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Abstract

Purpose—To develop and evaluate an image-domain noise reduction method for multi-energy 

CT (MECT) data.

Methods—Multi-Energy Non-Local Means (MENLM) is a technique that uses the redundant 

information in MECT images to achieve noise reduction. In this method, spatio-spectral features 

are used to determine the similarity between pixels, making the similarity evaluation more robust 

to image noise. The performance of this MENLM filter was tested on images acquired on a whole-

body research photon counting CT system. The impact of filtering on image quality was 

quantitatively evaluated in phantom studies in terms of image noise level (standard deviation of 

pixel values), noise power spectrum (NPS), in-plane and cross-plane spatial resolution, CT number 

accuracy, material decomposition performance, and subjective low-contrast spatial resolution 

using the American College of Radiology (ACR) CT accreditation phantom. Clinical feasibility 

was assessed by performing MENLM on contrast-enhanced swine images and unenhanced 

cadaver head images using clinically relevant doses and dose rates.

Results—The phantom studies demonstrated that the MENLM filter reduced noise substantially 

and still preserved the shape and peak frequency of the NPS. With 80% noise reduction, MENLM 

filtering caused no degradation of high-contrast spatial resolution, as illustrated by the modulation 

transfer function (MTF) and slice sensitivity profile (SSP). CT number accuracy was also 

maintained for all energy channels, demonstrating that energy resolution was not affected by 

filtering. Material decomposition performance was improved with MENLM filtering. The 

subjective evaluation using the ACR phantom demonstrated an improvement in low-contrast 

performance. MENLM achieved effective noise reduction in both contrast-enhanced swine images 

and unenhanced cadaver head images, resulting in improved detection of subtle vascular structures 

and the differentiation of white/gray matter.
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Conclusions—In MECT, MENLM achieved around 80% noise reduction and greatly improved 

material decomposition performance and the detection of subtle anatomical/low contrast features, 

while maintaining spatial and energy resolution. MENLM filtering may improve diagnostic or 

functional analysis accuracy and facilitate radiation dose and contrast media reduction for MECT.

Keywords

CT dose reduction; image denoising; non-local means filtering; multi-energy CT; photon-counting 
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I. Introduction

Recent developments in multi-energy CT (MECT) have brought new functionality to X-ray 

CT.1 Dual-energy CT has demonstrated its value in novel clinical applications, such as 

iodine quantification2, 3, monochromatic imaging4, 5, bone removal6, 7, kidney stone 

characterization8, 9, and gout imaging10–12. Photon counting detector-based CT (PCCT) may 

further benefit clinical CT by offering improved energy resolution13–15, higher dose 

efficiency16 and better signal-to-noise (SNR) properties.17–20

Various algorithms have been proposed to effectively control image noise for MECT to 

improve image quality and/or quantitative accuracy.18, 21–28 Since MECT images acquired at 

different energies are usually perfectly registered in the image domain, pixels at the same 

spatial coordinates represent exactly the same object and are associated with same 

structures, albeit with different contrast levels. Hence, one may exploit the exploiting data 

redundancies in the energy domain to achieve noise reduction. Leng et al. proposed an 

energy-domain filtration method that used a composite image with much lower noise to 

effectively reduce noise in energy bin-based images to that of the composite image.21 The 

same concept has also been applied in other noise reduction algorithms, and can occur in 

either image-domain or projection-domain, or as iterative approaches.25, 26, 29 In addition to 

exploiting features in the energy domain between the original MECT images, noise 

reduction was also performed on secondary images generated from distinct multi-energy 

measurements. Kalender et al. developed a method utilizing noise correlations in material 

specific images to reduce noise.23 Schmidt presented a method to maximize the CNR of a 

mixed image by blending images from separate energy bin-based images.18 Recently, noise 

reduction for MECT was also performed together with quantitative basis material 

decomposition by iterative methods with smoothness regularization of basis material 

density.24, 27, 28, 30

In this work, we propose a different approach to exploiting the intrinsic redundant 

information in MECT images by searching for similar spatio-spectral features to reduce 

image noise while preserving spatial and energy resolution. The algorithm works on 

reconstructed images directly to achieve fast noise reduction. The filtered images not only 

improve the detection of relevant anatomical information but also reduce the noise 

magnification that occurs in the post-processing steps.

The proposed method is based on a state-of-the-art edge-preserving noise reduction 

algorithm, non-local means (NLM).31 NLM searches for similar pixels in the original image 
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and then performs a weighted average of such pixels to achieve noise reduction. The 

similarity between the pixel to be filtered and all other pixels is quantitatively determined by 

the summed square difference (SSD) between the features associated with the pixels. Pixels 

with lower SSD yield higher similarity and hence receive higher weight for averaging.

The accurate evaluation of similarity between pixels has a huge impact on the noise 

reduction performance. Hence, the optimal feature definition should consider carefully the 

characteristics of the images to be filtered. In conventional NLM algorithms, 2d spatial 

patches are used as features to search for the similarity.31 For 3d data like volumetric CT 

images, spatial features can be extended to 3d blocks to calculate similarity.32

The similarity measurement should not be limited to spatial features alone, especially for 

high-dimensional images. In time-resolved CT images, for example, we found that the 

partial temporal profile of a pixel can be used to effectively utilize redundant information in 

both spatial and temporal domains, and is robust to patient motion.33 Similarly, it is expected 

that incorporation of the energy and spatial characteristics of MECT images across 3D 

spatial domain and multiple energy channels may allow one to achieve optimal noise 

reduction.

In this work, we describe the fundamental principles of our approach, evaluate the effect of 

filtering parameters on noise and resolution, and demonstrate its effectiveness by 

quantitatively evaluating spatial and energy resolution using phantom experiments, and 

qualitatively using data acquired in living animal and cadaver head scans.

II. Methods

II.1 Multi-Energy Non-Local Means (MENLM) method

Our algorithm is based on the following observations. First, the pixel values (or CT 

numbers) in CT images measure the effective linear attenuation coefficient (LAC) of a type 

of material for a given incident X-ray spectrum and are a function of the material’s effective 

atomic number and density. In conventional CT, a material’s LAC is only evaluated at a 

single energy spectrum. Therefore, materials with different compositions and densities can 

have similar LAC values at certain X-ray energy spectrum. However, in MECT, LAC 

measurements can be acquired at two or more different energy spectra to build an energy 

profile (or spectral features) for each pixel.

The energy profile can be exploited for noise reduction. To help explain this algorithm, 

consider a set of 2D MECT images acquired at 4 different X-ray energies that are stacked 

together to form a 3D volume (Fig. 1(A)). Each block in a plane represents a pixel evaluated 

at certain spatial location and X-ray energy. The 4 pixels values associated with the same 

spatial location form an energy profile (curves in Fig. 1, (B) and (C)). Although different 

materials can have similar LAC values at a certain energy (e.g. calcium and iodine in energy 

channels E2 and E3, Fig. 1(B)), they can be distinguished by their distinct energy profiles, 

which allows material differentiation and also pixel similarity evaluation. The same principle 

also can be applied to separate a given material with different densities because the 

differences in material densities yield differences in LACs in measurements at all X-ray 
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energies (Fig. 1(C)). Hence, a small difference in density between two pixels can yield a 

large difference in the SSD between the two energy profiles, which can be beneficial for 

preserving features with small variations in intensity (or low contrast).

In addition, because the pixels at distinct energy channels are perfectly registered in the 

image-domain, we can incorporate the spatial features together with the spectral features to 

improve the robustness of similarity calculations. As illustrated in Figure 2, MENLM 

extracts the spatial feature associated with each pixel (e.g. 3x3 patches in plane) and stacks 

the 2d patch at different energies to form a 3d block. The pixel similarity is evaluated by 

calculating the SSDs between different blocks associated with the center pixels. In MECT, 

edges, such as subtle anatomical structures, may not be well defined due to high image 

noise. Our approach utilizes the core concept of conventional NLM algorithms, which 

exploit spatial features to achieve noise reduction and preserve edges, but enhances this with 

the use of spectral features31

Finally, the difference in image noise levels in distinct energy channels should also be 

considered in order to correctly evaluate the similarity between pixels. Energy channels 

associated with higher noise should be weighted less for the similarity calculation, and vice 

versa.

In this study, we focus on the noise reduction of 4D MECT data (3d in space and 1d in 

energy). The algorithm can be described by the following equation:

(1)

where I′(i0,e0) is the filtered pixel value at spatial coordinate i0 measured in energy channel 

e0, I (i,e0) are the pixel intensities in the original images measured in the same energy 

channel, Ω is the search window in the spatial domain, which is usually a 3d block with 

equal dimension WΩ in all 3 dimensions in space so that it contains  pixels. δ is the 

spatial offset of the evaluated pixel in the spatial feature P, which is usually a 3d block with 

equal dimension WP in all 3 dimensions in space so that it contains  pixels. E is the 

length of the energy profile used for the similarity evaluation. Hence the contribution of each 

pixel I at energy e0 to filtering is determined by calculating the mean square difference 

between two 4d blocks (3d spatial + 1d energy) centered at the spatial location of i0 and i. 
represents the image noise variance in the energy channel e and was manually determined by 

ROI measurements in a homogenous region in the original images.

In this way, the similarity was determined by using multi-energy measurements but the 

averaging was only performed in distinct energy channels to avoid possible signal leakage 

across different energy channels. The exponential function in the formula is used to scale the 

weight within the range [0, 1]. Finally, a weighted average of all pixels in the spatial search 

window yields the filtered pixel value. h is a parameter used to control the amount of noise 
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reduction. Hence, the four filtering parameters are: search window size in space WΩ, spatial 

block size WP, energy channels used to evaluate pixel similarity E, and filtering strength h.

II.2 Image quality evaluation of the MENLM method

To assess the impact of filtering on image quality, the proposed MENLM filter was applied 

to MECT images acquired using a research whole-body PCCT scanner (Siemens Healthcare, 

Forchheim, Germany).34, 35 The data were acquired using “chess mode”, where data from 

all 16 sub-pixels of the detector were combined to simultaneously generate 4 threshold-

based images by counting photons above different energy thresholds. Three additional bin-

based images were derived by subtracting the photon counts between adjacent thresholds. In 

the proposed method, only the four threshold-based images associated were used for the 

calculation of pixel similarity (and weight), as they represent the original measurements and 

have lower noise than the bin-based images. Because the pixels at different energy channels 

are perfectly registered in space and represent the same material, the weight determined 

from threshold-based data was applied to filter the noisy bin-based images. We used 

universal parameter settings for all tests except for the filtering strength h, i.e. WΩ = 11, WP 

= 3, E = 4. In the following sections, we evaluate the effect of h on image noise and spatial 

resolution. From these results, we then determine the filtering strength h that is used for the 

remaining tests.

II.2.A Evaluation of MENLM using phantom studies—We performed a series of 

phantom studies to quantitatively evaluate the influence of MENLM filtering on image 

quality in terms of image noise level (quantified by the standard deviation of CT number in a 

uniform region), noise power spectrum (NPS), in-plane and cross-plane spatial resolution, 

energy profile accuracy, and low-contrast resolution.

The image noise and NPS were measured using a 20 cm diameter cylindrical phantom filled 

with water. The acquisition and reconstruction parameters can be found in Table 1. To test 

the noise reduction capabilities of the proposed algorithm, the phantom was scanned at two 

dose levels. Images were reconstructed with a quantitative, medium smooth kernel (D30). 

The low-dose (25.1 mGy) images were denoised using the MENLM filter with the strength 

setting h varying from 0.7 to 1.5. A procedure following the general framework described 

previously was used to calculate a 2D NPS for the three image set: high-dose, low-dose, 

low-dose with MENLM denoising.36 A circular average of the 2D NPS was taken to yield a 

1D NPS profile. To suppress the estimation variations, a number of overlapped ROIs were 

used to smooth the NPS curves 37.

The in-plane spatial resolution was evaluated using the modulation transfer function (MTF) 

measured using a 0.125 mm diameter tantalum wire. The acquisition and reconstruction 

parameters can be found in Table 1. Reconstructed images were also denoised using the 

MENLM filter, with filtering strength h set to achieve 30–80% noise reductions. The MTF 

for both original and filtered images was calculated using a previously described method.38

The cross-plane spatial resolution was evaluated using the slice sensitivity profile (SSP), 

which was measured using a thin gold foil phantom (25 μm thickness) that was embedded 

inside a tissue-equivalent plastic cylinder with a diameter of 23 mm (QRM, Moehrendorf, 
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Germany). The acquisition and reconstruction parameters can be found in Table 1. 

Reconstructed images were also denoised using the MENLM filter, with filtering strength h 
set to achieve 80% noise reduction. For each image, the maximum CT number within a 

region of interest (ROI) centered over the gold foil was recorded after background 

subtraction. The SSP was plotted as the normalized CT number as a function of slice 

location.

The impact of filtering strength h on CT number accuracy was evaluated using scans of 

CaCl2 and iodinated-contrast-material water solutions, and their mixtures, in a 20 cm semi-

anthropomorphic water tank (referred to as calcium and iodine solution phantom). The 

acquisition and reconstruction parameters can be found in Table 1. Images were denoised 

using the MENLM filter, again with filtering strength h set to achieve 80% noise reduction. 

ROIs were drawn on each material sample to measure CT numbers in both threshold- and 

bin-based images. An in-house developed calibration-based image-domain material 

decomposition method was applied to access the impact of MENLM filtering on material 

decomposition peformance15. The material decomposition performed was assessed by the 

appearance of basis material density maps and the root mean square error (RMSE) 

calculated based on the known truth of basis material density values.

The low-contrast resolution was evaluated subjectively using the low-contrast resolution 

module of the American College of Radiology (ACR) CT accreditation phantom. The 

acquisition and reconstruction parameters can be found in Table 1. The MENLM filter was 

applied on the reconstructed images with the filtering strength h set to achieve 80% noise 

reduction.

II.2.B Clinical feasibility testing

A. Pig scan: After institutional animal care and use committee approval, one 3-month-old 

female swine was scanned using a head CT scan protocol. The acquisition and 

reconstruction parameters can be found in Table 1. Images were denoised using the 

MENLM filter, with filtering strength h set to achieve 80% noise reduction; the results were 

compared with the Filtered Back Projection (FBP) images.

B. Cadaver head scan: With approval of our institutional biospecimen committee, a fresh-

frozen human cadaver head was obtained from our institution’s department of anatomy. The 

acquisition and reconstruction parameters can be found in Table 1. Images were 

reconstructed using a D40 kernel and were denoised using the MENLM filter, with filtering 

strength h set to achieve 80% noise reduction; the results were compared with the Filtered 

Back Projection (FBP) images.

III. Results

III.1. Evaluation of MENLM using phantom studies

A. Image noise level and filtering strength h: By varying the filtering strength h, the 

amount of noise reduction was determined for all threshold- and bin-based images (Table 2).
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B. Noise power spectrum: Figure 3 shows that the NPS of the MENLM-filtered (h=0.9) 

low-dose FBP images generally had similar shapes and magnitudes as those of the high-dose 

FBP images, but with a noticeable shift of the peak frequency towards lower frequencies. 

Similar behaviors were observed for all threshold- and bin-based images, except for the 

threshold- and bin-based images associated with the lowest energy thresholds (e.g. 

[20,140keV] and [25,45keV]). The peak frequency tended to shift more towards the lower 

frequency end with increased filtering strength (Fig. 4).

C. High contrast spatial resolution: The MTF curves of the images reconstructed with the 

FBP reconstruction algorithm and MENLM with different filtering strengths h are shown in 

Figure 5 for the threshold-based image with the lowest energy threshold. The MTF was 

essentially unchanged with up to 80% noise reduction (h=1.5), although slight changes were 

observed in some images with higher noise reduction (data not shown). The same behavior 

was observed for all other energy threshold-based and bin-based images (Fig. 6). Hence, in 

the following experiments, we adopted a filtering strength of h=1.5 to evaluate the image 

quality after filtering.

The SSPs for both FBP and filtered images are shown in Fig. 7. The SSPs before and after 

the MENLM filtering did not change, demonstrating that cross-plane spatial resolution was 

not affected by the filter with 80% noise reduction.

D. CT # accuracy: Figure 8 shows the FBP image of the calcium and iodine water solution 

phantom and the MENLM filtered image. ROI measurements of all samples demonstrated 

that the CT number accuracy was well preserved in all threshold- and bin-based images, 

with maximum differences of only 2.3 HU (Table 3). This demonstrated that energy 

resolution was preserved in the MENLM filtered images.

Figure 9 shows that material decomposition results were improved greatly with MENLM 

filtering. In the material density maps (column 2–4, bottom row), basis material signals were 

much easier to detect and the edges were more well defined compared to the material 

decomposition results based on the raw PCCT images (top row). With noise reduction, the 

RMSE for calcium, iodine, and water density estimation were 7.2%, 8.0%, and 0.4%, 

respectively, which were much smaller than the errors from the unfiltered PCCT images 

(33.8%, 34.8%, and 0.5%, respectively).

E. Low contrast resolution: Figure 10 shows the FBP image of the ACR phantom and the 

MENLM filtered image. In the FBP image, the 6 mm rods are barely visible and the 5 mm 

rods are totally lost. However, in the MENLM filtered image, all 6 mm and 5 mm rods are 

clearly visible, indicating improved low contrast resolution with the 80% noise reduction. 

Measurements showed that the mean CT number values were well maintained in the filtered 

image.

III.2. Clinical feasibility testing

A. Pig scan: In the threshold-based pig head images (Figure 11), MENLM achieved around 

80% noise reduction without affecting subtle anatomical structures and energy resolution. 
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This results in enhanced contrast-to-noise ratio in all threshold-based images and improves 

the differentiation between materials with different composition (e.g. bone and iodinated 

blood) and/or with different density (e.g. blood vessels with different contrast enhancement).

In all bin-based images, MENLM greatly reduced image noise and streaking artifacts, 

making subtle anatomical structure easier to detect. In low-energy bin-based images (Fig. 

12, first and second columns, top row), although iodine contrast enhancement is good, small 

vessels can still be difficult to detect due to the noisy background. After filtering by 

MENLM, the small vessels are much easier to detect due to the substantial noise reduction 

(Fig. 12, first and second columns, middle row). Similarly, in high-energy bin-based images 

(Fig. 12, last column, top row), reduced calcium blooming effect, one benefit of photon 

counting CT, can be observed so that surrounding features (such as lumen inside vessels) can 

be evaluated without being shaded by bone or high density calcification. However, the 

reduced contrast inside the lumen also makes it difficult to resolve the location and structure 

of the vessel. After MENLM filtering to control noise, the edge of the vessel can be better 

resolved with improved CNR and reduced calcium blooming effect (Fig. 12, last column, 

middle row).

B. Cadaver head scan: With MENLM filtering, the noise in both threshold- and bin-based 

images from the cadaver head scan (Figure. 13) was greatly reduced. This greatly enhanced 

image quality, as evidenced by the improved differentiation between white and gray matter 

and conspicuity of subtle structures (such as calcifications).

IV. Discussion

We presented an image-domain non-iterative noise reduction technique to reduce noise in 

MECT images that can be implemented efficiently. MECT data may require longer pre-

processing, reconstruction, and post-processing time. Iterative and projection-domain 

approaches to noise reduction tend to prolong the time needed to return the final image for 

viewing. This method processes the reconstructed images directly to achieve fast noise 

reduction, and is also convenient since the computation time and the amount of noise 

reduction can be predetermined.

The presented method differs from other published work that uses a NLM algorithm on 

spectral or multi-energy CT data. For example, the method from Pan et al. applied the 

conventional NLM method separately to different energy channels of CT data, which 

ignored the intrinsic energy domain information redundancy in the original data. The work 

reported by Harm et al. 30, 39 was an iterative NLM denoising method based on a very 

different weight calculation: the similarity between pixels was determined based separately 

on signal in different CT energy channels and was subsequently averaged in every iteration. 

Methods similar to ours, however, have been applied to high-dimensional MRI data where 

the similarity was evaluated by the pixel value and noise in different channels (proton 

density, T1 and T2 images) 40.

As demonstrated by the presented results, MENLM can effectively reduce noise by up to 

80%, while preserving spatial and energy resolution and improving low contrast resolution. 
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This greatly improves the signal to noise ratio in the image, especially for narrow energy 

bin-based images, which are associated with high noise levels. Previously, we have reported 

that decreased beam hardening and calcium blooming were observed in high-energy bin-

based images and increase contrast enhancement of higher atomic number materials in the 

low-energy bin-based images.35, 41, 42 High-energy bin-based images with reduced calcium 

blooming might improve the accuracy of luminal stenosis quantification, whereas low-

energy bin-based images with higher contrast may benefit detection of subtle anatomical 

structures, such as iodine-filled coronary arteries. However, higher image noise in a 

narrower energy bin-based image may offset these benefits, especially for the detection of 

subtle structures, such as small arteries and calcifications. With MENLM filtering, the noise 

is greatly reduced and the improved contrast to noise ratio in energy bin-based images may 

benefit such tasks, as evidenced by the pig scan and cadaver head results.

The reduced noise and preserved spatial and energy resolution may potentially benefit a 

series of clinical applications of MECT. Material decomposition, for example, is a primary 

application of MECT to separate or quantify basis materials from a mixture. However, 

material decomposition is notorious for its noise magnification, such that basis material 

images can be too noisy for clinical use. As demonstrated by our 3-basis material 

decomposition results, with effective noise reduction, both the structure and quantitative 

accuracy of basis materials were greatly improved in the material density maps. Therefore, 

MENLM effectively reduced noise without affecting spatial or energy resolution, such that 

the noise levels in the processed images after material decomposition may be adequate to 

meet clinical requirements. Additionally, the reduction in noise levels may be traded for a 

large reduction in iodinated contrast usage or radiation dose. Finally, this technique may also 

benefit image processing techniques (segmentation, classification, etc.) performed on multi-

energy CT images.

An 80% noise reduction with maintained signal fidelity implies a potential 25-fold radiation 

dose reduction capability when MENLM is used to maintain image quality. However, slight 

changes of noise texture (or NPS) were observed in the filtered images (Figs. 3 and 4) and 

this might affect some relevant clinical tasks. Further clinical studies are required to 

determine the dose reduction capability of MENLM for different clinical tasks, especially 

for ones involving low-contrast detection 43–48.

Our future work will include the optimization of other parameter settings, such as weighting 

functions, search window and patch size in space, which are critical to obtaining the optimal 

balance between noise reduction and image quality. In addition, in this study we used a 

manually determined ROI to measure the absolute noise variance in different energy 

channels for the similarity/weight calculation. This manual noise measurement tends to be 

subjective and high image noise levels might affect its accuracy. Automatic noise estimation 

or measurement can be used to overcome this limit. Previously, we developed and validated 

a fast and accurate method to estimate absolute image noise for the research PCCT system 

used in this study.20 Such noise estimation results can be more reliable and may alleviate the 

need the manual noise measurements. A more elegant approach is to perform spatially 

adaptive noise reduction based on a map of local noise levels. As was demonstrated 

previously, the filter should take the locally varying noise levels into account to achieve 
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optimal noise reduction.32 We plan to extend the previously developed analytical noise map 

estimation method for MECT images to further improve the noise reduction performance.

V. Conclusions

We have developed a novel approach to practically and effectively achieve substantial noise 

reduction for MECT images. The proposed MENLM filter reduced image noise in MECT 

data by as much as 80% without degrading spatial and energy resolution, while improving 

material decomposition performance and low contrast resolution.
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FIG. 1. 
MENLM exploits energy profiles to benefit similarity calculations between different pixels. 

(A). An illustration of MECT images, (B). Pixels with different material compositions and 

densities may have similar LACs in an energy channel (e.g. calcium and Iodine in E2 and 

E3). However, the different LAC values in other energy channels yield distinct energy 

profiles. (C). Pixels with the same material composition (blue blocks in sub-figure (A)) but 

different densities can still be differentiated because density differences also lead to different 

energy profiles in all energy channels.
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FIG. 2. 
MENLM also exploits spatial features to reduce noise and preserve edges. Different spatial 

features (e.g. 3x3 patches in the spatial domain) can be incorporated together with energy 

profiles in the similarity calculation, making the similarity evaluation robust to image noise. 

When filtering a pixel (red) on an edge, the spatial features helps to detect similar edge 

pixels (e.g., green) and exclude unlike ones (e.g. blue and orange).
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FIG. 3. 
Comparison of NPSs between the FBP images and MENLM filtered images with 50% noise 

reduction.

Li et al. Page 15

Med Phys. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 4. 
Dependence of NPS on filtering strength for threshold-based images [45,140 keV].
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FIG. 5. 
Dependence of in-plane spatial resolution on filtering strength for Threshold 1 images 

[25,140 keV].
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FIG. 6. 
Comparison of changes in in-plane spatial resolution between the FBP image (D30) and 

MENLM with 80% noise reduction for all threshold- and bin-based images.
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FIG. 7. 
Comparison of changes in cross-plane spatial resolution between the FBP image and 

MENLM with 80% noise reduction.
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FIG. 8. 
Illustration of the calcium and iodine solution phantom used for the CT number accuracy 

evaluation. Left: Original FBP image of (85, 140) keV (W/L=400/40); Middle: MENLM 

image (W/L=400/40); Right: Difference image between FBP and MENLM images (W/L = 

15/0 HU). The mean and standard deviation of CT numbers inside the dotted ROI were 

−0.3±19.2 and −0.4±4.1 HU for the FBP and MENLM images, respectively. No obvious 

structures were observed in the difference image. The mean and standard deviation of the 

CT number in the solid circle ROI was 0.2±15.8HU, demonstrating no signal bias in the 

calcium and iodine solutions.
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FIG. 9. 
The filtered back projection image (FBP) from one energy threshold (25, 140) keV is shown 

in the left most column. Both calcium (Ca) and iodine (I) were in solution with water. Ca/I 

stands for vials that included a mixture of calcium, iodine and water. Material specific 

images (density maps) calculated using material decomposition are shown before (top row) 

and after MENLM filtering (bottom row). The MENLM algorithm greatly improves the 

ability to visualize the respective materials and better delineates the edges of the vials 

containing the various solutions. The unit of pixel value in each image is in mg/ml.
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FIG. 10. 
Improved low-contrast resolution after MENLM filtering (right) comparing to the FBP 

image (left). Arrows indicate the locations of low-contrast objects (top: 6mm rods; Bottom: 

5mm rods).The mean and standard deviation of CT numbers inside the dotted ROI were 

99.3±5.5 (left) and 98.6±1.0 HU (right), respectively. W/L = 100/100 HU.
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FIG. 11. 
MENLM greatly reduces the noise in threshold-based images without affecting subtle 

anatomical structure and energy resolution. In original FBP images (top row, W/L=400/40 

HU), the mean and standard deviation of CT number inside the dotted ROI were 59.6±15.1, 

59.9±17.2, 62.2±22.2, and 57.9±32.5, respectively. After MENLM filtering (middle row, W/

L=400/40 HU), the values were 59.5±3.4, 59.5±4.3, 61.5±4.6, and 57.7±7.2, respectively. 

No obvious image structures or signal bias were observed in the difference images (W/

L=15/0).
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FIG. 12. 
Bin-based images after MENLM filtering (middle row, W/L = 400/40 HU) improved the 

detection of subtle enhanced vessels (yellow ROIs in low-energy bin-based image) and low-

contrast structures (Close-ups in high-energy bin-based image). In original FBP images (top 

row, W/L = 400/40 HU.), the mean and standard deviation of CT number inside the red ROI 

are 62.2±55.6, 62.8±57.8, 67.2±48.8, and 57.9±32.5, respectively. After MENLM filtering, 

the values are 62.7±9.1, 62.6±10.8, 65.7±9.5, and 57.7±7.2, respectively. No obvious image 

structures or signal bias were observed in the difference images (W/L=15/0).
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FIG. 13. 
MENLM filtering of two noisy threshold-based and two bin-based images (middle row, W/L 

= 150/20 HU) from a cadaver head scan demonstrated improved low-contrast resolution. 

The similarity/weight determined from threshold-based images provided robustness to noise 

reduction. (In original FBP images (top row, W/L = 150/20 HU), the mean and standard 

deviation of the CT number in the dotted ROI were −10.7±15.1 HU, −12.5±18.2 HU, −9.8 

±40.6 HU, and −13.3±31.1 HU, respectively. With MENLM, the values were −11.3±2.4 HU, 

−13.1± 2.3 HU, −10.0±3.7 HU, and −14.3±3.8 HU, respectively.) No obvious image 

structures or signal bias were observed in the difference images (W/L=15/0).
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	A. Image noise level and filtering strength h: By varying the filtering strength h, the amount of noise reduction was determined for all threshold- and bin-based images (Table 2).B. Noise power spectrum: Figure 3 shows that the NPS of the MENLM-filtered (h=0.9) low-dose FBP images generally had similar shapes and magnitudes as those of the high-dose FBP images, but with a noticeable shift of the peak frequency towards lower frequencies. Similar behaviors were observed for all threshold- and bin-based images, except for the threshold- and bin-based images associated with the lowest energy thresholds (e.g. [20,140keV] and [25,45keV]). The peak frequency tended to shift more towards the lower frequency end with increased filtering strength (Fig. 4).C. High contrast spatial resolution: The MTF curves of the images reconstructed with the FBP reconstruction algorithm and MENLM with different filtering strengths h are shown in Figure 5 for the threshold-based image with the lowest energy threshold. The MTF was essentially unchanged with up to 80% noise reduction (h=1.5), although slight changes were observed in some images with higher noise reduction (data not shown). The same behavior was observed for all other energy threshold-based and bin-based images (Fig. 6). Hence, in the following experiments, we adopted a filtering strength of h=1.5 to evaluate the image quality after filtering.The SSPs for both FBP and filtered images are shown in Fig. 7. The SSPs before and after the MENLM filtering did not change, demonstrating that cross-plane spatial resolution was not affected by the filter with 80% noise reduction.D. CT # accuracy: Figure 8 shows the FBP image of the calcium and iodine water solution phantom and the MENLM filtered image. ROI measurements of all samples demonstrated that the CT number accuracy was well preserved in all threshold- and bin-based images, with maximum differences of only 2.3 HU (Table 3). This demonstrated that energy resolution was preserved in the MENLM filtered images.Figure 9 shows that material decomposition results were improved greatly with MENLM filtering. In the material density maps (column 2–4, bottom row), basis material signals were much easier to detect and the edges were more well defined compared to the material decomposition results based on the raw PCCT images (top row). With noise reduction, the RMSE for calcium, iodine, and water density estimation were 7.2%, 8.0%, and 0.4%, respectively, which were much smaller than the errors from the unfiltered PCCT images (33.8%, 34.8%, and 0.5%, respectively).E. Low contrast resolution: Figure 10 shows the FBP image of the ACR phantom and the MENLM filtered image. In the FBP image, the 6 mm rods are barely visible and the 5 mm rods are totally lost. However, in the MENLM filtered image, all 6 mm and 5 mm rods are clearly visible, indicating improved low contrast resolution with the 80% noise reduction. Measurements showed that the mean CT number values were well maintained in the filtered image.
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	III.2. Clinical feasibility testing
	A. Pig scan: In the threshold-based pig head images (Figure 11), MENLM achieved around 80% noise reduction without affecting subtle anatomical structures and energy resolution. This results in enhanced contrast-to-noise ratio in all threshold-based images and improves the differentiation between materials with different composition (e.g. bone and iodinated blood) and/or with different density (e.g. blood vessels with different contrast enhancement).In all bin-based images, MENLM greatly reduced image noise and streaking artifacts, making subtle anatomical structure easier to detect. In low-energy bin-based images (Fig. 12, first and second columns, top row), although iodine contrast enhancement is good, small vessels can still be difficult to detect due to the noisy background. After filtering by MENLM, the small vessels are much easier to detect due to the substantial noise reduction (Fig. 12, first and second columns, middle row). Similarly, in high-energy bin-based images (Fig. 12, last column, top row), reduced calcium blooming effect, one benefit of photon counting CT, can be observed so that surrounding features (such as lumen inside vessels) can be evaluated without being shaded by bone or high density calcification. However, the reduced contrast inside the lumen also makes it difficult to resolve the location and structure of the vessel. After MENLM filtering to control noise, the edge of the vessel can be better resolved with improved CNR and reduced calcium blooming effect (Fig. 12, last column, middle row).B. Cadaver head scan: With MENLM filtering, the noise in both threshold- and bin-based images from the cadaver head scan (Figure. 13) was greatly reduced. This greatly enhanced image quality, as evidenced by the improved differentiation between white and gray matter and conspicuity of subtle structures (such as calcifications).
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