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Summary

Next-generation sequencing (NGS) technologies have played a central role in the genetic 

revolution. These technologies, especially whole-exome sequencing, have become the primary tool 

of geneticists to identify the causative DNA variants in Mendelian disorders, including hereditary 

deafness. Current research estimates that 1% of all human genes have a function in hearing. To 

date, mutations in over 80 genes have been reported to cause nonsyndromic hearing loss (NSHL). 

Strikingly, more than a quarter of all known genes related to NSHL were discovered in the past 5 

years via NGS technologies. In this article, we review recent developments in the usage of NGS 

for hereditary deafness, with an emphasis on whole-exome sequencing.

1. Introduction

DNA sequencing has been one of the most important techniques in medical research and 

genetic diagnostics since chain termination sequencing was first described 38 years ago 

(Sanger et al., 1977). Subsequently, PCR was introduced by Mullis et al. (1986), broadening 

its applications. Automated Sanger sequencers based on capillary electrophoresis were an 

integral part of The Human Genome Project completed in 2003. The first human genome 

sequenced was the result of over 10 year’s effort at an estimated cost of $2.7 billion (Lander 

et al., 2001; McPherson et al., 2001; Sachidanandam et al., 2001). Automated Sanger 

sequencing, also called ‘first-generation DNA sequencing’, is the most widely used 

technology worldwide today for variant detection through sequencing. Although currently 

the gold standard for DNA sequencing, there are some limitations in using this method for 

high-throughput applications, including read length, runtime and per base cost (Rizzo & 

Buck, 2012). Fortunately, a high-throughput, powerful technology known as next-generation 

sequencing (NGS) (or massively parallel sequencing (MPS)) has been developed over the 

past 10 years. This revolutionary sequencing technique is capable of sequencing millions of 

small fragments covering the whole genome or large regions of interest, such as the entire 

coding portion of the genome (i.e. exome), at a reasonable cost and reduced runtime 

compared to Sanger sequencing (Yan et al., 2013 a; Rabbani et al., 2014). Elucidation of the 
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genetic basis of human diseases is vital for understanding the underlying pathology, making 

an early diagnosis, developing prevention and/or better treatment regimens, and improving 

genetic counselling (Gilissen et al., 2012). Although traditional laboratory approaches, 

including karyotyping and copy number variation (CNV) analysis, and computational 

methods, including linkage and association, have led to great insights into human diseases 

over the past few decades, there is still a substantial gap between disease phenotype and the 

underlying genetic involvements (Bamshad et al., 2011; Gilissen et al., 2011). Limiting 

elements of traditional gene-discovery strategies, such as the necessity of large families, and 

the existence of reduced penetrance, variable expressivity and locus heterogeneity have 

always been a problem for geneticists (Bamshad et al., 2011). The development of NGS, 

however, has made the identification of causative genes easier, even for small families and 

diseases with extensive locus heterogeneity (Duman & Tekin, 2012). Furthermore, NGS can 

also be used to analyse genomic functions through transcriptome, methylome and chromatin 

structure studies.

Hearing loss (HL) is the most common sensory deficit, affecting millions of people 

worldwide, with an incidence of 1/1000 newborns in the US. At least half of congenital 

deafness is due to genetic factors, the vast majority of which is monogenic. Autosomal 

recessive, autosomal dominant and X-linked inheritance are observed in 77, 22 and 1% of 

genetic cases, respectively (Morton, 1991). Approximately 70% of congenital deafness is 

nonsyndromic (nonsyndromic hearing loss; NSHL), while the remaining 30% is comprised 

of many different syndromes in which deafness is a feature (Shearer & Smith, 2012; Yan et 
al., 2013 a). Current research estimates that 1% of all human genes have a function in 

hearing (Teek et al., 2013). To date, mutations in over 80 genes, with more than 1000 

mutations, have been found to cause NSHL making hereditary hearing loss one of the most 

genetically heterogeneous traits (http://hereditaryhearingloss.org). Except for those 

recurrently reported in a few genes, such as GJB2 (MIM 121011) and SLC26A4 (MIM 

605646), most deafness mutations are extremely rare and are only seen in either a single or a 

very few families (Diaz-Horta et al., 2012).

Here, we review recent developments on the usage of NGS for hereditary HL, with an 

emphasis on whole-exome sequencing (WES). The extreme genetic heterogeneity of NSHL 

makes it the ideal disorder to use to demonstrate the full potential of NGS.

2. NGS platforms and techniques

While there are five commercially available NGS platforms in the marketplace: Roche/454 

FLX, the Illumina HiSeq Series, the Applied Biosystems (ABI) SOLiD Analyzer, the 

Polonator G.007 and the Helicos HeliScope, the first three platforms currently dominate the 

area (Yan et al., 2013 a). Although these platforms each have their own strengths and 

weaknesses originating from the technologies used, they all include three main stages: 

template preparation, sequencing/imaging and data analysis. Template preparation is the first 

step and determines the part of the genome to be sequenced, i.e. whole-genome sequencing 

(WGS), WES or targeted next-generation sequencing (Yan et al., 2013 a). The first platform 

introduced, Roche/454 GS FLX, uses pyrosequencing. When DNA polymerase incorporates 

a nucleotide into the growing DNA strand and ATP hydrolysis occurs, the pyrophosphate 
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release is recorded (Shearer et al., 2011). The Illumina platform, based on cyclic reversible 

termination (CRT) technology, is the most widely used NGS platform. In CRT, fluorescent 

labelled chain-terminating nucleotides are incorporated into the growing strand, caught and 

imaged by the sequencer, and then the fluorescent terminator is cleaved off the nucleotide 

(Ju et al., 2006; Shearer et al., 2011). The SOLiD platform uses sequence-by-ligation (SBL) 

technology. A fluorescently labelled probe hybridizes to the DNA template to be sequenced. 

The probe then is joined to the growing strand by DNA ligase, and then imaged by the 

sequencer (Shearer et al., 2011).

3. Why WES?

Nowadays, sequencing the whole genome is becoming available for wider usage; however, it 

was not practical until recently because of cost and the amount of data produced. To 

discover the genes causing Mendelian diseases, especially those having genetic 

heterogeneity, WES represents a relatively easy-to-use alternative method in the research 

area (Yan et al., 2013 a). While the coding parts of the human genome,i.e. exons of (most) 

genes or the exome, constitute only about 1% of the entire human genome, 85% of 

mutations known to cause Mendelian diseases are located in the coding region or in 

canonical splice sites (Choi et al., 2009). The targeted genomic enrichment required for 

WES has some challenges, such as incomplete knowledge about all truly protein-coding 

exons, variable efficiencies of capture probes used and targeting sequence issues (e.g. 

microRNAs, promoters, pseudogenes, repetitive elements and ultra-conserved elements) 

(Bamshad et al., 2011). Despite these limitations, exome sequencing has clearly proven to be 

a powerful tool for discovering the underlying genetic etiology of known or suspected 

Mendelian disorders. Moreover, by increasing read length and coverage, these problems 

seem relatively likely to be solved.

4. Data analysis

On average, WES identifies approximately 22 000 single nucleotide variants (SNVs) in a 

sample. More than 95% of these variants are already known polymorphisms. Strategies for 

identifying causal SNVs vary depending on a number of factors such as the putative mode of 

inheritance of the trait, the pedigree structure and the presence of locus heterogeneity in the 

trait (Bamshad et al., 2011). Analysis of the WES data begins with filtering out the variants 

against a set of polymorphisms that are frequent (> 0·5%) in public (e.g. dbSNP and 1000 

Genomes Project) or internal databases (e.g. GEM. App) (Gonzalez et al., 2013). This step 

narrows the number of variants to a manageable fraction (2% on average) of the SNVs 

identified in an individual. Variations in conserved regions, their functional class 

(frameshifts, nonsense, splice site) and missense are prioritized in descendant order. 

Candidate variants are also prioritized according to predicted effects on the protein function 

(e.g. SIFT (Kumar et al., 2009) and PolyPhen2 (Adzhubei et al., 2010)) and conservation 

scores (e.g. GERP (Davydov et al., 2010) and PHAST (Hubisz et al., 2011)) (Bamshad et 
al., 2011). Analysis of the segregation of candidate variants in the family is also an essential 

filter, even if mapping data are not available. Sequencing the two most distantly related 

individuals with the phenotype of interest can substantially reduce the genomic search space 
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for candidate causal alleles. Multiplex families and/or inbred families are more informative 

than simplex families for inherited causes (Bamshad et al., 2011) (Fig. 1).

5. Gene discovery in NSHL: the impact of WES

Mutations in POU3F4 (MIM 300039), which was mapped to the X-chromosome in 1988 

(Wallis et al., 1988), were identified in 1995 (Wallis et al., 1988; de Kok et al., 1995). It was 

the first gene discovered as a cause of NSHL. In 1992, the first autosomal dominant locus 

was mapped to chromosome 5q31 (Leon et al., 1992). Five years later, a mutation was 

identified in DIAPH1 at this locus (MIM 602121) (Leon et al.,1992; Lynch et al., 1997). The 

first locus for autosomal recessive NSHL was mapped to 13q12 (Guilford et al., 1994), 

which subsequently led to the identification of mutations in GJB2 (MIM 121011) (Kelsell et 

al., 1997). This gene is considered to be responsible for up to 50% of autosomal recessive 

NSHL in childhood in many parts of the world (Guilford et al., 1994; Popov et al., 2014). 

Prior to 2010, despite intense efforts by leading laboratories over nearly two decades, only 

60 deafness genes had been discovered. Since 2010, by employing NGS technologies, 21 

genes have been added to the NSHL gene list (http://hereditaryhearingloss.org) (Table 1 and 

Fig. 2).

In 2010, the first example of NGS used to identify a Mendelian disease gene was the 

application of exome sequencing to reveal a mutation in DHODH (MIM 126064) as the 

cause of Miller syndrome (MIM 263750) (Ng et al., 2010). The first gene associated with 

NSHL identified through NGS was TPRN (MIM 613354), which causes NSHL at the 

DFNB79 locus. This locus was mapped to 9q34·3 in a Pakistani family with autosomal 

recessive NSHL (ARNSHL). In that study, homozygosity mapping was combined with 

exome sequencing to identify the causative mutation (Rehman et al., 2010). This 

groundbreaking report was closely followed by another study that used WES as a means to 

identify a nonsense variant in a novel NSHL gene, GPSM2 (MIM 609245), in a 

consanguineous Palestinian family (Walsh et al., 2010). Using WES, mutations in GPSM2 
were later shown to cause Chudley-McCullough syndrome (MIM 604213), characterized by 

brain anomalies associated with deafness (Doherty et al., 2012). These initial reports were 

important examples of using WES in ARNSHL. Following these studies, in 2011, Zheng et 
al. (2011) were the first to use NGS to identify a mutation for autosomal dominant NSHL 

(ADNSHL), CEACAM16 (MIM 614591).

Analysis of the data obtained through WES is a complicated process, and filters must be 

applied to simplify the process. Identifying the responsible locus using homozygosity (a.k.a. 

autozygosity) mapping has been a very efficient way of narrowing the analytic field. With 

the decreasing cost of WES and understanding of the technology continually increasing, 

NGS without previously obtained mapping information is positioned to play a pivotal role in 

novel gene discovery. Behlouli et al. (2014) identified a homozygous stop codon mutation in 

EPS8 (MIM 600206), encoding an actin-binding protein of cochlear hair cell stereocilia, as 

the cause of ARNSHL in two affected siblings from a consanguineous family. Similarly, 

Diaz-Horta et al. (2014) reported another novel ARNSHL gene, FAM65B (MIM 611410), 

which encodes a membrane-associated protein of hair cell stereocilia. A homozygous splice 
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site mutation was identified in a large consanguineous family. In both these latter cases, 

WES was employed without prior studies identifying the loci.

6. Diagnostic usage of NGS in NSHL

In clinical diagnostics for HL, targeted genomic enrichment followed by NGS has been 

shown to be an efficient strategy. In this scenario, a group of genes or a specific region are 

sequenced. Brownstein et al. (2011), using this strategy, screened 246 genes known to be 

responsible for human or mouse deafness in 11 probands of Middle Eastern origin and 

identified causative mutations in six of them. Shearer et al. (2013) suggested that this 

strategy can provide comprehensive genetic testing on a large number of patients with 

presumed genetic deafness. In their study, they used a panel that included 89 known 

deafness genes and yielded a diagnostic rate of 31% in ADNSHL and 56% in ARNSHL 

(Shearer et al., 2013). In another study to investigate the diagnostic utility of targeted 

genomic enrichment followed by NGS in China, a panel designed to target 80 common 

deafness genes was used in 12 multiplex families with NSHL and causative variants were 

identified in four families (Wu et al., 2013). Finally, Vozzi et al. (2014) found the causative 

gene variants in four out of 12 families from Italy and Qatar and confirmed the usefulness of 

a targeted sequencing approach using a panel including 96 known genes related to HL.

On the other hand, WES has been shown to be effective in identifying causative mutations. 

In our recent WES study of 20 families prescreened for mutations in GJB2, 60% (12/20) of 

the cases had a mutation in a known gene; we were able to identify the causative mutation in 

the remaining eight families (Diaz-Horta et al., 2012). While targeted NGS panels provide 

higher coverage for individual genes, a significant lowering of costs, ease-of-analysis and 

ease-of-counselling, WES eliminates the need of continued development and validation of 

custom panels. Importantly, it offers a direct access to novel gene discovery in people who 

do not have mutations in known deafness genes (Diaz-Horta et al., 2012).

7. Conclusion

NGS is now an accepted clinical and research tool for the study of genetic deafness. It is a 

powerful approach for identifying patient-specific etiologies in genetically heterogeneous 

disorders and/or undiagnosed Mendelian phenotypes and has the potential to dramatically 

change the delivery of patient care. Hereditary HL presents as one of the most suitable 

disorders for the application of this ‘cutting-edge’ technology. NGS should be strongly 

considered, especially in cases where etiological diagnosis is inconclusive following 

established single gene testing, or when NGS presents as a faster and less expensive option 

for accurate genetic diagnosis.
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Fig. 1. 
Typical workflow for gene discovery using whole-exome sequencing. WES, whole-exome 

sequencing.
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Fig. 2. 
The impact of next-generation sequencing on gene discovery for nonsyndromic deafness. 

NGS, next-generation sequencing.
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Table 1

Nonsyndromic deafness genes discovered via whole-exome sequencing

Hearing loss group Locus Gene Sequencer Reference

ARNSHLa DFNB79 TPRN Roche 454 (Rehman et al., 2010)

DFNB82 GPSM2b Illumina GAIIx (Walsh et al, 2010)

DFNB98 TSPEAR Illumina HiSeq (Delmaghani et al., 2012)

DFNB93 CABP2 Illumina GAIIx (Schrauwen et al., 2012)

DFNB84 OTOGL Illumina HiSeq (Yariz et al., 2012)

DFNB89 KARS Illumina HiSeq (Santos-Cortez et al., 2013)

DFNB88 ELMOD3 Illumina HiSeq (Jaworek et al., 2013)

DFNB76 SYNE4 Illumina HiSeq (Horn et al., 2013)

DFNB49 BDP1 SOLiD4 (Girotto et al., 2013)

N/Ac EPS8 Illumina HiSeq (Behlouli et al., 2014)

DFNB101 GRXCR2 Illumina HiSeq (Imtiaz et al., 2014)

DFNB86d TBC1D24 Illumina HiSeq (Rehman et al., 2014)

N/Ac FAM65B Illumina HiSeq (Diaz-Horta et al., 2014)

DFNB44 ADCY1 Illumina HiSeq (Santos-Cortez et al., 2014)

DFNB99 TMEM132E Illumina HiSeq (Li et al., 2014)

ADNSHLa DFNA4 CEACAM16 SOLiD4 (Zheng et al., 2011)

DFNA56 TNC Illumina HiSeq (Zhao et al., 2013)

DFNA41 P2RX2 Illumina HiSeq (Yan et al., 2013 b)

DFNA65d TBC1D24 Illumina HiSeq (Azaiez et al., 2014; Zhang et al., 2014)

N/Ac OSBPL2 Illumina HiSeq (Xing et al., 2014)

XNSHLa DFNX4 SMPX Illumina GAIIx (Schraders et al., 2011; Huebner et al., 2011)

N/Ac COL4A6 Illumina HiSeq (Rost et al., 2014)

a
ADNSHL, autosomal dominant nonsyndromic hearing loss; ARNSHL, autosomal recessive nonsyndromic hearing loss; XNSHL, X-linked 

nonsyndromic hearing loss.

b
GPSM2 mutations have been subsequently shown to cause Chudley-McCullough syndrome (Doherty et al., 2012).

c
N/A, not available.

d
Mutations in the TBC1D24 gene are responsible for ARNSHL or ADNSHL.
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