.

In our study, we applied GIG-ICA to each group’s dynamic connectivity separately to 

estimate the group-specific connectivity states, which may raise concerns on whether the 

identified group differences were due to the grouping. In order to assess the validity of the 

identified group differences, we performed a permutation test based on 1000 permutations 

by randomly rearranging all 623 subjects of the original four groups (i.e., HC, BPP, SAD 

and SZ). For each of 1000 permutations, we first generated four dummy groups each of 

which had the same number of subjects with the original group. Consistent with the 

processing on the original groups, we first estimated the group-level states by performing the 

group-level ICA on the dynamic connectivity of each dummy group, and then we identified 

the dominant group-level state according to the states’ contributions, finally we estimated 

the dominant subject-specific states on the basis of the dominant group-level state. 

Afterwards, in each permutation run, we employed ANCOVA with age, gender, and site 

information as covariates on each FC’s strengths of the dominant subject-specific states. 

While performing ANCOVA, the used age, gender and site information of each subject was 

the subject’s real age, gender and site information. Finally, for each FC in the dominant 

state, we calculated the occurring frequency of the case where the p-value obtained from 

ANCOVA using rearranged groups (i.e., one permutation) was smaller than the 

corresponding p-value obtained from ANCOVA using the original (i.e., real) groups. The 

frequency (i.e., the tail probability computed from 1000 permutations) reflects the 

significance level of the identified group difference. Smaller tail probability indicates lower 

possibility of false positives of the identified group difference.

2.2.5. Static functional connectivity analyses—We performed the conventional SFC 

analyses for a comparison. For each subject, we computed Pearson correlation coefficients 

between any pair of Yi , resulting in a connectivity matrix R (size: ). 

Fisher’s r-to-z transformation was applied to the connectivity strengths, and then ANCOVA 

(p < 0.01 with Bonferroni correction, i.e., p-value threshold = 0.01/number of all ROI pairs) 

with age, gender and site information as covariates was performed on each element 

(reflection one FC’s strength) in R. Based on each discriminative FC identified, we further 

explored the difference between any pair of groups using a two-tailed two-sample t-test (p < 

0.01 with Bonferroni correction, i.e., p-value threshold = 0.01/number of group pairs). 

Similar to DFC analyses, we also computed Pearson correlation coefficients between the FC 

strengths and the symptom scores, and tested the medication effects for patients. 

Furthermore, in order to show the connectivity patterns, we averaged R matrices across 

subjects for each group.
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3. Results

3.1. Dynamic functional connectivity

Fig. 2(A) shows an example of the whole-brain dynamic connectivity estimation from one 

subject. It can be seen that the connectivity pattern varied over time (windows), in agreement 

with prior reports of the brain functional dynamics (Calhoun, et al., 2014). Given any pair of 

windows with a specific distance (measured using the start time points of two windows), we 

computed the correlation between any pair of connectivity patterns in such two windows and 

averaged all correlations to measure the similarity of connectivity patterns in two windows 

with the distance. The result (bottom panel in Fig. 2(A)) shows that the similarity decreased 

rapidly along with the increasing distance and changed gently after the distance of 20, 

supporting the time-varying property of connectivity and the existence of a relatively stable 

connectivity state. For a comparison, the connectivity matrix computed using the SFC 

analyses of the same subject is shown in Fig. 2(B). It can be seen that the connectivity 

pattern computed using the windowed BOLD signal was considerably different from that 

obtained using the whole BOLD signal, indicating that the dynamic connectivity approach 

may provide additional information.

3.2. Group differences in the group-level states and the states’ fluctuations

Fig. 3(A) shows the ICASSO result of each group, indicating that the estimated GSs were 

relatively robust in 20 ICA runs. In addition, the performances of multiple ICASSO runs 

were also very close (Fig. 3(B)), supporting the states’ reliability. The matched GSs across 

HC, BPP, SAD and SZ groups as well as their visualized connectivity patterns from the 

original ICASSO are shown in Fig. 4 and Fig. 5, respectively. It is noted that the states were 

approximately matched across groups due to the fact that different groups exhibited various 

patterns of GSs. For each group, the dominant GS had the greatest contribution to the 

dynamic connectivity (46%, 44%, 48% and 47% for HC, BPP, SAD and SZ groups, 

respectively), whereas each of the other four GSs had less than 20% contribution. Therefore, 

the dominant GS included the most information (i.e. power or contribution) compared to the 

remaining states.

Fig. 4 (the bottom row) displays the correlation matrix of the matched GSs. Interestingly, the 

dominant GSs were very consistent across the four groups (similarity measure = 0.93). 

However, the similarity measures were relatively small for the rest of the four states (0.66, 

0.57, 0.39 and 0.36, respectively). Specifically, for GS 2 and GS 3, BPP and SZ groups 

showed lowest correlation. Furthermore, GS 4 of SZ group was less correlated with all GSs 

4 from other groups, and SAD group showed a unique pattern in GS 5, suggesting diagnosis-

relatedness of these states. To verify this, we also performed one group-level ICA on the 

dynamic connectivity patterns of all 623 subjects to extract the connectivity states of all 

groups with the number of components as 5. Then, we computed the similarity between each 

state from one single group and the corresponding state from all groups. Results (shown in 

supplementary Fig. S4) support the diagnosis-relatedness of GS 4 of SZ and GS 5 of SAD.

As mentioned in the method section, we also investigated stability of the identified group-

level states by applying 100 permutation runs to each group. Fig. 6(A) shows the similarity 
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matrix among all GSs from 100 permutations of each group. The result suggests that the 

corresponding GSs (especially the dominant GSs) obtained from different subsets of the 

same group were very similar. Fig. 6(B) displays the projection results of the estimated GSs 

from both 100 permutations and the original subjects for each group, supporting that all 

corresponding GSs were clustered tightly. As shown in Fig. 6(C), each mean GS from 100 

permutations was highly correlated to the relevant GS from the original subjects 

(correlations > 0.94). All our results support that the identified group-level states were quite 

stable regardless of different samples and the original group-level states (shown in Fig. 4 of 

the manuscript) were robust and meaningful.

For each state, the corresponding SFs in all windows of all subjects are demonstrated in Fig. 

7(A). Relative to other states, the dominant state contributed higher loadings in dynamic 

connectivity patterns for most of windows of all subjects. We compared the SF’s fALFF 

among different states and didn’t find significant difference. However, measured by the 

mean of fALFF across subjects (shown in supplementary Fig. S5), the dominant state had 

slightly higher variability (low fALFF value) than other states, probably due to that the 

dominant state was relatively more active over time. There was no significant difference 

across the four groups in the variability of SFs. Fig. 7(B) shows the percentage of the 

positively and negatively active windows for the matched states across groups. Our results 

indicate that for all subjects, the dominant GS was only positively active in the time-varying 

connectivity. The percentage of the positively active window showed an increasing trend 

from BPP to SAD to SZ for GS 1 and GS 3. Specially, for GS 3, HC and BPP were more 

similar while SAD and SZ were close. In addition, for the GS 4 (SZ-related state), SAD 

group showed difference with HC and BPP in activation. For the GS 5 (SAD-related state), 

the activation mode of SZ was significantly different from that of HC and BPP. The results 

suggest that SAD and SZ groups showed greater change in fluctuations of states compared 

to BPP and HC groups.

It is worth noting that the positive and negative values in the connectivity matrices of states 

(shown in Fig. 4) should be carefully interpreted as that the signs of ICs (i.e., states) are 

arbitrary. Therefore, the states should be considered along with their associated loadings 

(i.e., SFs). It can be observed from Fig. 7 that the dominant state always had positive SFs, so 

the positive and negative values in the dominant state reflected the positive and negative 

connectivity strengths, respectively. Regarding the dominant GS, the positive connections 

primarily included the default mode network, the sensory-motor network, the vision-related 

network, and the within-cerebellum connectivities, while the negative connections primarily 

linked cerebellum and other cortices including Rolandic operculum, insula, Heschl’s gyri 

and superior temporal lobe. For other non-dominant states, their SFs had both positive and 

negative values. Positive value in SF implies that the state exists in the connectivity pattern 

of the corresponding window, and negative value in SF indicates the anti-state exists in the 

connectivity pattern of the corresponding window.

3.3. Group differences in the functional connectivities of the dominant state

Regarding the dominant SS, we show the ANCOVA result in Fig. 8(A)–(C). There are 166 

FCs showing significant group difference, primarily located in the thalamus, cerebellum, 
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frontal, temporal, occipital, fusiform, postcentral, cuneus, putamen, supramarginal, and 

calcarine cortices. Examined by two-sample t-tests, 52 FCs showed significant group 

differences among patient groups, while the remaining 114 FCs were only discrepant 

between HCs and psychosis patients. The detailed information including the associated 

ROIs, p-value and effect size in ANCOVA, the mean of connectivity strength in each group, 

and the pair-wise group difference are listed in supplementary Table S3. Additionally, we 

also examined group differences using analysis of variance (without covariates) instead of 

ANCOVA, and found similar discriminative FCs (see supplementary Fig. S6).

Measured by the mean connectivity strength across subjects (see Table S3), 22 FCs (Fig. 

8(D)) showed decreasing strengths, while 34 FCs (Fig. 8(E)) had increasing strengths from 

the HC to BPP to SAD to SZ. The hypoconnectivities with decreasing trends included the 

postcentral, frontal and cerebellum cortices, and the hyperconnectivities with increasing 

trends involved insular, temporal, frontal, thalamus, cerebellum, fusiform, lingual, occipital 

and supramarginal cortices. Interestingly, all hypoconnectivities having significant 

associations with the symptom scores were negatively correlated with the PANSS positive or 

negative scores, and all related FCs were linking postcentral and frontal gyri (see Fig. 9). 

Similarly, all hyperconnectivities having significant correlations with the symptom scores 

were positively correlated with the PANSS scores (see Fig. 10). Moreover, non-frontal 

hyperconnectivities appeared to underlie negative symptoms, while frontal 

hyperconnectivities were more critical for positive symptoms. Therefore, our findings 

suggest that these FCs may reflect disease severity, and the FC strengths between postcentral 

and frontal cortices showed an apparent clinical relevance.

Assessed by two-sample t-tests, 14 FCs (see Fig. 8 (F) and Fig. 11) only showed significant 

differences in HC vs. SAD, HC vs. SZ, BPP vs. SAD, and BPP vs. SZ, suggesting that BPP 

and HC groups resembled each other while SAD and SZ groups were more similar to each 

other in these FCs. Interestingly, 10 of the 14 FCs were relevant to the frontal cortex, and the 

remaining 4 FCs were located around fusiform gyrus. Hence, our results supported common 

frontal and fusiform impairments in SAD and SZ.

We also found that SZ differed significantly from other diagnostic groups in three FCs (Fig. 

12), all of which were relevant to the left cerebellar crus. SAD had a significant alteration 

compared to the other three groups in one FC linking the frontal and fusiform cortices.

In addition, in targeted medication analyses, we found no significant associations between 

FC strengths and daily antipsychotic dose CPZ equivalents. Likewise, for binary coded 

medication classes, we observed no significant associations with FC.

As mentioned in section 2.2.4, we examined the validity of the identified group differences 

using an additional permutation test. Fig. 13(A) shows all connections’ p-values obtained by 

performing ANCOVA on each connection’s strengths in the dominant subject-specific states 

based on the original four groups. Fig. 13(B) displays all connections’ associated p-values 

(i.e., the frequencies or tail probabilities) that were computed based on ANCOVA results of 

the dominant state from 1000 permutations. By comparing Fig. 13(A) and (B), we found that 

the p-value map was quite comparable between the original ANCOVA and the permutation 
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test. More importantly, as shown in Fig. 13(C), regarding the identified 166 discriminative 

FCs presenting group differences among the original four groups, only 24 FCs (see 

supplementary Table S4 for details) showed p-values with more than zero value (maximum 

p-value = 0.014, minimum p-value = 0.001, and mean p-value = 0.0025) in the permutation 

test. In summary, our results support that the 166 discriminative connectivities shown in Fig. 

8(C) were driven by diseases rather than grouping.

3.4. Group differences identified using the static functional connectivity analyses

Fig. 14 displays each group’s mean connectivity matrix obtained from the SFC analyses. By 

comparing Fig. 14 with Fig. 4 and Fig. 5, it is seen that the mean static connectivity matrix 

and the dominant group-level state’s connectivity matrix exhibited a similar pattern, 

supporting that the dominant state consisted of the most information of dynamic 

connectivity patterns. As shown in Fig. 15(A)–(C), ANCOVA on the static connectivity 

revealed significant group differences in 29 FCs (see supplementary Table S4 for details). 

Among the 29 FCs, 28 FCs were observed using the above mentioned DFC method.

Measured by the mean connectivity strength across subjects, six FCs showed decreasing 

strengths (as shown in Fig. 15(D)), while three FCs had increasing strengths (as shown in 

Fig. 15(E)) across HC, BPP, SAD and SZ groups using SFC analysis. The 

hypoconnectivities (Fig. 16(A)) involved pallidum, cerebellum, thalamus, occipital and 

fusiform cortices, and the hyperconnectivities (Fig. 16(B)) lay in paracentral, thalamus, 

cerebellum and temporal cortices. Only one hyperconnectivity linking paracentral lobule and 

cerebellum (Fig. 16(C)) showed significant positive correlations with PANSS positive and 

negative scores of patients.

Evaluated by two-sample t-tests, only three FCs showed difference among patient groups 

using the SFC analyses. Among the three FCs, one FC showed difference between SAD and 

SZ, while the other two FCs were different between BPP and SZ (see supplementary Table 

S5). No SAD or SZ related alteration was found. Similar to the DFC analyses, no 

association was found between the FC strengths and current medication status. Taken 

together, more informative potential biomarkers were found using our DFC analyses, 

compared to the SFC analyses.

4. Discussion and conclusions

Exploring neuroimaging-based biomarkers to help differentiate BPP, SAD and SZ patients, 

who display significant clinical overlap, is promising but challenging. Recently, there has 

been growing interest in studying brain dynamic connectivity which may uncover important 

dynamic-based biomarkers. In this paper, we introduced a GIG-ICA framework to estimate 

both group-level and subject-specific connectivity states from time-varying connectivity 

patterns. Our method enables performance of analyses on subject-level features, such as 

identifying diseases biomarkers using statistical methods and classifying individual patients 

using machine learning approaches. By analyzing the whole-brain ROIs-based dynamic 

connectivity derived from resting-state fMRI data, we examined group differences among a 

large sample including HCs, BPP, SAD and SZ patients.
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We observed that while the dominant group-level state (GS 1) with the greatest contribution 

to time-varying connectivity was highly consistent across groups, the non-dominant states 

showed varied or disparate patterns across groups. Specifically, for GS 2 and GS 3, BPP and 

SZ groups showed lowest similarity, but the GS 4 of SZ and GS 5 of SAD were diagnosis-

related. Interestingly, these states also showed different activation patterns among groups, 

suggesting the possibility of further developing these measures as diagnoses-related 

biomarkers. The positively active window showed an increasing trend across BPP, SAD and 

SZ groups for GS 1 and GS 3. For the activation mode of GS 3, HC and BPP resembled each 

other more closely while SAD and SZ were more similar. Regarding the SAD (or SZ) 

related state, SZ (or SAD) showed significant activation difference with both HC and BPP. 

All the findings support the hypothesis that SAD and SZ had more abnormal patterns than 

BPP. It is also worth pointing out that we evaluated the reliability of each group’s 

connectivity states by performing additional ICASSO runs and using different subsets of 

samples (i.e., permutations). Our results suggested that the identified states were reliable and 

meaningful.

Regarding the dominant state, widespread group differences lay in 166 FCs, which mainly 

involved the thalamus, cerebellum, frontal, temporal, occipital, fusiform, postcentral, 

cuneus, supramarginal and calcarine cortices. Furthermore, there were progressive 

abnormalities from HCs to BPP patients to SAD patients to SZ patients with respect to 

hypoconnectivities and hyperconnectivities. The results are consistent with some previous 

studies that observed more severe gray matter deficits from BPP to SAD to SZ (Ivleva, et al., 

2013) and functional impairments from BPP to SZ (Argyelan, et al., 2014). Hence our 

findings support the view that these chronic psychotic disorders are in a continuum of 

severity, with BPP closer to normality and SZ at the more severe end. Specifically, 22 FCs 

associated with the postcentral, frontal, and cerebellar cortices showed decreasing trends 

across HC, BPP, SAD and SZ groups, while 34 FCs associated with the insular, temporal, 

frontal, fusiform, lingual, occipital, supramarginal cortices, as well as thalamus and 

cerebellum, had increasing trends across those groups. Promisingly, these FCs showing 

decreasing/increasing trends across groups also had negative/positive correlations with the 

symptom severity scores in patients, indicating the clinical relevance of these possible 

biomarkers. Interestingly, all hypoconnectivities that showed significantly negative 

correlations with symptom scores were linking the postcentral and frontal cortices. 

Therefore, our findings support the postcentral-frontal connectivity strength as an underlying 

biomarker for psychosis severity, consistent with the previous work (Lynall, et al., 2010) that 

also revealed reduced FCs in precentral, postcentral, frontal, temporal, and insular cortices in 

SZ. Noteworthy, these FC differences among patient groups were not attributable to the 

current medication status.

Furthermore, the psychosis groups showed between-group difference in 52 FCs, while HCs 

differed from patients in 114 FCs. The results indicate that these psychotic disorders showed 

considerably similar alterations in connectivities, consistent with prior studies (Meda, et al., 

2016; Pearlson, et al., 2016). We also found that for 14 FCs involving the frontal cortex and 

fusiform gyrus, HCs and BPP patients were more similar to each other, while SAD 

resembled SZ patients. This supports common executive function (associated with frontal 

cortex) and face recognition (relevant to fusiform) abnormalities in SAD and SZ, consistent 
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with previous reports from other groups (Beatty, et al., 1993; Bora, et al., 2009; Tang, et al., 

2012). The current finding is also consistent with the results of our previous work (Du, et al., 

2014; Du, et al., 2015b), which employed spatial functional networks to investigate the 

hierarchical inter-group relationship and found that HCs and BPP patients clustered into one 

group while SAD and SZ patients clustered into another. Our finding supports the idea that 

SAD may be biologically similar to SZ, as classified based on symptoms in the current 

DSM-5 (Heckers, et al., 2013; Malaspina, et al., 2013).

Our results also suggest that compared to other groups, SZ patients had significant 

alterations in three FCs related to the left cerebellar crus. SAD was different from all other 

groups in one FC linking frontal and fusiform cortices. Cerebellum is usually considered to 

be mostly associated with motor function, however, increasing evidence suggests that the 

cerebellum participates in high-order brain function and cerebellar brain networks are 

impaired in SZ patients (Buckner, 2013; Collin, et al., 2011; Guo, et al., 2015; Koziol, et al., 

2014; Ramnani, 2012; Stoodley, 2012). Previous work showed reduced gray matter volumes 

of fusiform in SAD (Landin-Romero, et al., 2016). Therefore, these diagnosis-related 

aberrances may help contribute to the differentiation of three disorders with overlapping 

symptoms.

Using the traditional static connectivity technique, we only observed 29 discriminative FCs, 

28 of which overlapped with those identified using our dynamic connectivity analysis 

method. Among patient groups, three connectivities were different, including one FC that 

distinguished between SAD and SZ groups and two FCs showing differences between BPP 

and SZ populations. The conventional method failed to reveal any SAD- or SZ-specific 

alteration. Superior to the SFC analysis, our DFC method is able to extract inherent 

connectivity states, consequently enabling us to identify biomarkers from multiple states as 

well as the fluctuations of those states. In summary, our approach is superior to standard 

SFC in identifying connectivity-related biomarkers of the psychosis groups.

Our method is able to compute the subject-specific states with direct correspondence across 

subjects, while preserving the accuracy of the subject-specific states through optimizing 

their independence. Considering the subtle clinical differences among groups, we applied 

GIG-ICA to dynamic connectivity patterns of each group separately rather than dynamic 

connectivity patterns of all groups. If all subjects’ dynamic connectivity patterns from the 

four groups were analyzed by one GIG-ICA, the assumption of common states across all 

groups may be too strict and category-specific group-level states cannot be detected. 

Furthermore, in order to assess the validity of the found group differences, we also applied a 

permutation test with 1000 permutation runs, each of which randomly rearranged all 623 

subjects to generate four dummy groups and then investigated group differences. Results 

from the permutation test clearly support that the 166 discriminative FCs were driven by 

diseases rather than grouping. In our study, the subject-specific states provided 

discriminative measures, and promisingly those measures showed reasonable associations 

with symptom severity scores in patients, indicating accuracy of the obtained individual 

features. We also noticed that there is no work that performs individual ICA on each 

subject’s dynamic connectivity to estimate the subject-specific states. This is probably due 
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to the difficulty of establishing correspondence among subject-specific states estimated 

using individual ICA.

Previous dynamic studies (Damaraju, et al., 2014; Rashid, et al., 2014) have used K-means 

to compare dynamic functional network connectivity (dFNC) between SZ and BPP. In 

contrast, our paper focused on the whole-brain AAL ROIs-based dynamic connectivity, and 

applied GIG-ICA to estimate the subject-specific states. Hence, the findings are not 

especially comparable between our work and previous dynamic studies. However, Rashid et 

al. (Rashid, et al., 2014) also found differences between SZ and BPP in the frontal and 

frontal-parietal regions.

While there is no gold standard for ROI selection, we used the canonical AAL template-

defined regions as ROIs to compute whole-brain functional connectivity, as the template 

provides a clear parcellation and explicit description on whole-brain regions. Recently, 

researchers have also employed brain regions with functional coherence obtained from 

group ICA (Allen, et al., 2014; Damaraju, et al., 2014), clustering techniques (Craddock, et 

al., 2012; Du, et al., 2012; Thirion, et al., 2014), and previous fMRI studies (Du, et al., 2016) 

to calculate connectivities. ROIs obtained using data-driven methods may be sensitive to the 

model parameters such as the number of ICs or clusters. However, dynamic analyses using 

ROIs with more flexible brain function also worth studying.

There are some limitations that are worth further consideration in future. First, the number 

of ICs was adjustable, and the change of this parameter may influence the estimated states 

and the identified group differences. To facilitate the comparison among the four groups, we 

set the number of ICs as an empirical value, five (Damaraju, et al., 2014; Miller, et al., 2016; 

Rashid, et al., 2014; Yaesoubi, et al., 2015), for all groups. The setting preserving enough 

variance in individual PCAs led to reliable performance under the conditions of different 

ICA runs, different ICASSO runs and different subsets of samples for all groups. 

Furthermore, we also investigated the states’ reliability under different numbers of ICs 

including 2, 4, 5, 6 and 10. Results (supplementary Fig. S1–Fig. S3) show that the parameter 

5 yielded relatively higher reliability than bigger number (i.e., 6 and 10) while preserving 

acceptable variances compared to smaller number (i.e., 2 and 4). We also found that the 

group differences in the dominant state identified using different settings showed similarity 

to some extent (see supplementary Fig. S7), while the p-value maps from settings 5 and 6 

were likely closest to each other. Hence, the setting 5 maintained a relatively better balance 

among the preserved variance, the reliability of states, and the resulting group differences in 

our study. However, other choices for the number of states, such as different settings for 

different groups, may deserve further study. In addition, effectiveness of the identified 

measures for distinguishing individual patients also needs to be evaluated in future work. 

Second, we mainly investigated the subtle group differences in connectivities based on the 

dominant state due to the fact that the dominant state was very consistent and comparable 

across all subjects in all groups. For the non-dominant states matched approximately across 

groups, different groups exhibited various patterns. Therefore, we primarily compared their 

similarity and disparity at the group level as well as their fluctuations for those highly-

matched states, rather than conducting statistical analyses on the individual-level states. In 

future, an effective method needs to be developed to investigate differences in the non-
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dominant individual states. Third, the number of time points of fMRI data used in our study 

was relatively small. Some work (Leonardi, et al., 2013) used data including more volumes 

to investigate dynamics; however, many studies have already shown that different 

connectivity states can be robustly and replicably captured using similar time points in a 

short period (Abrol, et al., 2016; Calhoun, et al., 2014; Damaraju, et al., 2014; Miller, et al., 

2016; Rashid, et al., 2014; Yaesoubi, et al., 2015; Yu, et al., 2015). Fourth, we regressed out 

the global signal from each voxel’s time series in preprocessing, since a global signal is 

assumed to reflect a combination of resting-state fluctuations, physiological noise (e.g. 

respiratory and cardiac noise), and other noise signals with non-neural origin. Removal of 

the global mean has been shown to facilitate the detection of localized neuronal signals and 

improve the specificity of FC analysis (Chai, et al., 2012; Fox, et al., 2005; Fox, et al., 2009; 

Van Dijk, et al., 2010), although it could result in increased negative correlations (Murphy, et 

al., 2009). Some previous work (Chai, et al., 2012; Chang and Glover, 2009; Fox, et al., 

2009) reported that meaningful anti-correlated networks may only become detectable after 

regressing no-biological origins. Considering that regressing out global mean is a 

controversial issue (Hayasaka, 2013), it may deserve further investigation. Finally, we did 

not study non-psychotic bipolar patients; whether these differ from bipolar individuals with 

psychotic symptoms needs to be studied separately. In addition, we investigated group 

differences based on the symptom-based diagnoses that likely need more refinement. 

Biomarker-based categories termed Biotypes (Clementz, et al., 2016) have shown promising 

performance as an effort to understand neurobiological heterogeneity in psychosis. In future 

work, we will investigate group differences in dynamic connectivity based on novel multi-

domain biomarker batteries derived from multiple types of biological assessment (Clementz, 

et al., 2015; Meda, et al., 2016).

In summary, we propose here a novel scheme that uses GIG-ICA method to analyze 

dynamic connectivity. Results showed that our approach detected group differences and 

associations with symptoms that were not evident using the conventional static connectivity 

analysis. Findings using our method suggested that the diagnosis-related states with varied 

activation were present for these mental disorders. Based on the dominant state, both 

hypoconnectivities and hyperconnectivities were observed for these diagnoses, and 

interestingly these connections’ strengths had reasonable associations with the symptom 

scores. Our results support that SAD and SZ showed common impairments in frontal 

connectivities, compared to HC and BPP. Furthermore, we also found SZ- and SAD-related 

connectivity alterations. Collectively, our work shows the promising potential of dynamic 

connectivity analysis for understanding these symptomatically similar disorders.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Framework for the DFC analyses. (A) Estimation of dynamic connectivity using a sliding 

time window method. (B) The first step of GIG-ICA. For each group, the window-direction 

concatenated dynamic connectivity of all subjects was decomposed by one ICA to obtain the 

GSs and the associated SFs. (C) The second step of GIG-ICA. Based on the dominant GS 

and the individual-subject dynamic connectivity, we used a multiple-objective optimization 

to estimate the dominant SS for each subject.
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Fig. 2. 
(A) The whole-brain dynamic connectivity of one HC from Hartford site. Top panel: The 

window-direction concatenated dynamic connectivity. Each column represents the 

connectivity strengths of all ROI pairs at one window, and each row represents the dynamics 

of connectivity strengths of one pair of ROIs. Middle panel: The connectivity matrices at 

three time windows marked by arrows in the top panel. Bottom panel: Mean of similarity 

(measured by correlation) between any two connectivity matrices in two windows with a 

specific distance. (B) The connectivity matrix from the SFC analyses of the same subject. 

The x-axis and y-axis in the bottom panel of (A) and (B) denotes the ROI ID, which 

corresponds to brain regions from the AAL template (see supplementary Table S2).
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Fig. 3. 
Reliability of GSs obtained from ICASSO runs. (A) ICASSO results of the group-level 

states. Clusters are indicated by red convex hulls and white/red lines connect similar 

estimates. The cyanic circles indicate the reliable GSs, which were used for consequent 

analyses. (B) Similarity matrix among the states from original and additional 100 ICASSO 

runs. Each similarity matrix was computed based on 5×101 states obtained from original and 

additional 100 ICASSO runs. Each block on the diagonal of one similarity matrix reflects 

the similarity among corresponding states computed from 101 ICASSO runs.
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Fig. 4. 
The matched GSs of HC, BPP, SAD and SZ groups and their correlation matrix. Each row of 

the first four rows includes the connectivity matrices of GSs for one group. Contribution of 

each GS to dynamic connectivity is shown along with the GS matrix. Each matrix in the last 

row shows the correlation matrix of the matched GSs from four groups. The similarity 

measure reflects the mean of those correlations. The first column corresponds to the 

dominant GS.
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Fig. 5. 
The visualized connectivity patterns of the matched GSs for HC, BPP, SAD and SZ groups. 

The connectivity patterns are shown using the same sparsity, and the red and blue lines 

denote positive and negative values in the GS matrix (shown in Fig. 4), respectively.
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Fig. 6. 
Reliability of GSs obtained from different permutations. (A) Similarity matrix of GSs from 

100 permutations for each group. Each block on the diagonal of one similarity matrix 

reflects the similarity among corresponding states computed from 100 permutations. (B) 

Projection of the estimated GSs from 100 permutations and original subjects for each group. 

Corresponding GSs from different permutations are shown using dots with the same color. 

Each GS calculated from the original subjects is shown by a “+”. (C) Mean state of the 

corresponding GSs from 100 permutations for each group. The correlation between each 
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mean GS and its associated GS from the original subjects is shown in the title of each 

subfigure. State i  corresponds to GS i  in Fig. 4.
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Fig. 7. 
(A) Values of SFs in the concatenated windows of all subjects for each state. (B) The 

percentage of the positively and negatively active windows of each state. The percentages 

from different subjects in the same group are shown using a boxplot. For each boxplot, the 

central line is the median; the square is the mean; and the edges of the box are the 25th and 

75th percentiles. The whiskers extend to 1 inter-quartile range, and the outliers are displayed 

with a “*” sign. Any pair of groups with significant group difference tested by two-sample t-

tests (p < 0.05 with Bonferroni correction) is denoted by a line. For State 4 of SZ and State 5 

of SAD, we don’t display their comparison results with the associated states from other 

groups, due to that they showed unique connectivity patterns. State i  corresponds 

to GS i  in Fig. 4.
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Fig. 8. 

(A) Statistical values , which were identified by performing ANCOVA on each 

FC’s strengths in the dominant SSs of the four groups. (B) Partial eta squared (reflecting 

effect size) of each FC in the dominant SS, tested by ANCOVA. (C) The visualization of the 

166 discriminative FCs (p < 0.01 with Bonferroni correction). (D) 22 FCs which showed 

decreasing trends in the dominant SS from HC to BPP to SAD to SZ, measured by the mean 

connectivity strength. (E) 34 FCs which had increasing trends in the dominant SS from HC 

to BPP to SAD to SZ, measured by the mean connectivity strength. (F) 14 FCs which 
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showed significant difference in HC vs. SAD, HC vs. SZ, BPP vs. SAD, and BPP vs. SZ, 

tested by two-sample t-tests (p < 0.01 with Bonferroni correction). In (C)-(F), the thickness 

of each line reflects the associated F-value in ANCOVA.
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Fig. 9. 
Statistical analyses and symptom association results of five hypoconnectivities that had 

significant correlations with the symptom scores. Statistical analyses result of each FC 

linking two ROIs is shown using a subfigure, where each bar shows the mean of connectivity 

strengths across subjects in one group, and the title includes the p-value of ANCOVA. Any 

pair of groups with significant difference (two-sample t-test, p < 0.01 with Bonferroni 

correction) is denoted using two symbols with the same color and shape. Significant 

association was identified by computing Pearson correlation between the strengths of each 
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discriminative FC and the symptom scores of patients (p < 0.05 with Bonferroni correction). 

The following similar figures are shown using the same manner.
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Fig. 10. 
Statistical analyses and symptom association results of 12 hyperconnectivities that showed 

significant correlations with the symptom scores.
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Fig. 11. 
Statistical analyses results of 14 FCs showing significant differences in HC vs. SAD, HC vs. 

SZ, BPP vs. SAD, and BPP vs. SZ, assessed by two-sample t-tests (p < 0.01 with Bonferroni 

correction).
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Fig. 12. 
(A) Statistical analyses results of three FCs that showed significant group differences 

between the SZ group and the other three groups, tested by two-sample t-tests (p < 0.01 with 

Bonferroni correction). Last sub-figure shows the significant association with the symptom 

scores (p < 0.05 with Bonferroni correction). (B) Statistical analyses result of one FC that 

showed significant group difference between the SAD group and the other three groups.
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Fig. 13. 
(A) P-value map obtained from performing ANCOVA on each FC’s strengths in the 

dominant subject-specific states of the original four groups. (B) All FCs’ associated p-values 

(i.e., the frequencies or tail probabilities) that were computed based on ANCOVA results of 

the dominant state from 1000 permutations. (C) P-values (i.e., the frequencies or tail 

probabilities) obtained from the permutation test of the 166 discriminative FCs (representing 

the significant group differences among the original four groups).
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Fig. 14. 
The mean static FC matrix across subjects and its visualized pattern for HC, BPP, SAD and 

SZ group, respectively. The red and blue lines represent positive and negative connectivity 

strengths, respectively.
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Fig. 15. 

(A) Statistical values , which were identified by performing ANCOVA on each 

FC’s strengths in the static FC matrix of the four groups. (B) Partial eta squared of each FC 

in the SFC matrix, examined by ANCOVA. (C) The visualization of the 29 discriminative 

FCs (p < 0.01 with Bonferroni correction). (D) Six FCs that showed decreasing trends from 

HC to BPP to SAD to SZ using the static connectivity analyses, measured by the mean 

connectivity strength. (E) Three FCs showing increasing trends across the four groups using 
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the static connectivity analyses, measured by the mean connectivity strength. In (C)-(E), the 

thickness of each line reflects the associated F-value in ANCOVA.
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Fig. 16. 
(A) Statistical analyses results of all six hypoconnectivities in the SFC analyses. (B) 

Statistical analyses results of all three hyperconnectivities in the SFC analyses. (C) 

Significant associations between FC strengths and the symptom scores of patients (p < 0.05 

with Bonferroni correction). The connectivity strengths were Fisher’s r-to-z transformed.
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