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Abstract

Purpose—The purpose of this study is to determine the optimal representative reconstruction 

and quantitative image feature set for a computer-aided diagnosis (CADx) scheme for dedicated 

breast computer tomography (bCT).

Method—We used 93 bCT scans that contain 102 breast lesions (62 malignant, 40 benign). Using 

an iterative image reconstruction (IIR) algorithm, we created 37 reconstructions with different 

image appearances for each case. In addition, we added a clinical reconstruction for comparison 

purposes. We used image sharpness, determined by the gradient of gray value in a parenchymal 

portion of the reconstructed breast, as a surrogate measure of the image qualities/appearances for 

the 38 reconstructions. After segmentation of the breast lesion, we extracted 23 quantitative image 

features. Using leave-one-out cross-validation (LOOCV), we conducted the feature selection, 

classifier training, and testing. For this study, we used the linear discriminant analysis classifier. 

Then, we selected the representative reconstruction and feature set for the classifier with the best 

diagnostic performance among all reconstructions and feature sets. Then, we conducted an 

observer study with six radiologists using a subset of breast lesions (N = 50). Using 1000 

bootstrap samples, we compared the diagnostic performance of the trained classifier to those of the 

radiologists.

Result—The diagnostic performance of the trained classifier increased as the image sharpness of 

a given reconstruction increased. Among combinations of reconstructions and quantitative image 

feature sets, we selected one of the sharp reconstructions and three quantitative image feature sets 

with the first three highest diagnostic performances under LOOCV as the representative 

reconstruction and feature set for the classifier. The classifier on the representative reconstruction 

and feature set achieved better diagnostic performance with an area under the ROC curve (AUC) 

of 0.94 (95% CI = [0.81, 0.98]) than those of the radiologists, where their maximum AUC was 

0.78 (95% CI = [0.63, 0.90]). Moreover, the partial AUC, at 90% sensitivity or higher, of the 

classifier (pAUC = 0.085 with 95% CI = [0.063, 0.094]) was statistically better (p-value < 0.0001) 

than those of the radiologists (maximum pAUC = 0.009 with 95% CI = [0.003, 0.024]).
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Conclusion—We found that image sharpness measure can be a good candidate to estimate the 

diagnostic performance of a given CADx algorithm. In addition, we found that there exists a 

reconstruction (i.e., sharp reconstruction) and a feature set that maximizes the diagnostic 

performance of a CADx algorithm. On this optimal representative reconstruction and feature set, 

the CADx algorithm outperformed radiologists.
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1 Introduction

Investigators are developing dedicated breast Computed Tomography (bCT) systems to 

improve breast cancer detection and diagnosis. Dedicated bCT allows radiologists to access 

full 3D volumetric views of breast lesions, which may improve radiologists’ performances 

when determining the malignancy of given lesions 1.

To help radiologists achieve better diagnostic performance, researchers are also developing 

computer aided diagnosis (CADx) schemes to act as a second reader for various imaging 

modalities, including mammography2–4, ultrasound5 and breast magnetic resonance imaging 

(MRI)6.

Since bCT is a relatively new imaging modality, there are only a few preliminary studies on 

CADx algorithms for bCT 7–11. Ray et al. 7 trained and tested artificial neural networks 

(ANN) using morphologic and texture features extracted from lesions in pre- and post-

contrasted bCT images. In addition, Kuo et al. 9 introduced a 3D spiculation feature that was 

able to improve the classification performance of a linear discriminant analysis (LDA) 

classifier by combining it with other traditional quantitative image features. Recently, we 

introduced novel quantitative image features utilizing the 3D surface information of breast 

lesions in bCT images 11. These features were total, mean, and Gaussian curvatures 

summarizing the location variations of the 3D surface curvature of breast lesions. We 

showed that total curvature holds sufficient information for breast lesion classification such 

that it can significantly reduce the number of features for a classifier without loss of 

classification power. All these previous studies showed good performance for classifying 

malignant and benign breast lesions. However, these studies are limited to one pre-selected 

reconstruction and trained and tested their models on images reconstructed by one specific 

algorithm, e.g., Feldkamp-Davis-Kress (FDK) reconstruction12. It is possible that there are 

other CT reconstruction algorithms that CADx algorithms work better on than other 

reconstructions.

In this paper, we investigated various reconstruction algorithms that resulted in various 

image quality/appearance and evaluated which reconstructions and quantitative image 

features yielded optimal performance for CADx algorithms in classifying lesions in bCT 

cases. Using an iterative image reconstruction (IIR) algorithm and changing its variables, we 

prepared bCT images with different image appearances (or qualities). After that, we 

segmented the breast lesions in bCT images using an existing algorithm and extracted 23 

quantitative image features from the resulting segmentation. Then, we trained and tested a 
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linear discriminant analysis (LDA) classifier for each image appearance to determine the 

optimal representative reconstruction and quantitative image features for the CADx scheme 

on bCT images. Then, we compared the performance of the resulting classifier for the 

selected representative reconstruction to those of radiologists.

2 Methods

2.1 Dataset

This study utilized an image dataset of 137 biopsy proven breast lesions (90 malignant, 47 

benign) in 122 non-contrast bCT images of women aged 18 or older at the University of 

California Davis. Under an institutional review board (IRB) approved protocol, the prototype 

dedicated bCT system at the University of California at Davis1 was used to acquire bCT 

images. Table 1 summarizes the characteristics of the dataset. The image specification was 

as follows: coronal slice spacing ranged from 200 to 770 μm, and the voxel size in each 

coronal slice varied from 190 by 190 to 430 by 430 μm, depending on the size of the breast. 

Figure 1 shows an example of benign and malignant lesions in the dataset.

2.2 Image reconstructions and quantification of reconstructed image qualities

Different image reconstructions produced different image appearances and therefore affected 

the segmentation and classification performance of automated algorithms 13. It is possible 

that there exists a certain image appearance that allows a given CADx algorithm to work 

better than others. Thus, we utilized an iterative image reconstruction (IIR) algorithm 14 to 

create a set of reconstructed images upon which we determined the performance of the 

CADx algorithm. We also included a clinical reconstruction, i.e., Feldkamp-Davis-Kress 

(FDK) reconstruction12, for comparison purposes.

Briefly, the IIR algorithm14 we used in this study consisted of two sub reconstruction 

algorithms; one algorithm reconstructs an image holding the gray-scale information, while 

another algorithm reconstructs the same image holding the edge information. By combining 

the resulting reconstructions from the two sub-algorithms with different weights, we 

obtained reconstructed images with different appearances (or qualities).

We reconstructed 37 versions of CT images using the above IIR algorithm, and using the 

FDK reconstruction we had a total of 38 versions of CT images. The left figure of Figure 2 

shows an example of the coronal views of a breast for the 38 different reconstructions.

To quantify the appearance/quality of each reconstruction, we used the standard deviation of 

a homogeneous portion (σsig) of an example breast in each reconstruction and the gradient 

of a parenchymal portion (∇sig) of the same example breast in each reconstruction as an 

estimate of noise and sharpness of each reconstruction, respectively. Specifically, we 

manually selected one fatty area in an example breast as the region of interest (ROI) for the 

image noise statistic and computed the image noise using a cube with a 10 mm edge length. 

Likewise, using the same size cube and same example breast, we selected one breast 

fibroglandular area as the ROI to compute the image sharpness statistic. We repeated this 

process for all 38 reconstructions using the same selected fatty and fibroglandular areas of 

the same breast to compute image statistics for all 38 reconstructions. The image noise 
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values for all reconstructions ranged from 0.01 to 0.024 (1/cm), while the image sharpness 

values ranged from 0.002 to 0.015 (1/cm2). The right figure of Figure 2 shows the scatter 

plot of image noise and image sharpness of each reconstruction considered in this study. We 

found that there was a strong positive correlation between the image noise and sharpness 

(rho = 0.98). Thus, we selected the image sharpness as a surrogate measure of image 

appearance/quality for each reconstruction.

2.3 Segmentation of breast lesions

We utilized a semi-automated segmentation algorithm15, 16 to segment breast lesions in all 

reconstructions. The algorithm needed a seed point (i.e., lesion center) to segment a given 

lesion. Therefore, a research specialist, with over 15 years of experience in mammography, 

provided the seed point for the algorithm. Note that we repeated the lesion segmentation 

process using the above algorithm for all 38 reconstruction cases. Thus, the resulting 

segmentation outcomes were similar, but different from one reconstruction to another 

reconstruction.

As poor segmentation can affect the classification performance of a classifier, we evaluated 

the segmentation outcomes for all lesion cases in all 38 reconstructions and removed any 

lesions with poor segmentation outcomes. If one lesion in one reconstruction showed poor 

segmentation quality, we removed that lesion for all 38 reconstructions. We used the DICE 

coefficient17 to evaluate the segmentation results by comparing the algorithm’s output to that 

of the above research specialist. Previous studies reported that segmentations with a DICE 

coefficient of 0.7 or higher shows good quality18. Among 137 lesions, we removed a total of 

35 lesions (29 bCT images) with poor segmentation outcome (N = 21 lesions with DICE 

coefficient less than 0.7) or missing data/information (N = 14 lesions, missing seed point or 

manual segmentation outline data for either IIR or FDK reconstructions). Thus, this study 

used 102 breast lesions (62 malignant, 40 benign) from 93 bCT images for developing a 

breast CADx algorithm (Table 1).

2.4 Quantitative image features for breast tumor classification

We extracted a total of 23 quantitative image features from the segmentation results (Table 

2). These image features have been used in previous studies for lesion detection and 

classification 7–11. The 23 quantitative image features describe various types of information 

of the segmented lesions that include four histogram, seven shape, five margin, four texture, 

and three surface curvature descriptors. Histogram descriptors7, 8 mainly summarize the gray 

value variations between the lesion and the background. Shape and margin descriptors7, 8 

characterize the morphological variations in the whole lesion volume and the margin, 

respectively. The texture descriptors10 (3D version of gray-level co-occurrence) quantify 

lesion texture. In addition, the surface curvature descriptors11 summarize the variations over 

the given lesion surface. Note that surface curvature descriptors are based on the 3D surface 

representation (i.e., shallow shell covering the lesion) of a given lesion, while margin 

descriptors are based on the volumetric representation (i.e., margin with depth) of a given 

lesion.
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2.5 Feature selection, classifier training and testing

We used leave-one-out-cross-validation (LOOCV) to select features, train a classifier, and 

test the resulting classifier. As there are 38 reconstructions for each bCT exam, we repeated 

the method described below for all 38 reconstructions.

Among the 23 features, we used a feature selection technique (sequentialfs in MATLAB) to 

select a few features with the most diagnostic information to classify breast lesions. Note 

that there may be a few set of features that are correlated to each other by definition, e.g., 

average radial gradient (F12) and radial gradient index (F13). Sequentialfs function utilizes 

10-fold cross validation by default to include only meaningful features to classify breast 

lesions. Thus, the sequentialfs function can remove any redundant or highly correlated 

features for the subsequent step, i.e., training an LDA classifier. In addition, the feature 

selection algorithm stopped selecting features when the sum squared error (SSE) was less 

than the predefined criteria, which we set as f(x = 0.95, degree of freedom = 1) = 3.84, 

where f is a Chi-square inverse cumulative distribution function. The number of selected 

features for training a classifier under each LOOCV training samples typically ranged from 

two to five. Then, within the same LOOCV training samples, we trained an LDA classifier. 

We set the biopsy results of each lesion and the corresponding selected image features as 

dependent variables and independent variables for the LDA classifier, respectively. Then, we 

evaluated the classification performances of the resulting LDA classifier on a held-out 

sample. We utilized the area under the receiver operating characteristic curve (AUC) as a 

figure of merit.

We evaluated the performance of the resulting classifiers on 38 reconstructions in terms of 

the image quality, i.e., image sharpness of 38 reconstructions. Specifically, we investigated 

which features were selected for various image qualities and their corresponding classifiers’ 

AUCs to determine optimal representative reconstruction and quantitative image features for 

CADx on bCT images.

2.6 Observer study

In our previous study, we investigated radiologists’ diagnostic performances on different 

breast CT image appearances 19. We utilized this observer study data to compare the 

performance of the CADx algorithm on the optimal representative reconstruction to those of 

the radiologists. Briefly, we recruited a total of six MQSA radiologists (with at least15 years 

in practice) in specialized in breast imaging for the observer study. We selected four 

reconstructions (three IIRs and FDK) that spanned a range of smooth to sharp image 

appearances (Figure 2). We refer to these reconstructions as IIR1, IIR2, IIR3, and FDK. We 

also sampled 50 lesions (25 malignant, 25 benign) for the observer study to reduce the 

burden of radiologists reading 408 cases (102 lesions in 4 different reconstructions) to 200 

cases (50 lesions in 4 different reconstructions). We divided 200 cases into four study 

sessions; each session consisted of 50 randomly presented lesions and four selected 

reconstructions. Radiologists were able to complete up to two sessions during each study 

visit. However, to reduce the memory effect, we asked radiologists to come back at least one 

week after their last study visit. We provided entire breast volume per case such that 

radiologists were able to dynamically move through the slices in sagittal, transverse, and 
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coronal planes. We highlighted and centered target lesions in the viewer center. In addition, 

radiologists were able to zoom in and out, adjusting contrast level of the displayed breast 

volume. Each radiologist provided the probability of malignancy with a scale of [0, 100], 

where 0 indicates absolutely benign and 100 indicates absolutely malignant, for each 

displayed lesion. We evaluated each radiologist’s diagnostic performance on different image 

appearances (i.e., smooth to sharp appearance, IIR1 to FDK) using the AUC values.

For the 50 cases, the AUC of the six radiologists ranged from 0.73 to 0.86 for the IIR1 – 3 

and FDK reconstructions (Table 3). The purpose of this study was to determine optimal 

reconstructions and feature sets, and to compare the trained CADx algorithm on the optimal 

reconstruction and feature set against a pool of radiologists. Thus, we averaged radiologists’ 

diagnostic performances for each of four selected reconstructions (IIR1-3 and FDK) and 

treated them as surrogates from a population of radiologists’ diagnostic performances for 

those selected reconstructions. To reduce individual radiologist’s variations in diagnostic 

tasks, we used the non-parametric method20 to average radiologists’ ROC curves.

2.7 Comparing CADx and radiologists diagnostic performances

It may not be possible to directly compare the performance of the CADx algorithm on the 

optimal representative reconstruction to that of the radiologists in the current setup, as we 

sub-sampled the cases (N = 50) for the observer study, instead of using all cases (N = 102), 

which we used to develop the classifier.

To properly compare the performance of the CADx and that of the radiologists, we used the .

632+ bootstrap to train and test the classifier 21 and compare its performance to the 

consolidated performance of the radiologists. Briefly, N lesion cases are sampled with 

replacement, and then one can observe 0.632N unique cases and 0.368N redundant cases on 

average from each bootstrap sample. In this setup, we used the first 0.632N unique cases for 

training the classifier and used the other remaining 0.368N cases for testing it. Among 

0.368N test cases, we matched the cases that were used for the observer study, which were 

0.184N test cases on average. We compared the performance between the classifier and the 

radiologists on these unique 0.184N test cases. For each 0.184N test cases, we conducted 

ROC analysis on the classifier and the radiologists and estimated their AUC values following 

the method described in the .632+ bootstrap 21. We repeated this for 1000 bootstrap samples. 

Figure 3 shows the diagram illustrating how we divided each bootstrap sample for training 

and testing the classifier.

3 Results

3.1 Optimal reconstruction and quantitative image features for the classifier

Under the LOOCV, we performed feature selection and classifier training on the training set 

and tested the resulting classifier on the hold-out data. This process was repeated for all 38 

reconstructions. The diagnostic performance of the trained classifiers in terms of AUC 

ranged from 0.64 to 0.88 (Figure 4.A).

As an image became sharper, the diagnostic performance of the classifier improved, 

although the improvement became saturated (or plateaued) at very sharp reconstructions, as 

Lee et al. Page 6

Med Phys. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



shown in Figure 4.A and B. Among all reconstructions, reconstruction #34 achieved the 

highest diagnostic performance (AUC = 0.88), followed by reconstruction #15 (AUC = 0.85) 

and #30 (AUC = 0.82).

For each reconstruction, different sets of features were selected to train the classifier. The 

feature selection chose the total curvature feature (F21 in Table 2) for all reconstruction 

cases except the smoothest reconstruction (i.e., Reconstruction #1, in Figure 4.B). Thus, we 

concluded that the total curvature feature is the most important feature for the classifier with 

the best diagnostic information for all reconstructions.

The feature selection frequently selected shape descriptors (F5 – F11) and margin 

descriptors (F12 – F16) for smooth reconstructions (Reconstruction #1– #19), and histogram 

(F1 – F4) and margin descriptors for sharp reconstructions (Reconstruction #20 – #38). 

However, the classifier performed better on sharper reconstructions than on smoother 

reconstructions. Thus, this trend indicates that more diagnostic information can be obtained 

as the image gets sharper, and that histogram and margin descriptors contain more relevant 

information for classification.

In general, the trained classifier performed better when the number of selected features was 

small (N < 5); the trained classifier for reconstructions #15, #26, and #34 held only 2 – 4 

features and achieved high AUC values (0.85 or higher). In addition, we can observe that 

there was a performance drop (e.g., from Reconstruction #15 to #16, and from 

Reconstruction #26 to #27) when the classifier held more weak features. In fact, the 

classifiers with low AUC values (e.g., reconstruction #6, #26, #27) tended to have high 

variations in selected features during the feature selection step in LOOCV, while the 

selection step selected consistently a few strong or robust features for the classifiers with 

high AUC values (e.g., reconstruction #15, #30, #34).

In addition, we observed a few set of features were oscillating across reconstructions, e.g., 

margin strength 1 (F14) and margin strength 2 (F15) for smooth reconstructions 

(reconstruction #1 – #10), region gray value variation (F3) and margin gray value variation 

(F4) for sharper reconstructions (reconstruction #17 – #38). By definition, there is a 

correlation between these features (Table 2), and they were indeed highly correlated in our 

dataset (Pearson’s rho > 0.7). However, as we mentioned previously, the feature selection 

algorithm we used for this study utilizes 10 fold cross-validation to remove highly correlated 

features. Thus, only a few of those highly correlated features were selected within each 

reconstruction case (i.e., each column in Figure 4.C). For instance, only margin strength 1 

(F14) was frequently selected over margin strength 2 (F15) for reconstructions #1, #3, and 

#5, while we observed a completely opposite trend for reconstructions #2, #4, and #6.

Reconstruction #34 used margin gray value variation (F4), average radial gradient (F12), and 

total curvature (F21) features, and achieved an AUC of 0.88. Reconstruction #15 used 

average gradient direction (F10), average radial gradient (F12), radial gradient variation 

(F16), and total curvature (F21) features, and achieved an AUC of 0.85. Reconstruction #30 

used radial gradient index (F13) and total curvature (F21) features, and achieved an AUC of 

0.82. We concluded that these reconstructions and feature sets are possible candidates for the 
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optimal reconstruction and feature set for CADx algorithms. Thus, we re-evaluated the 

diagnostic performance of the classifier with the above feature sets and reconstructions to 

select the optimal feature sets and reconstructions for CADx algorithms. Note that we fixed 

the features of the classifier to be trained on one of the above three feature sets in this 

subsequent analysis.

Among the candidate feature sets and reconstructions, the feature set of margin gray value 

variation (F4), average radial gradient (F12), and total curvature (F21) on reconstruction #34 

showed the highest AUC values than others (Table 4). Thus, we selected reconstruction #34 

and the feature set of margin gray value variation (F4), average radial gradient (F12), and 

total curvature (F21) as the representative reconstruction and feature set and compared its 

diagnostic performance to that of radiologists in the following section. We refer to the 

selected reconstruction #34 as IIROP.

Figure 5 shows the distributions of benign and malignant lesions in the space spanned by the 

above three features selected for the classifier on the IIROP. Malignant lesions tended to 

have higher margin gray value variation (F4) and total curvature (F21) values and lower 

average radial gradient (F12) values than benign lesions. Note that there was one malignant 

lesion with a low total curvature value (left upper corner in Figure 5). Using total curvature 

(F21) only, this lesion fell into the benign lesion category. However, this lesion had a high 

value for F4, making it fall into the malignant lesion category.

3.2 Performance comparison between the classifier and radiologists

As previously explained, we used the entire dataset (N = 102) to develop classifiers and used 

a subset (N = 50) for the observer study. We used the .632+ bootstrap sampling method21 

with 1000 bootstrap samples to compare the diagnostic performance of the classifiers from 

the previous section and those of the radiologists.

CADx performance on the optimal reconstruction and with the optimal feature set reached 

an AUC of 0.94 (95% CI: [0.81, 0.98]), while the AUCs for the radiologists ranged from 

0.76 to 0.78 (Table 5 and Figure 6). As we repeated the comparisons between CADx and 

radiologists, we corrected the significance level using the Bonferroni correction; the 

corrected significance level was 0.05/4 = 0.0125. For all cases, the 95% confidence intervals 

of the differences in diagnostic performance between the CADx algorithm and radiologists 

were positive (0.03 – 0.34). However, they were not statistically significant, as their p-values 

were higher than the corrected significance level 0.0125.

In clinical practice, both CADx and radiologists rarely operate at a low sensitivity level for 

classifying the malignancy of lesions. In this respect, comparing the partial AUC with the 

sensitivity level above the preselected threshold is more desirable 22–24. Thus, we computed 

the partial AUC at 90% sensitivity or higher for both CADx and radiologists. Note that the 

maximum value for the partial AUC for this scenario is 0.1. The partial AUC at 90% 

sensitivity or higher for the CADx algorithm was 0.085 (95% CI: [0.063, 0.094]) and it was 

higher than the radiologists (Table 6 and Figure 6). The difference between the partial AUCs 

of the radiologists and the CADx was statistically significant (p-values <0.0001).
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4 Discussion

In this study, we searched for the best reconstruction algorithm and feature set for a CADx 

tool for dedicated bCT over a wide range of reconstructions. We found that sharper 

reconstructions yielded better diagnostic performance for a CADx classifier than smoother 

reconstructions. This shows that image sharpness is a good indicator to estimate the 

diagnostic performance of a CADx algorithm for this particular task. In addition, we found 

that total curvature, which is a surface descriptor of lesions, holds the most diagnostic 

information compared to the other features. By combining the total curvature feature with a 

few histogram and margin descriptors, the resulting CADx algorithm achieved an AUC of 

0.88 for one of many sharp reconstructions under the LOOCV. Then, we compared the 

diagnostic performance of the resulting CADx algorithm on the representative 

reconstruction and feature set to those of radiologists. We found that the CADx algorithm 

performed better than the radiologists, especially for the case when comparing the partial 

AUC at 90% sensitivity or higher.

Our data clearly showed that a CADx algorithm should be operated at sharp reconstructions 

to achieve its best diagnostic performance, while the radiologists performed similarly for 

smooth to sharp reconstructions. If we set the operating point for the CADx scheme at 90% 

sensitivity, the resulting specificity of the classifier will be approximately 82%, while 

radiologists will have a specificity of approximately 30% – 36% at the same sensitivity level 

(Figure 6). From this, we can expect that radiologists would recommend biopsies for more 

benign lesions than the CADx scheme on the representative reconstruction and feature set. 

Unnecessary biopsies can cause adverse effects on patients, such as anxiety and discomfort/

pain. As the classifier showed the better specificity, we may expect that the CADx tool may 

help radiologists to reduce unnecessary biopsies for benign breast disease.

We showed that image sharpness is a good predictor to estimate the diagnostic performance 

of a given CADx algorithm on a given reconstruction. However, one needs to note that there 

may be more image quality/appearance descriptors available. As shown Figure 4.A, we can 

see that there were performance drops of the trained classifier from reconstruction #15 to 

reconstruction #16, and from reconstruction #26 to reconstruction #27. The image sharpness 

alone cannot explain these performance drops. Finding other image quality/appearance 

descriptors that can explain these performance drops would be good follow-up research of 

this study.

We showed that the optimal feature set for the CADx algorithm included features F4, F12, 

and F21, which are margin gray value variation, average radial gradient, and total curvature, 

respectively (Table 2). As the value of the mean total curvature and the margin gray value 

variation increases, while the value of average radial gradient decreases, the probability of a 

lesion being malignant increases (Figure 5). The margin gray value variation is defined as 

the standard deviation of gray level voxel values around the lesion margin (Table 2). In 

addition, the total curvature is defined as the averaged and normalized absolute sum of two 

principal curvatures over the segmented three-dimensional lesion surface 11. As the value of 

total curvature increases, the lesion surface becomes more curved (or bumpy). Moreover, the 

average radial gradient is defined as the mean value of radial gradient over a segmented 
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lesion margin 25. If the lesion is a perfect sphere, the value of the average radial gradient is 

maximized. Therefore, as the average radial gradient value decreases, the more the 

morphological shape of the segmented lesion deviates from the shape of a sphere. Thus, 

malignant lesions tend to show higher gray value variation in their margin (F4), tend to have 

a more curved (or bumpy) surface (F21), and tend to be more deviated from the shape of a 

sphere (F12) than benign lesions. Figure 5 clearly shows this trend as well; malignant 

lesions tended to have lower F12 values and higher F4 and F21 values.

One may raise the question whether there was possible sampling bias due to the nature of 

the subsampled bCT cases for the observer study. To check if the selection of 50 cases out of 

102 cases biased the diagnostic performance of the classifier and the radiologists, we 

conducted correlation analysis on the AUC values between each group of radiologists and 

the classifier on the 0.184N test samples. If the AUC values of the classifier and the 

radiologists are not correlated, then we can conclude that the selected 50 cases did not 

introduce meaningful bias to the classifier. Even if they are correlated, then we can conclude 

that there exists a positive bias on the AUC, but both the radiologists and the classifier 

gained the same advantage. If they have a strong negative correlation (i.e., large correlation 

coefficient value), then we can conclude that the comparison in the AUC values between the 

radiologists and the classifier are unfair, as only the classifier gained the advantage due to 

the sub-sampling of the 50 cases. We used a Bonferroni correction to correct significant 

level to account for repeated comparisons. The corrected significance level was 0.05/4 = 

0.0125.

For all cases, we found that there was a positive or no correlation in the diagnostic 

performances (in terms of AUC) between the CADx algorithm and each group of 

radiologists (Table 7). Thus, we can conclude that there was no meaningful sampling bias 

that made the comparison in the diagnostic performance between the radiologists and the 

CADx algorithm to be unfair.

However, there still exists a chance that the CADx performance on the 50 lesions was 

optimistically biased, such that the remaining 52 breast lesions may degrade the 

performance of the CADx algorithm. To prove or refute this, future observer studies with 

matched samples for both radiologists and the CADx tool will be required. Of course, this 

future study can be combined with the above follow-up study with larger and independent 

datasets.

Another possible limitation of our study is that we studied only a subset of all possible 

image reconstructions. It is possible that some other reconstruction would give either higher 

performance or select a different optimal feature set, or both. However, the main conclusion 

that a given CADx algorithm performs better on sharper images would still be valid. A 

future study with additional reconstructions will be required to confirm this.

In addition, it is possible that we may have introduced a bias on CADx performances when 

we removed the breast lesion cases with poor computer segmentation outcomes. Note that 

we utilized one specific computer algorithm to segment breast lesions for the CADx 

development. As research on developing better computer segmentation algorithms for bCT 
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is ongoing, new and improved computer segmentation algorithms for bCT will be available 

in future. With the improved algorithms, we may be able to reduce the number of lesions 

with poor segmentation outcomes, such that we can reduce the possible bias on subsequent 

CADx diagnostic performances. Searching improved computer segmentation algorithms and 

conducting follow-up analysis using those algorithms is a potential future study.

An additional limitation of our study is that we treated only cases as a random effect, while 

we treated the radiologists as a fixed effect in our statistical analysis. The proper way to 

compare the diagnostic performance of a CADx algorithm and that of radiologists would be 

to treat both cases and radiologists as random effects; however, there is currently no 

published method available for such comparison. Once the method is established, we will be 

able to confirm our finding.

Although we found the optimal reconstruction and feature set for a CADx algorithm for bCT 

cases, the methodologies described in this manuscript can be extended to other imaging 

modalities, such as breast MRI or chest CT, where active research is ongoing for developing 

CADx algorithms. Additional future direction of this research will include exploring the best 

reconstruction and feature sets for CADx algorithms for those imaging modalities.

In conclusion, this study found that image sharpness measure can be a good candidate to 

estimate the diagnostic performance of a given CADx algorithm. In addition, we found that 

there exists a certain reconstruction (i.e., sharp reconstruction) and feature set (margin gray 

value variation, average radial gradient, and total curvature features in Table 2) that 

maximizes the diagnostic performance of a CADx algorithm. On this optimal representative 

reconstruction and feature set, the CADx algorithm performed better than the radiologists.
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Figure 1. 
This figure shows example breast volumes for malignant (top two rows) and benign (bottom 

two rows) lesion cases with expert’s manual outlines overlaid.
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Figure 2. 
The left side shows an example of the coronal views of a breast for the 38 different 

reconstructions used in this study. We ordered the views in terms of their sharpness values 

(from left to right and from top to bottom, the image sharpness increases). The right side 

shows the scatter plot of image appearance values (i.e., noise and sharpness) for all 38 

reconstructions. IIR1-3 and FDK refer to IIR and FDK reconstruction cases used for the 

observer study. IIROP indicates a candidate reconstruction we found in this study for a 

CADx algorithm.
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Figure 3. 
Diagram shows how we divided each bootstrap sample (a total of 1000 samples) to train and 

test the classifier, and compare the performance of the classifier to that of radiologists.
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Figure 4. 
This figure shows the selected features for the classifier and its diagnostic performances on 

each reconstruction. A shows the AUC of the classifier on each reconstruction. B shows the 

sharpness of each reconstruction. C shows the selection frequency of each feature in the 

classifier for each reconstruction. Feature #1 – #4, #5 – #11, #12 – #16, #17 – #20, and #21 

– #23 represent histogram, shape, margin, texture, and curvature features, respectively. As 

sharpness increased, the diagnostic performance of the classifier improved (A and B). 

Overall, the total curvature feature (Feature #21) was selected 100% for all reconstructions 

except the smoothest reconstruction. For smooth reconstruction, the classifier frequently 

used the shape and margin descriptors. For sharp reconstruction, the classifier frequently 

used the margin and histogram descriptors. As images got sharper, the type and the number 

of selected features were reduced and stabilized.
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Figure 5. 
This figure shows the scatter plots of the selected features (F4, F12, and F21) for the 

classifier on the reconstruction #34. Malignant lesions tended to have higher Margin gray 

value variation (F4) and Total curvature (F21) values and lower Average radial gradient 

(F12) values than benign lesions.
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Figure 6. 
This figure shows the averaged empirical ROC curves of the CADx and for the six 

radiologists. The CADx achieved an average AUC of 0.94, which was higher than the 

radiologists for all 4 reconstructions (IIR1-3 and FDK with AUC of 0.76 – 0.78). The 

differences did not reach statistical significance after correcting for multiple comparisons. 

For the partial AUC at 90% sensitivity or higher, i.e., the area between the ROC curve and 

the dashed line in the figures, CADx showed a statistically better performance than the 

radiologists on all reconstructions.

Lee et al. Page 19

Med Phys. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lee et al. Page 20

Ta
b

le
 1

C
ha

ra
ct

er
is

tic
s 

of
 B

re
as

t C
T

 d
at

as
et

A
ll

Se
le

ct
ed

 fo
r 

tr
ai

n/
te

st
 t

he
 c

la
ss

if
ie

r
Se

le
ct

ed
 fo

r 
th

e 
re

ad
er

 s
tu

dy

Su
bj

ec
t A

ge
 [

ye
ar

s]
M

ea
n 

[m
in

, m
ax

]
55

.6
 [

35
, 8

2]
55

 [
35

, 8
2]

54
.6

 [
37

, 8
2]

L
es

io
n 

di
am

et
er

 [
m

m
]

M
ea

n 
[m

in
, m

ax
]

13
.5

 [
2.

3,
 3

5]
13

.4
 [

2.
3,

 3
2.

1]
13

.3
 [

4.
3,

 2
9.

2]

B
re

as
t D

en
si

ty
1

16
11

5

2
51

36
20

3
51

38
17

4
19

17
8

D
ia

gn
os

is
*

A
ll 

le
si

on
s

To
ta

l
13

7
10

2
50

M
al

ig
na

nt
ID

C
61

41
18

IM
C

13
10

5

IL
C

8
6

1

D
C

IS
7

5
1

Ly
m

ph
om

a
1

0
0

To
ta

l
90

62
25

B
en

ig
n

FA
20

17
11

FC
7

4
3

FC
C

4
4

1

PA
SH

2
2

2

C
A

PP
S

2
2

2

O
th

er
 b

en
ig

n 
le

si
on

s 
su

ch
 a

s 
sc

le
ro

si
ng

 a
de

no
si

s 
an

d 
cy

st
12

11
6

To
ta

l
47

40
25

* ID
C

: I
nv

as
iv

e 
D

uc
ta

l C
ar

ci
no

m
a,

 I
M

C
: I

nv
as

iv
e 

M
am

m
ar

y 
C

ar
ci

no
m

a,
 I

L
C

: I
nv

as
iv

e 
lo

bu
la

r 
C

ar
ci

no
m

a,
 D

C
IS

: D
uc

ta
l C

ar
ci

no
m

a 
In

 S
itu

, F
A

: F
ib

ro
ad

en
om

a,
 F

C
: F

ib
ro

cy
st

ic
, F

C
C

: F
ib

ro
cy

st
ic

 c
ha

ng
es

, 
PA

SH
: P

se
ud

oa
ng

io
m

at
ou

s 
st

ro
m

al
 h

yp
er

pl
as

ia
, C

A
PP

S:
 c

ol
um

na
r 

al
te

ra
tio

n 
w

ith
 p

ro
m

in
en

t a
pi

ca
l s

no
ut

s 
an

d 
se

cr
et

io
ns

.

Med Phys. Author manuscript; available in PMC 2018 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lee et al. Page 21

Table 2

List of image features used in this study

Histogram descriptors Definition*

F1. Average region gray value [HU] μ (Gray value in V)

F2. Region contrast [HU] F1 - μ (Gray value outside of V)

F3. Region gray value variation [HU] σ (Gray value in V)

F4. Margin gray value variation [HU] σ (Gray value in M)

Shape descriptors

F5. Irregularity 2.2 × V1/3 / M1/2

F6. Compactness % of volume of V included in SP

F7. Ellipsoid axes min-to-max ratio Min to max ratio of semi-axes of the ellipsoid fitted to V

F8. Margin distance variation [mm] σ (distances from the center of V to the margin of V)

F9. Relative margin distance variation F8 / μ(distances from the center of V to the margin of V)

F10. Average gradient direction μ (gradient direction of each voxel in M)

F11. Margin volume [mm3] Σ (voxels in M)

Margin descriptors

F12. Average radial gradient [HU] μ (radial gradient of each voxel in M)

F13. Radial gradient index (RGI) F12 / μ (magnitude of image gradient of each voxel in M)

F14. Margin strength 1 μ (magnitude of image gradient of each voxel in M) / F2

F15. Margin strength 2 σ (magnitude of image gradient of each voxel in M) / F2

F16. Radial gradient variation σ (radial gradient of each voxel in M)

Texture descriptors

F17. GLCM|Energy 3D version of 2D gray-level co-occurrence | Energy

F18. GLCM|Contrast 3D version of 2D gray-level co-occurrence | Contrast

F19. GLCM|Correlation 3D version of 2D gray-level co-occurrence | Correlation

F20. GLCM|Homogeneity 3D version of 2D gray-level co-occurrence | Homogeneity

Surface Curvature descriptors

F21. Total Curvature μ (|p1| + |p2| over S) / σ (|p1| + |p2| over S)

F22. Mean Curvature μ ( 0.5 × (p1 + p2) over S) / σ (0.5 × (p1 + p2) over S)

F23. Gaussian Curvature μ ( p1 × p2 over S ) / σ ( p1 × p2 over S )

*
V refers to the segmented lesion volume. M refers to the margin of the lesion volume. SP refers to the minimum sphere including V. S refers to the 

surface of V. p1 and p2 refer to the first and second principal component of S. μ and σ indicate mean and standard deviation.
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Table 4

Performance of the classifier on selected feature sets and reconstructions

Classifier diagnostic performance (AUC) under LOOCV

Fixed feature sets
Reconstruction #

#34 #15 #30

Margin gray value variation (F4), Average radial gradient (F12), Total curvature (F21) 0.9 0.85 0.77

Average gradient direction (F10), Average radial gradient (F12), Radial gradient variation (F16), Total curvature (F21) 0.88 0.87 0.8

Radial gradient index (F13), Total curvature (F21) 0.87 0.85 0.82
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Table 5

Diagnostic performance comparison in AUC between the classifier and the radiologists

Performance Comparison (AUC) Difference in AUC

CADx Radiologists
AUCL – AUCR [95% CI] p-value

AUCL [95% CI] Reconstructions AUCR [95% CI]

0.94 [0.81, 0.98]

IIR1 0.78 [0.63, 0.90] 0.16 [0.03, 0.33] 0.034

IIR2 0.76 [0.62, 0.88] 0.18 [0.04, 0.34] 0.019

IIR3 0.77 [0.63, 0.89] 0.17 [0.04, 0.32] 0.016

FDK 0.77 [0.64, 0.89] 0.17 [0.04, 0.31] 0.019

*
Statistically significant (p-value < 0.0125).
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Table 6

Diagnostic performance comparison in AUC between the classifier and the radiologists over sensitivity 90 or 

higher.

Performance Comparison (AUC) over sensitivity 90 or higher Difference in AUC

CADx Radiologists
AUCL – AUCR [95% CI] p-value

AUCL [95% CI] Reconstructions AUCR [95% CI]

0.085[0.063, 0.094]

IIR1 0.003 [0, 0.015] 0.061 [0.04, 0.086] <0.0001*

IIR2 0.006 [0, 0.026] 0.069 [0.041, 0.089] <0.0001*

IIR3 0.009 [0.003, 0.024] 0.085 [0.063, 0.094] <0.0001*

FDK 0.004 [0, 0.031] 0.034 [0.013, 0.063] <0.0001*

*
Statistically significant (p-value < 0.0125).
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Table 7

Correlation in AUC between radiologists and CADx among bootstrap samples

Reconstructions Correlation Coefficient p-value

IIR #1 0.0725 0.022

IIR #2 0.0695 0.028

IIR #3 0.1167 0.0002*

FDK 0.1462 <0.0001*

*
Statistically significant (p-value < 0.0125).
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