Skip to main content
. Author manuscript; available in PMC: 2018 Aug 1.
Published in final edited form as: Psychol Sci. 2017 Jun 12;28(8):1103–1115. doi: 10.1177/0956797617702502

Table 2. Two-level hierarchical generalized linear model of recall performance predicted by Item Value, List, and Study Condition in Experiment 1.

Fixed effects Coefficient
Intercept (β00) -0.52***
 Predictors of intercept
  Cond1: Full attention v. Divided attention (β01) -0.62***
  Cond2: Full attention v. Familiar music (β02) -0.20+
  Cond3: Full attention v. Unfamiliar music (β03) -0.07
Value (β10) 0.16***
 Predictors of value
  Cond1: FA v. DA (β11) 0.01
  Cond2: FA v. FM (β12) 0.02
  Cond3: FA v. UM (β13) -0.02
List (β20) 0.04+
 Predictors of list
  Cond1: FA v. DA (β21) 0.05+
  Cond2: FA v. FM (β22) -0.03
  Cond3: FA v. UM (β23) 0.01
List × Value (β30) 0.03**
 Predictors of list × value
  Cond1: FA v. DA (β31) 0.01
  Cond2: FA v. FM (β32) -0.01
  Cond3: FA v. UM (β33) -0.01

Random effects Variance

Intercept (person-level) (r0) 0.21***
Value (r1) 0.01***
List (r2) 0.03***
List × Value (r3) 0.001***

Note. Logit link function was used to address the binary dependent variable.

+

p < .10

*

p < .05

**

p < .01

***

p < .001