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Abstract

The standardization and broad-scale integration of dynamic susceptibility contrast (DSC)-

magnetic resonance imaging (MRI) have been confounded by a lack of consensus on DSC-MRI 

methodology for preventing potential relative cerebral blood volume inaccuracies, including the 

choice of acquisition protocols and postprocessing algorithms. Therefore, we developed a digital 

reference object (DRO), using physiological and kinetic parameters derived from in vivo data, 

unique voxel-wise 3-dimensional tissue structures, and a validated MRI signal computational 

approach, aimed at validating image acquisition and analysis methods for accurately measuring 

relative cerebral blood volume in glioblastomas. To achieve DSC-MRI signals representative of 

the temporal characteristics, magnitude, and distribution of contrast agent-induced T1 and changes 

observed across multiple glioblastomas, the DRO's input parameters were trained using DSC-MRI 

data from 23 glioblastomas (>40 000 voxels). The DRO's ability to produce reliable signals for 

combinations of pulse sequence parameters and contrast agent dosing schemes unlike those in the 

training data set was validated by comparison with in vivo dual-echo DSC-MRI data acquired in a 

separate cohort of patients with glioblastomas. Representative applications of the DRO are 

presented, including the selection of DSC-MRI acquisition and postprocessing methods that 

optimize CBV accuracy, determination of the impact of DSC-MRI methodology choices on 

sample size requirements, and the assessment of treatment response in clinical glioblastoma trials.

Keywords

dynamic susceptibility contrast MRI; digital reference object; brain tumor perfusion

Published by Grapho Publications, LLC This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/). ISSN 2379-1381 http://dx.doi.org/10.18383/j.tom.2016.00286

Corresponding Author: C. Chad Quarles, PhD, Department of Imaging Research, Barrow Neurological Institute, 350 W. Thomas 
Road, Phoenix, AZ 85013; Chad.Quarles@BarrowNeuro.org. 

Disclosures: No disclosures to report.

Conflict of Interest: None reported.

HHS Public Access
Author manuscript
Tomography. Author manuscript; available in PMC 2018 March 01.

Published in final edited form as:
Tomography. 2017 March ; 3(1): 41–49. doi:10.18383/j.tom.2016.00286.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.18383/j.tom.2016.00286


Introduction

Dynamic susceptibility contrast (DSC)-magnetic resonance imaging (MRI) noninvasively 

measures brain tumor cerebral blood flow (CBF) and cerebral blood volume (CBV), and it 

has found increasing clinical applications for patient management (1-18). To facilitate multi-

institutional comparability and consistency, national initiatives, including National Cancer 

Institute's Quantitative Imaging Network, Radiological Society of North America's 

Quantitative Imaging Biomarkers Alliance, and the National Brain Tumor Society's 

Jumpstarting Brain Tumor Drug Development Coalition, are underway to standardize 

acquisition and analysis protocols for DSC-MRI (19, 20). A challenge to such efforts is the 

relative paucity of studies systematically evaluating the influence of DSC-MRI methodology 

on CBV accuracy. In practice, such validation studies are difficult to perform in patients 

because of the need for multiple contrast agent (CA) injections and lack of a noninvasive 

gold standard CBV measure for reference. As an alternative to in vivo validation, in silico 

digital reference objects (DROs) provide a means for computing synthetic MRI signals and 

derived kinetic parameters for a range of clinically relevant input conditions. Such a DRO 

was recently developed for dynamic contrast-enhanced MRI to investigate the biases and 

variances of algorithms used for image analysis (21).

The goal of this report is to describe the development of a DSC-MRI DRO that recapitulates 

the heterogeneous signal characteristics measured in glioblastomas. In general, there are two 

underlying strategies that can be pursued for DROs emulating MRI data. When the primary 

objective is to establish multisite analysis consistency, synthetic signals can be computed 

using simple heuristic models approximating the underlying biophysics of signal formation, 

as the endpoint is to assess the agreement between software estimates of a parameter such as 

CBV that is explicitly defined by the “ground truth” time course. However, if the intention is 

to optimize acquisition protocols and CA dosing schemes, such as those used in DSC-MRI, 

or if the accuracy of the analysis is dependent upon certain physical or physiological 

assumptions, the synthetic signals should accurately reflect the biophysics of the MRI 

signal. For the DSC-MRI DRO, we pursued the latter strategy because it enables a more 

accurate and comprehensive investigation into the DSC-MRI methodology.

In brain tumor DSC-MRI, the acquired signals reflect a complex combination of T1, T2, and 

 changes that depend upon numerous features including CA kinetic parameters (CBF, 

permeability, intra- and extravascular volume fractions), pre-contrast T1 and , vascular 

architecture, cellular microstructure (size, shape, spatial distribution), transvascular and 

transcellular water exchange, and CA T1 and  relaxivity. The sensitivity of the DSC-MRI 

signal to relaxation time variations is influenced by the acquisition parameters (repetition 

time [TR], echo time [TE], flip angle [FA], pulse sequence type) and CA dosing scheme 

(preload and bolus dose and timing). Accordingly, for the DRO to yield realistic signals, its 

design must reasonably approximate the magnitude and heterogeneity of these physical and 

physiological parameters in vivo. To that end, we developed a DSC-MRI DRO that is driven 

by a validated computational strategy to compute MRI signals for realistic 3-dimensional 

(3D) tissue structures (22); partially constrained by parameter inputs defined from in vivo 
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data; and, for unknown parameters, trained using a public database of DSC-MRI data in 

glioblastomas.

Methodology

The computational approach used herein, termed the finite perturber finite difference method 

(FPFDM) (22, 23), models the effects of water protons diffusing in heterogeneous magnetic 

field medium based on a 3D tissue structure. The FPFDM computes magnetic field 

perturbations induced by susceptibility variations between the simulated tissue 

compartments, and it determines the resulting gradient echo transverse relaxation rates. In 

addition to a 3D matrix that defines the tissue structure (eg, blood vessels and cells), 

requisite FPFDM inputs include the static magnetic field strength, the CA concentration in 

each compartment for determining intercompartment susceptibility differences, the water 

proton diffusion coefficient, and the DSC-MRI pulse sequence parameters. To ensure 

clinical relevancy, the DRO derived from these input parameters should replicate the 

magnitude and heterogeneity of CA-induced T1 and  changes during bolus passage 

through vessels and into the extravascular extracellular space (EES).

CA Kinetics

The 2-compartment pharmacokinetic model described by Brix et al. (24) was used to 

simulate concentration–time profiles in plasma (Cp) and the EES (Ce). Inputs to the Brix 

model include vascular volume fraction, blood flow, CA transfer coefficient (Ktrans), and 

volume fraction of the EES (νe). Rather than use previously reported mean CBF and CBV 

values in glioblastoma, our simulated kinetic curves better represented clinical data if the 

DRO voxels matched the paired, voxel-wise distribution of these parameters across patients 

(as compared with randomly distributed unpaired parameters). Accordingly, we extracted 

DSC-MRI data from 23 patients with glioblastoma (>40 000 voxels) in The Cancer Imaging 

Archive (TCIA) database for characterizing the distribution of paired CBF and CBV values. 

For this patient cohort, DSC-MRI was acquired at 3T, consisting of General Electric 

(General Electric Healthcare, Waukesha, WI, USA) (n = 14) and Siemens (Siemens Medical 

Systems, Erlangen, Germany) (n = 9) scanners using single-echo gradient echo-planar 

imaging (TR = 1–1.25 seconds, TE = 30 milliseconds, FA = 70–80°, field of view = 240 × 

240 mm2, section thickness = 4–5 mm, matrix = 962 or 1282) before, during, and after 

administration of 0.1 mmol/kg gadopentetate dimeglumine (Gd-DTPA) infusion at 4 ml/s 

followed by a saline flush. Five minutes before bolus injection, a 0.05 mmol/kg Gd-DTPA 

preload was administered to minimize T1 leakage effects. Residual leakage effects were 

corrected using the Boxerman–Schmainda–Weisskoff approach (25). Voxel-wise relative 

CBV and CBF maps were calculated from the leakage-corrected DSC-MRI data and an 

automated measure of the arterial input function (AIF), using circular singular value 

decomposition-based deconvolution (26-29). The voxel-wise distributions of Ktrans and νe 

were characterized using a retrospective analysis of dynamic contrast-enhanced MRI signals 

extracted from a dual-echo DSC-MRI data set in 11 glioblastomas (30). Because DSC-MRI 

data yield relative tumor CBV and CBF measures, their values were scaled using data 

obtained from dynamic computed tomography perfusion imaging (31). In addition, the AIF 

used as input for the DRO's kinetic modeling was computed as the average AIF among all 
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patients in the TCIA data. Figure 1, A, B, and C shows the average AIF values, CBV and 

CBF paired distribution, and Ktrans distribution, respectively.

To define a computationally manageable number of tissue models in the DRO that still 

accurately reflected the in vivo voxel-wise heterogeneity, the 2-dimensional paired 

distribution of CBF and CBV was first binned into intervals of 5 ml/100 g/min and 1 ml/100 

g, respectively. The resulting distribution was then scaled to yield 100 combinations of CBF 

and CBV pairs, which were then used to define the number and vascular properties of the 

tissue structures.

Tissue Structures

Although the component of DSC-MRI signal associated with CA-induced T1 changes is 

easily calculated by assuming fast water exchange (32-34), the CA-induced  changes 

depend on vascular and cellular microstructural geometry, precluding use of a simple 

analytical model. To reflect this complexity, we modeled tissue structures using ellipsoids 

(cells) (22, 23, 35) packed around randomly oriented cylinders (vessels) (36-45). Previously, 

we showed that modeling cells as ellipsoids rather than spheres provides a more accurate 

estimate of the magnitude of  changes observed in clinical DSC-MRI studies (22, 23, 35), 

whereas modeling the vasculature structure as randomly oriented cylinders has been shown 

to accurately estimate the  effects that occur when CA is distributed within blood vessels 

(36-45). The cylindrical vascular volume fraction was fixed using the in vivo extracted CBV 

values, and vessel sizes varied from 5 to 30 μm (46). Tumor cell volume fractions were 

allowed to vary within a physiologically relevant range (45%– 65%) (47), and the mean 

cellular axis radii for a given voxel varied between 4 and 15 μm (46). Figure 2 shows a 

representative 3D volume rendering of 2 tissue structures, one with homogeneous ellipsoids 

with a constant aspect ratio (Figure 2A) and one showing ellipsoids with heterogeneous 

shapes (Figure 2B).

Computation of DSC-MRI Signal

The susceptibility differences between the vascular and extravascular compartments were 

computed using Δχ = χm·[CA], where [CA] is the compartmental CA concentration (Cp and 

Ce) and χm is the CA molar susceptibility (0.027 × 106 mM−1) (48). In addition to all the 

aforementioned input parameters, the FPFDM calculates the DSC-MRI signal as described 

previously (22) using a water proton diffusion rate (D) of 1.3 × 10−3 mm2/s (49), relevant 

pulse parameters (TE, B0, FA, TR), and precontrast T10 values ranging from 1 to 2.2 

seconds. Figure 3 shows representative simulated Cp and Ce time curves (Figure 3A), and 

the corresponding gradient echo DSC-MRI signal ratio (S/S0) time curves (Figure 3B) for 

the 2 tissue voxels are shown in Figure 2.

DRO Training

Given the large number of input parameters and a wide range of potential permutations, it is 

critical to ensure that the DRO's simulated DSC-MRI signals accurately represent the 

temporal characteristics, magnitude, and distribution of CA-induced T1 and  changes 

observed across typical glioblastomas. To achieve this, we used the voxel-wise TCIA data 
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described above (>40 000 voxels) for identifying the appropriate combination of input 

parameters. In particular, all computed signals, for an equivalent preload dosing scheme and 

pulse sequence parameters to those in the TCIA data set, underwent a selection criteria 

process based on their percent signal recovery (PSR) and the mean and standard deviation of 

the signals across the DRO. The PSR is a useful metric for comparison because it reflects 

the magnitude of the signal drop during bolus passage and the postbolus signal recovery. 

The DRO's input tissue structure (eg, cell size, shape), kinetic parameters (eg, CBF, Ktrans), 

and physical parameters (precontrast T1) were systematically permutated until the 

distribution of PSR values and the mean and standard deviation of signals across the DRO 

agreed with those found in the voxel-wise TCIA data. The PSR agreement was evaluated 

using a 2-sample Kolmogorov–Smirnov test. In addition, a 95% agreement between the 

FWHM and the maximum signal drop was used to determine the agreement between the 

mean signals. To achieve this level of agreement, the iterative process required a DRO 

consisting of ∼ 10 000 unique voxels. The data training based on this selection criterion 

ensured the removal of computed signals from the DRO, because of an unrealistic 

combination of tissue parameters. Figure 4A–B shows the agreement between the in vivo 

and in silico mean and standard deviation of the signal. The distribution of PSR values 

obtained from the training data set and the DRO is shown in Figure 4C. The 2-sample 

Kolmogorov–Smirnov test yielded a P-value of .69, indicating agreement between the 2 

distributions. Table 1 summarizes the final tissue parameter values that were identified 

through the DRO training.

DRO Validation

To validate the DRO's ability to produce reliable signals for pulse sequences and that the CA 

dosing schemes are different from those in the training data set, we compared simulated 

dual-echo signals with those found in an in vivo dual-echo DSC-MRI “validation” data set. 

The validation data set was acquired in patients with glioblastoma (n = 3) at 3T using a dual 

gradient echo-planar imaging protocol with the following parameters: TR = 1.5 seconds, 

TE1/TE2 = 7.0/31.0 milliseconds, field of view = 240 × 240 mm2, section thickness = 5 mm, 

matrix = 962. Measurements were taken before, during, and after administration of Gd-

DTPA (0.1 mmol/kg Gd-DTPA, 4 ml/s infusion rate followed by 20 ml of saline flush). In 

the simulation, the structural and kinetic inputs derived during the training phase remained 

the same, but the acquisition parameters and dosing scheme were chosen to match those 

used in the patient data. The goal of this validation study was to determine whether the DRO 

fully captures the heterogeneity (eg, magnitude and temporal characteristics such as PSR) of 

the DSC-MRI signals acquired in this separate (and smaller) cohort of patients. To identify 

this subset of voxels within the DRO, a correlation analysis was performed between the 

signals in the in vivo and DRO data. The range of PSR values found in the in vivo and DRO 

data was compared to ensure that the DRO captured the signal heterogeneity measured in the 

validation set for both TEs. A parameter termed percent relaxation drop (PRD) was also 

formulated in a similar fashion as PSR using the derived dual-echo  time courses and 

compared between the in vivo and DRO data.

All simulations were performed using Matlab (MathWorks, Natick, MA) running on a high-

performance 32-core system with 2.3 GHz processors and 128 GB of RAM.
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Results

Validation

Figure 5 compares simulated and in vivo dual-echo DSC-MRI data. The DRO could 

accurately recapitulate the TE = 7 milliseconds and TE = 31 milliseconds signals and the 

derived dual-echo  time courses, which remove T1 leakage effects but retain  leakage 

effects. The PSR and PRD heterogeneity of the in vivo data was also fully reflected in the 

DRO. This indicates that the trained DRO can accurately model the underlying CA-induced 

T1 and  effects and the associated DSC-MRI signals for different sets of pulse sequence 

parameters and CA dosing schemes.

Application 1: Influence of Acquisition and Postprocessing Methods on CBV Accuracy

It is well established that T1 and  CA leakage effects confound the reliable measurement 

of CBV (25, 50). DSC-MRI acquisition strategies have been proposed to reduce T1 leakage 

effects, including the use of preload CA administration, low FAs, long TEs and TRs, and 

dual-echo pulse sequences. In addition, postprocessing methods have been developed that 

eliminate residual T1 and/or  leakage effects (25, 51-59). However, validation of these 

acquisition and postprocessing strategies in vivo has been limited because of the lack of a 

reliable gold standard reference. A potential application of the population-based DRO is the 

systematic investigation of the acquisition and postprocessing methods that influence the 

reliability of CBV measurements.

To this end, we computed the percentage difference between tumor CBV simulated with and 

without (Ktrans = 0) CA leakage effects for a single-dose bolus injection protocol (no 

preload), FA = 30° and 90°, TE = 30 milliseconds, and TR = 1 and 2 seconds. We also 

compared CBV accuracy with and without the application of postprocessing leakage 

correction using the Boxerman–Schmainda–Weisskoff approach. Results of this analysis are 

shown in Figure 6. For TR = 1 second, FA = 30° yielded more accurate CBV values than FA 

= 90°, with and without postprocessing leakage correction (Figure 6A). As expected, the 

uncorrected 90° FA data yielded substantially underestimated CBV across the DRO voxels, 

reflecting the strong sensitivity to T1 leakage effects. For TR = 2 seconds, a greater fraction 

of voxels overestimate CBV, indicating a shift toward -dominated leakage effects due to 

reduced T1 sensitivity (Figure 6B). Leakage correction improved CBV accuracy across all 

acquisition parameters. A similar approach could be used to systematically investigate the 

influence of a range of acquisition and postprocessing methods on CBV accuracy.

Application 2: In Silico Optimization of DSC-MRI for Use in Clinical Trials

The population-based DRO can also be used to optimize DSC-MRI for assessment of 

treatment response in clinical trials. For example, the influence of acquisition and 

postprocessing methods on the sensitivity of DSC-MRI to a given CBV change can be used 

to determine protocols that minimize the sample size needed to power a clinical trial. In this 

context, the DRO serves as an atlas of possible tumor DSC-MRI signals. By using the 

correlation analysis discussed in the validation section, a virtual patient DSC-MRI data set 

can be generated by replacing voxel-wise in vivo tumor signals with an atlas-matched 
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version. This analysis can be propagated across an existing clinical trial database to compute 

in silico pre- and post-treatment DSC-MRI data. Because the simulated signals for a given 

voxel originate from a unique set of input conditions, the DSC-MRI signals can be 

recomputed for any combination of acquisition parameters, such as a new FA or CA dosing 

scheme. This permits systematic investigation of how acquisition and postprocessing 

methods influence the inter- and intrasubject CBV heterogeneity, pre-and post-therapy. 

Alternatively, an assumed effect size distribution (eg, 20% ± 5% decrease in a tumor's CBV) 

could be applied to the untreated cohort of virtual patients and can be used to identify, within 

the DRO, the “treated” DSC-MRI signals for each voxel.

Figure 7A–B illustrates a simulated pretreatment CBV map for a virtual patient computed 

using 2 different CA dosing schemes: a single-bolus dose with no preload (method 1) and a 

single-dose preload preceding a single-bolus dose (method 2). The corresponding treated 

CBV maps (modeled as a 20% mean reduction in tumor CBV) for both methods are shown 

in Figure 7C–D. The pre- and post-treatment CBV distributions across the entire tumor 

region of interest for both acquisition methods are shown in Figure 7E–F. In this example, 

CBV estimates derived from method 2 were more sensitive to treatment response compared 

with those derived from method 1, as indicated by the change in CBV. Similar analyses 

could be extended to cohorts of virtual patients to identify the most robust and sensitive 

DSC-MRI acquisition and postprocessing strategies for use in clinical trials.

Discussion

We have described the development of a DRO that recapitulates the DSC-MRI signal 

characteristics observed in human glioblastomas. The DRO enables signals to be computed 

for ranges of physiological, physical, and acquisition parameters. Clinical relevance is 

ensured through the use of a training data set. Furthermore, we validated the DRO's ability to 

produce reliable signals for different CA dosing schemes and acquisition parameters. 

Although in silico models may be limited by the accuracy of the biophysical model used, 

they provide a feasible and robust alternative to in vivo studies, which, in the case of DSC-

MRI, may require multiple contrast injections and MRI scans and often lack a reliable 

“ground truth” for establishing accuracy.

Two key features of the proposed DRO are instrumental to its ability to provide signals that 

emulate clinical data. First, the DSC-MRI signals are derived using a validated 

computational approach that enables the incorporation of realistic tissue structures. Unlike 

heuristic models of DSC-MRI (34), this approach does not make assumptions regarding the 

voxel-wise CA  relaxivity, a parameter that is highly dependent upon vascular and cellular 

microstructure. In the proposed DRO, the voxel-wise microstructure determines the 

compartmental volume fractions and the associated CA relaxivity. Second, the training phase 

ensures that the range of simulated signals reflects the heterogeneity observed in vivo. 

Without training, there is the potential to introduce bias into the optimization of acquisition 

and postprocessing methods, as such methods may have not have uniform accuracy across 

the range of parameters.

Semmineh et al. Page 7

Tomography. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Although we have presented two potential applications for the proposed DRO, there exist 

numerous opportunities for its use. Studies seeking to characterize and explore the 

biophysical basis of DSC-MRI data in brain tumors have yielded new biomarkers sensitive 

to the underlying tumor microstructure (eg, morphological features of vessels and cells) (23, 

60-62) and hemodynamics (eg, vascular architectural imaging) (63). For these advanced 

methods, the DRO provides a tool with which to systematically investigate the sensitivity of 

DSC-MRI to such features and identify optimal acquisition protocols. Furthermore, the 

DRO can also be used to assess the accuracy of kinetic parameter estimates derived from 

newly developed pulse sequences, such as the recently proposed multiecho spin and gradient 

echo (SAGE) approach (64-69).

Although we trained the DRO with and validated it against in vivo data, any simulation 

approach that models complex biophysical phenomena has limitations. As described 

previously (22), the current computational approach does not consider the effects of arbitrary 

or heterogeneous CA distribution within a given tissue compartment such as the EES. The 

DRO could also be expanded to include the effects of transvascular water exchange rate, 

intravascular flow dynamics, atypical cellular geometries, and more heterogeneous vascular 

tree models. However, increasing the biological complexity of the input tissue structures also 

increases the number of unknown parameters that would need to be characterized.

The proposed DSC-MRI DRO provides a tool that can be leveraged by groups aiming to 

optimize and standardize acquisition and analysis methods for prospective clinical studies. It 

also enables the evaluation of bias and variance introduced by multisite data analysis. Such 

efforts are critical for establishing comparability of DSC-MRI data and interpreting multisite 

clinical trial data. To facilitate this effort, a range of DSC-MRI DROs is available for 

download from The Cancer Imaging Archive (www.cancerimagingarchive.net) under the 

collection name Barrow-DRO. The provided files contain multiple versions of the DRO, 

computed across a wide range of pulse sequence parameters and preload dosing schemes, all 

saved in Digital Imaging and Communications in Medicine (DICOM) and Matlab formats. 

Table 2 summarizes the range of pulse sequence parameters and CA dosing schemes that, 

when combined, yield 360 different acquisition methods. Each DRO file is a DSC-MRI time 

series data set similar to what would be acquired clinically and includes predefined regions 

of interest for the AIF, normal tissue and tumor voxels. Accordingly, these data may be 

processed using commercial or customized DSC-MRI analysis packages. The data set 

summary page details the organization of the files, the regions of interest, and the 

instructions for use.
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Abbreviations

DSC Dynamic susceptibility contrast

MRI magnetic resonance imaging

DRO digital reference object

CBF cerebral blood flow

CBV cerebral blood volume

CA contrast agent

TR repetition time

TE echo time

TCIA The Cancer Imaging Archive

FA flip angle

3D 3-dimensional

FPFDM finite perturber finite difference method

EES extravascular extracellular space

Gd-FTPA gadopentetate dimeglumine

AIF arterial input function

PSR percent signal recovery
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Figure 1. 
Summary of input parameters for the pharmacokinetic model used in the development of the 

digital reference object (DRO). The population-based arterial input function (AIF) was 

computed from 23 glioblastomas (A). The paired distribution of cerebral blood volume 

(CBV) and cerebral blood flow (CBF) was derived from the same database and scaled by 

dynamic computed tomography (CT) perfusion data (B). The distribution of Ktrans was 

derived from previously published dynamic CT perfusion data (C).
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Figure 2. 
Sample 3-dimensional (3D) tissue structures used in the development of the DRO. Tissue 

structure composed of homogenously shaped ellipsoids packed around randomly oriented 

cylindrical vessels (A). Tissue structure containing heterogeneously shaped ellipsoids (B). 

To aid in structure visualization, these images depict a smaller number of ellipsoids 

compared with what was actually used for the simulations.
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Figure 3. 
Representative concentration–time and signal–time curves found in the DRO. Simulated Cp 

and Ce curves derived using the 2-compartment model for the tissue structures with 

homogeneous (red) and heterogeneous (blue) ellipsoids illustrated in Figure 2 (A). 

Corresponding gradient echo signal ratio (S/S0) computed using the finite perturber finite 

difference method (FPFDM) (B). The tissues consisting of homogeneous and heterogeneous 

ellipsoids yielded signals exhibiting predominantly T1 and  leakage effects, respectively.
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Figure 4. 
A database of DSC-MRI performed in 23 glioblastomas was used to train input parameter 

permutations for the DRO. After training, the mean and standard deviation values of the in 

vivo (>40 000 voxels) and in silico (10 000 voxels) DSC-MRI signals are in strong 

agreement (A–B). The training phase ensured concordance of the percent signal recovery 

(PSR) distributions for in vivo and in silico data, supported by 2-sample Kolmogorov–

Smirnov test (C).
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Figure 5. 
Validation of the DRO. A correlation analysis identified DRO voxels accurately reflecting 

the mean and standard deviation of voxel-wise dual-echo dynamic susceptibility contrast-

magnetic resonance imaging (DSC-MRI) signals, and the computed dual-echo , in the 

validation data set. Agreement is seen between the in vivo and simulated signals and PSR 

values at echo time (TE) = 7 milliseconds (A–C) and TE = 31 milliseconds (D–F), and 

between the in vivo and simulated dual-echo  and the computed PRD values (G–I). The 

PSR and PRD distributions across all voxels in the in vivo validation data set are a subset of 

those found in the DRO. These results reflect the broader PSR and PRD heterogeneity 

exhibited across the much larger number of tumors used to train the DRO compared with 

that used in the validation data set.
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Figure 6. 
Use of the DRO to investigate the influence of acquisition and postprocessing strategy on 

CBV accuracy. CA leakage-corrected (Corr) and -uncorrected (unCorr) CBV percentage 

error for DSC-MRI simulated at 2 flip angles (FA) and repetition time (TR) values (A–B). 

For all parameter combinations, CA leakage correction increases CBV accuracy. Leakage-

corrected CBV estimates acquired with lower FAs and longer TRs provided more accurate 

CBV estimates.
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Figure 7. 
Application of the DRO to optimize DSC-MRI for assessment of treatment response in 

clinical trials. Simulated pre-(A, B) and post-treatment (C, D) CBV maps in a virtual patient 

computed using 2 contrast agent (CA) dosing schemes: a single-bolus dose with no preload 

(method 1; A, C) and a single-dose preload preceding a single-bolus dose (method 2; B, D). 

Pre-and post-treatment CBV changes within tumor for the 2 methods (E and F). Method 1 

yielded a narrower intratumoral range of pre- and post-treatment CBV values but a smaller 

mean difference compared with method 2.
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Table 2
Summary of Pulse Sequence Parameter Values and CA Dosing Schemes

TR (ms) FA (°) TE (ms) B0 (T) Preload + Bolus

(1000, 1500, 2000) (30, 60, 90) (20, 30, 40, 50) (1.5, 3) (0 + 1, 1/4 + 3/4, 1/2+1/2, 1/2 + 1, 1 + 1)

All possible combinations yielded 360 different acquisition methods. Dosing schemes are presented as a fraction of a standard 0.1 mmol/kg dose.
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