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Abstract
Objectives—To determine whether menopausal hormone therapy (HT) affects regional brain
volumes, including hippocampal and frontal regions.

Methods—Brain MRI scans were obtained in a subset of 1403 women ages 71–89 years who
participated in the Women’s Health Initiative Memory Study (WHIMS). WHIMS was an ancillary
study to the Women’s Health Initiative, which consisted of two randomized, placebo-controlled
trials: 0.625 mg of conjugated equine estrogens (CEE) with or without 2.5 mg medroxyprogesterone
acetate (MPA) in one daily tablet. Scans were performed, on average, 3.0 years post-trial for the CEE
+MPA trial and 1.4 years post-trial for the CEE-Alone trial; average on-trial exposures were 4.0
years for CEE+MPA and 5.6 years for CEE-Alone. Total brain, ventricular, hippocampal and frontal
lobe volumes, adjusted for age, clinic site, estimated intracranial volume, and dementia risk factors,
were the main outcome variables.

Results—Compared to placebo, covariate-adjusted mean frontal lobe volume was 2.37 cc lower
among women assigned to HT (p=0.004), mean hippocampal volume was slightly (0.10 cc) lower
(p=0.05), and differences in total brain volume approached significance (p=0.07). Results were
similar for CEE+MPA and CEE-Alone therapy. HT-associated reductions in hippocampal volumes
were greatest in women with the lowest baseline Modified Mini-Mental State (3MS) scores (3MS ≤
90).
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Conclusions—CEE+MPA and CEE-Alone are associated with greater brain atrophy among
women aged 65 years and older; however, the adverse effects are most evident in women experiencing
cognitive deficits before initiating HT.

INTRODUCTION
The Women’s Health Initiative Memory Study (WHIMS) trials1–4 showed that conjugated
equine estrogens (CEE) alone or combined with medroxyprogesterone acetate (MPA) increase
dementia risk and adversely affect global cognition in women aged 65 years or older. In view
of these results and findings that hormone therapy (HT) increases the risk of clinical stroke in
older women5, 6, we examined potential mechanisms through magnetic resonance imaging
(MRI) scans of former WHIMS participants.

HT may influence clinical outcomes through vascular changes or effects on regional brain
volumes, including neuronal architecture and synaptic density. Increases in gray matter7, 8
and hippocampal volumes7, 9, 10, hippocampal blood flow11, and temporal glucose
metabolism12, 13 have been reported in observational studies of estrogen users. Effects of HT
on frontal function also were reported.14, 15 These generally small studies were conducted in
cohorts with average ages less than 70 years. However, the increased risk of stroke and
thromboembolic disease associated with HT in older women6, 16 may offset potential
neurocognitive benefits, resulting in a net increase in dementia risk.

We investigated whether global and regional brain volumes differ post-trial between older
women who had been randomly assigned to HT or placebo during the Women’s Health
Initiative (WHI) HT trials. We focused on whether total brain, hippocampal, and frontal lobe
volumes, measured by MRI, differed by treatment assignment. A companion manuscript17
reports findings on lesion volume, the primary outcome of the WHIMS-MRI study.

Analysis of global cognitive function in the WHIMS trials uncovered only one factor
moderating the adverse HT effects: baseline cognitive function at WHI enrollment. Women
with lower baseline scores on the modified Mini-Mental State (3MS) exam18 had significantly
greater on-trial HT-associated declines in cognitive function than women with higher scores.
4 Thus, a second goal is to determine whether a low 3MS score at baseline is associated with
a greater HT effect on global and regional brain volumes. Finally, we tested whether HT
benefits women with the lowest vascular lesion burden, as suggested by animal models19, by
comparing HT effects on brain volumes in women with the lowest ischemic lesion volume to
the remaining women.

Methods
WHIMS was an ancillary study to WHI, which consisted of parallel placebo-controlled
randomized clinical trials of 0.625 mg/day CEE therapy alone in women post-hysterectomy
and in combination with 2.5 mg/day MPA in women with a uterus. WHIMS design, eligibility
criteria, and recruitment procedures have been described.20 Participants were recruited from
39 of the 40 clinical centers participating in the WHI CEE-Alone or CEE+MPA clinical trials.
To be eligible for WHIMS, women were 65 to 79 years of age at enrollment, and free of
dementia.20 Written informed consent was obtained; Institutional Review Boards for
participating institutions and the NIH approved the protocols and consent forms.

The WHIMS CEE+MPA trial terminated earlier than planned (July, 2002)1, 3 due to an adverse
risk-to-benefit profile in the main WHI trial. Subsequently, the WHI, and ancillary WHIMS,
CEE-Alone trial also terminated early (February, 2004).2, 4
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WHIMS-MRI was designed to contrast MRI outcomes post-trial among WHIMS participants
who had been assigned to active treatment versus placebo. It was conducted in 14 of the 39
WHIMS clinical centers, selected based on interest, experience with multi-center MRI studies,
participation in the Women’s Health Initiative Study of Cognitive Aging, and availability of
necessary equipment. Participants in these centers were eligible for recruitment to WHIMS-
MRI, regardless of prior adherence to the WHI study protocol, on-trial use of study
medications, on-study measures of cognitive function, or willingness to continue post-trial
follow-up.21 Scans were performed, on average, 3.0 years post-trial for the CEE+MPA trial
and 1.4 years post-trial for the CEE-Alone trial; average on-trial exposures were 4.0 years for
CEE+MPA and 5.6 years for CEE-Alone. Exclusion criteria included the presence of
pacemakers and other implants or foreign bodies contra-indicated for MRI.

Baseline demographic, lifestyle, and clinical factors were collected via self-report and
standardized assessments. We included body mass index, as lower values may signal
underlying brain pathologies in older individuals,22 and education, as higher education may
identify individuals whose cognitive function and participation is less responsive to atrophy.
23 The 3MS 18 was administered by a centrally trained and certified technician. It measures
temporal and spatial orientation, immediate and delayed recall, executive function, naming,
verbal fluency, abstract reasoning, praxis, writing, and visuo-constructional abilities. Scores
range from 0 to 100 (higher score reflecting better cognitive functioning).

MRI protocol
MRI scans were conducted using a standardized protocol, developed by investigators at the
MRI Quality Control Center (MRIQCC) in the Department of Radiology, University of
Pennsylvania, Philadelphia. Additional detail and quality control procedures are provided in
Coker et al.17 MRI series were acquired with field of view = 22 and matrix = 256×256. They
included oblique axial spin density/T2-weighted spin echo (3200/0/30,120/3), FLAIR T2-
weighted spin echo (8000/2000/100/3), and oblique axial 3D T1-weighted gradient echo (flip
angle 30; 21/0/8/1.5) images from the vertex to skull base parallel to the anterior commissure-
posterior commissure (AC-PC) plane.

To quantify regional brain volumes, the T1-weighted volumetric MRI scans were first pre-
processed according to a standardized protocol24: 1) alignment to the AC-PC orientation; 2)
removal of extra-cranial material; 3) segmentation of brain parenchyma into gray matter (GM),
white matter (WM) and cerebrospinal fluid (CSF). Regional volumetric measurements of GM,
WM and CSF were subsequently obtained via a validated, automated computer-based template
warping method.25 This technique is based on a digital atlas labeled for brain lobes and
individual structures, including the hippocampus. Atlas definitions were transferred to MRI
scans via an image warping algorithm performing pattern matching of anatomically
corresponding brain regions. The volumes of GM, WM and CSF of each labeled brain region
were obtained by summing the number of respective voxels within each region. Volumes of
brain lesions and peri-ventricular abnormal WM were also measured separately via the same
procedure, using the three sets of images; total lesion volume was measured, as described in
the accompanying paper.17 Volumes of GM and WM reported in this paper refer to normal
brain tissue only. Intracranial volume (ICV) was estimated as the total cerebral hemispheric
volumes, including ventricular CSF and the CSF within the sulcal spaces.

Statistical methods
Characteristics of participants at the time of WHI enrollment were described and differences
among treatment groups were compared using chi-square tests. Differences in volumes of the
total brain, ventricles, hippocampus, and frontal lobe (pre-specified as secondary outcomes)
were contrasted among women grouped by WHI treatment assignment, both separately within
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each trial and pooled across trials, using analyses of covariance that adjusted for age at WHI
enrollment, time between enrollment and scanning, intracranial volume, clinical center site
(the WHIMS stratification factor), and other baseline dementia risk factors (education level,
ethnicity, smoking status, body mass index, hypertension status, prior cardiovascular disease,
diabetes, prior HT, and baseline 3MS score). Dementia risk factors were included to account
for the possibility that balance among the groups originally developed by randomization had
been diminished by attrition, non-consent, and MRI-related eligibility. Each volume measure
was analyzed separately. Because WHIMS-MRI was primarily designed to provide
mechanistic support for the findings of the WHIMS trials, no adjustment for comparisons of
its multiple endpoints was specified in its protocol. Associations between MRI outcomes and
dementia risk factors were assessed with analyses of covariance. To test the hypothesis that
the effect of HT on MRI volumes varied by baseline 3MS, we fitted an interaction term between
treatment effect and baseline 3MS scores as a continuous variable and presented fitted means
for women grouped by baseline scores. We also grouped women according to total ischemic
lesion volume, which includes infarcts and white matter signal abnormalities17, using the
cutpoint of < 2 cm3 (lowest quartile) versus ≥ 2 cm3 (upper three quartiles). Analyses of
covariance for total brain, ventricular, hippocampal and frontal volumes were repeated using
this grouping as a stratification factor to test the hypothesis that women with the lowest
ischemic volume and the healthiest brains might show a benefit of HT on regional volumes.

RESULTS
WHIMS-MRI contacted 2,345 WHIMS participants, of which 1,527 (65.1%) provided
consent. Of these, 1,424 (93.3%) received brain MRI scans, of which 1,403 (98.5%) met central
reading criteria for analysis: 883 women in the CEE+MPA trial and 520 women in the CEE-
Alone trial. The study flow diagram is shown in Figure 1. Compared to the 1610 WHIMS
participants at the 14 WHIMS-MRI sites who did not join the MRI study, WHIMS-MRI women
were younger (mean ages 77.5 vs. 78.3 years; p<0.001), had higher baseline 3MS scores (mean
96.1 vs. 95.1; p<0.01), and were fewer years post menopausal (mean 28.7 vs. 30.5 years;
p<0.001). However, participation rates did not differ among treatment assignments (p=0.10),
race (p=0.36), education (p=0.10), or body mass index (p=0.15).

Table 1 presents dementia risk factors within the WHIMS-MRI cohort by WHI treatment
assignment at the time of WHI enrollment. While there were differences with respect to many
risk factors between women enrolled in the CEE+MPA versus CEE-Alone trials, there were
no marked differences between women who had been randomly assigned to HT versus placebo.
The mean (SD) age at the time of the MRI was 78.5 (3.7) years, which occurred an average of
8.0 years after WHI enrollment. The overall deficit in 3MS performance in association with
HT observed on-trial was apparent in WHIMS-MRI women at their annual evaluation
preceding the MRI scan, treatment effect of 0.43 (0.21) units.

Mean (SE) ICV, an estimate of cranial size, was similar between HT and placebo groups:
1095.9 (5.06) cm3 vs 1087.1 cm3 for the CEE+MPA trial (p=0.19) and 1088.0 (5.96) cm3 vs
1086.4 (6.66) cm3 for the CEE-Alone trial (p=0.86). Table 2 presents mean volumes for total
brain (gray plus white matter), ventricles, hippocampus, and frontal lobe, after adjustment for
age at WHI enrollment, time between enrollment and scan, ICV, clinic site, and dementia risk
factors listed in Table 1. Mean hippocampal (p=0.05) and frontal lobe (p=0.004) volumes were
lower in HT-treated women, and mean overall brain volumes were slightly lower among
women who had been assigned to HT compared with placebo (p=0.07). These differences were
consistent between the CEE+MPA and CEE-Alone trials. Mean ventricular volumes were
unaffected by prior HT assignment.
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Associations that volumes had with dementia risk factors are described in (E-Table 1).
Consistent with expectation, mean adjusted brain volumes were lower among women with
higher age, lower BMI, uncontrolled hypertension, prior cardiovascular disease, or diabetes
(all p≤0.05). Higher educational level also was associated with lower brain volumes. Older
women had larger mean ventricular volumes and smaller mean hippocampal and frontal lobe
volumes. Lower BMI was associated with smaller hippocampal and frontal lobe volumes.

Table 3 presents mean differences in volumes between women assigned to HT versus placebo
therapy who are grouped according to 3MS score at WHI enrollment, with adjustment for age,
ICV, and clinic site, and additionally for all other dementia risk factors in Table 1. Decrements
in hippocampal volumes associated with HT therapy were greatest in women with the lowest
pre-treatment 3MS scores. Parallel analyses found that the association of HT assignment with
the brain volume measures did not appear to depend on age.

Women whose total ischemic lesion volume was below the approximate 25% percentile (2
cm3) were selected to represent those with relatively little evidence of vascular disease: 359
women, 26.1% of HT group and 25.1% of placebo group (p=0.65). Table 4 contrasts mean
HT-related differences in total brain, ventricular, hippocampal and frontal volumes among
women with lesion volumes lower than 2 cm3 with those with lesion volumes ≥ 2 cm3, with
adjustment for all covariates. The small differences between treatment groups were not
significant among women with with the lowest ischemic lesion volumes. However, for women
with ischemic lesion volumes ≥ 2 cm3, mean total brain (p < 0.05), hippocampal (p < 0.01)
and frontal (p < 0.01) volumes were lower among women who had been assigned to HT.

DISCUSSION
Through post-trial MRI scans of WHIMS participants, we found that randomization to CEE,
with or without MPA, was associated with small but significant mean decrements in frontal
(2.37±0.81 cc) and hippocampal (0.10±0.05 cc) volumes. Women randomized to HT continued
to express a persistent treatment-related deficit in 3MS test scores through the time of the MRI
assessment. Analysis of brain volume measures as a function of 3MS scores at WHIMS
baseline showed that HT-associated reductions in hippocampal volume were greatest in women
with the lowest cognitive function at WHI enrollment. These associations were similar for CEE
+MPA and CEE-Alone trials. In addition, HT-associated reductions in total brain hippocampal,
and frontal volumes were apparent in women with vascular lesion burden volumes of 2 cm3

or larger, but not lower than 2 cm3.

In contrast to several earlier reports of increased volumes of the hippocampus and other brain
regions in HT users7–10, we found no evidence of increased frontal, hippocampal, or total
brain volumes in women randomized to CEE+MPA or CEE-Alone compared with placebo.
Our findings are based on the largest sample of postmenopausal women studied to date.
However, our sample differs from most prior reports in that we studied older women, mean
age 77.5 years at the time of MRI assessment, who initiated HT at age 65 and older within the
framework of the WHI clinical trial, and who had discontinued study medications an average
of 3.0 (CEE+MPA trial) and 1.4 (CEE-Alone trial) years before the MRI. In contrast, studies
reporting increased volumes of the hippocampus and other gray matter regions in HT users7–
10 were based on younger women who were long-term users of HT, generally initiated close
to menopause, but not all studies have reported increased brain volumes in association with
HT in younger women and long-term HT users.26, 27 Moreover, hormone use prior to WHI
enrollment was not associated with differences in regional brain volumes in WHIMS-MRI.

The relationships between HT and hippocampal volumes varied significantly with baseline
cognitive function, with a trend to similar effects for total brain volume. HT-associated
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reductions in hippocampal volume were greater in women with low cognitive function (3MS
score < 90) at WHIMS baseline prior to WHI HT randomization. Reductions in total brain,
hippocampal and frontal volumes in women randomized to HT also were observed in the 75%
of women with vascular lesion burdens greater than 2 cm3, but not in women with lesion
volumes less than 2 cm3. These findings parallel the earlier WHIMS report that the degree to
which HT adversely affected cognitive function was greatest in women with the lowest baseline
3MS scores (p<0.001).4 It also is consistent with the short timeframe in which HT increased
risk of dementia (4 to 5 years on average)1, 2, which seems to be too rapid to be linked to the
primary initiation of a protracted disease process.

Greater vulnerability of postmenopausal women with low baseline cognitive function and
higher lesion volumes to reduced brain volumes in association with HT is consistent with other
evidence of the greater vulnerability of an already compromised brain28 and the potential that
estrogen may adversely affect cognition among women with existing pathology.19 These
findings also point to the growing body of evidence that vascular lesions and Alzheimer-type
pathology act additively to influence the risk for clinical dementia.29 As hippocampal volume
loss is a well-documented risk factor for dementia30 and may be a biomarker for AD-type
neuropathology31, our findings suggest a possible contributory mechanism to HT-associated
increase in dementia risk in women with low baseline cognitive function or existing
neuropathology. Further research is required to elucidate whether the contribution of HT to
lower total and regional brain volumes results from acceleration of Alzheimer-type pathology,
from vascular disease, or some other mechanism.

The mechanism underlying this possible neurotoxicity is unclear. Results from the companion
paper17 suggest that the effect is not conveyed primarily through an increase in ischemic
lesions. It may be that there is an optimal level of estrogen exposure beyond which HT is
neurotoxic.32 The optimum level may vary as a function of age or time since menopause as
estrogen receptors may lose sensitivity in the absence of hormone exposure.33 CEE contains
many equine estrogens that are not normally found in human blood and that have varying
affinities to estradiol binding sites and a range of biologic activities.34, 35 While many
constituents appear to have neuroprotective properties36, the role of others remains unclear.

While ours is the largest study conducted to date of possible HT effects on brain structure, a
number of issues limit the generality of our findings. We investigated the effects of particular
CEE-based hormone regimens in older postmenopausal women, aged 65 and older at initiation
of treatment, and do not address possible effects in younger postmenopausal women. However,
adverse effects of CEE+MPA on verbal memory (word list recall) were similar in older WHI
participants37 and younger menopausal women with cognitive complaints.38 Another
limitation is that MRI scans were conducted post-trial, on average 3.0 and 1.4 years post-trial
for CEE+MPA and CEE-Alone. As pre-treatment MRI scans were not obtained, we have no
information on brain volumes at baseline. However, the HT and placebo groups were well-
balanced with respect to many dementia risk factors. We repeated analyses in Table 2 using
propensity scores adjustment to account for potential differential enrollment39 which resulted
in essentially identical results.

The automated approach to image processing may be prone to image registration errors,
especially in some small regions. However, previous validation studies of this
methodology40 have confirmed its accuracy in measuring hippocampal and lobar volumes.
Moreover, total and regional brain volumes showed the predicted relationships with age and
medical co-morbidities such as uncontrolled hypertension and diabetes, providing an internal
validation of our approach. More refined analyses of smaller regions, including voxel-based
analysis, may identify other regions of vulnerability to HT which potentially cannot be resolved
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via the current methodology. Finally, our study is cross-sectional and longitudinal volumetric
studies may yield greater sensitivity to HT effects on brain.

Our findings emphasize the need for continued investigation of the joint effects of brain volume
changes and vascular changes to further understanding of HT effects on cognitive and brain
aging.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Diagram describing enrollment and follow-up of WHIMS-MRI participants.
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Table 2
Mean (SE) volumes by treatment assignment after adjustment for age, time since enrollment, intracranial volume, clinic
site, and other potential confounders listed in Table 1.

Total Brain Volume
Mean (SE)

Ventricle Volume
Mean (SE)

Hippocampal
Volume Mean (SE)

Frontal Lobe
Volume Mean (SE)

Pooled trials

 HT 798.37 (1.30) 37.62 (0.55) 5.69 (0.04) 282.72 (0.57)

 Placebo 801.69 (1.29) 37.15 (0.55) 5.79 (0.04) 285.09 (0.57)

 Difference −3.32 (1.84) 0.47 (0.78) −0.10 (0.05) −2.37 (0.81)

 p-value 0.07 0.55 0.05 0.004

E+P Trial

 CEE+MPA 800.92 (1.63) 37.84 (0.68) 5.72 (0.04) 283.61 (0.72)

 Placebo 803.11 (1.63) 36.53 (0.68) 5.83 (0.04) 285.46 (0.72)

 Difference −2.19 (2.32) 1.31 (0.97) −0.11 (0.06) −1.85 (1.03)

 p-value 0.35 0.18 0.09 0.07

E-Alone Trial

 CEE-Alone 794.53 (2.21) 37.53 (0.95) 5.63 (0.06) 281.47 (0.95)

 Placebo 799.03 (2.16) 37.85 (0.94) 5.75 (0.06) 284.25 (0.94)

 Difference −4.50 (3.13) −0.33 (1.36) −0.12 (0.09) −2.78 (1.36)

 p-value 0.15 0.81 0.18 0.04

Consistency of treatment effects of CEE+MPA vs CEE-Alone

Total brain volume: p=0.36

Ventricle volume: p=0.20

Hippocampal volume: p=0.99

Frontal lobe volume: p=0.45

Tissue volumes include gray and white matter but not CSF.
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Table 3
Fitted mean difference in volumes for women assigned to HT versus placebo, after adjustment for age, time since
enrollment, intracranial volume, clinic site, and other potential confounders listed in Table 1.

Region Baseline 3MS p-value*

<90 Mean (SE) 90–94 Mean (SE) 95–100 Mean (SE)

Total brain −16.93 (7.71) −7.40 (4.34) −1.41 (2.10) 0.07

Ventricles 3.19 (3.29) −0.69 (1.85) 0.52 (0.90) 0.77

Hippocampus −0.53 (0.21) −0.21 (0.12) −0.04 (0.06) 0.02

Frontal −7.62 (3.40) −2.59 (1.92) −1.96 (0.93) 0.43
*
p-values are based on interaction terms between treatment effect and baseline 3MS score as a continuous variable.
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Table 4
Mean (SE) volumes by treatment assignment for women grouped according to total abnormal tissue volumes: <2
cm3 or ≥2 cm3, after adjustment for age, time since enrollment, intracranial volume, clinic site, and other potential
confounders listed in Table 1

Total Brain Volume
Mean (SE)

Ventricle Volume
Mean (SE)

Hippocampal
Volume* Mean (SE)

Frontal Lobe
Volume Mean (SE)

Lesion Volume < 2
cm3

 HT 788.12 (2.41) 30.90 (0.93) 6.08 (0.07) 278.15 (1.05)

 Placebo 785.51 (2.43) 31.71 (0.94) 5.93 (0.07) 278.66 (1.06)

 Difference 2.62 (3.52) −0.81 (1.36) 0.15 (0.10) −0.51 (1.54)

 p-value p=0.41 p=0.55 p=0.13 p=0.74

Lesion Volume ≥ 2
cm3

 HT 802.27 (1.55) 39.78 (0.67) 5.57 (0.04) 284.29 (0.69)

 Placebo 806.93 (1.54) 39.13 (0.66) 5.73 (0.04) 287.31 (0.68)

 Difference −4.67 (2.20) 0.66 (0.95) −0.16 (0.06) −3.01 (0.98)

 p-value p=0.03 p=0.49 p=0.005 p=0.002
*
Significant HT

*
lesion volume interaction, p=0.01
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