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SUMMARY

The immersed boundary method is an approach to fluid-structure interaction that uses a 

Lagrangian description of the structural deformations, stresses, and forces along with an Eulerian 

description of the momentum, viscosity, and incompressibility of the fluid-structure system. The 

original immersed boundary methods described immersed elastic structures using systems of 

flexible fibers, and even now, most immersed boundary methods still require Lagrangian meshes 

that are finer than the Eulerian grid. This work introduces a coupling scheme for the immersed 

boundary method to link the Lagrangian and Eulerian variables that facilitates independent spatial 

discretizations for the structure and background grid. This approach employs a finite element 

discretization of the structure while retaining a finite difference scheme for the Eulerian variables. 

We apply this method to benchmark problems involving elastic, rigid, and actively contracting 

structures, including an idealized model of the left ventricle of the heart. Our tests include cases in 

which, for a fixed Eulerian grid spacing, coarser Lagrangian structural meshes yield discretization 

errors that are as much as several orders of magnitude smaller than errors obtained using finer 

structural meshes. The Lagrangian-Eulerian coupling approach developed in this work enables the 

effective use of these coarse structural meshes with the immersed boundary method. This work 

also contrasts two different weak forms of the equations, one of which is demonstrated to be more 

effective for the coarse structural discretizations facilitated by our coupling approach.
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1. INTRODUCTION

Since its introduction [1, 2], the immersed boundary (IB) method has been widely used to 

simulate biological fluid dynamics and other problems in which a structure is immersed in a 

fluid flow [3]. The IB formulation of such problems uses a Lagrangian description of the 

*Correspondence to: Phillips Hall, Campus Box 3250, University of North Carolina, Chapel Hill, NC 27599-3250, USA. 
boyceg@email.unc.edu. 

HHS Public Access
Author manuscript
Int J Numer Method Biomed Eng. Author manuscript; available in PMC 2018 December 01.

Published in final edited form as:
Int J Numer Method Biomed Eng. 2017 December ; 33(12): . doi:10.1002/cnm.2888.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



deformations, stresses, and forces of the structure and an Eulerian description of the 

momentum, viscosity, and incompressibility of the fluid-structure system. Lagrangian and 

Eulerian variables are coupled by integral transforms with delta function kernels. When the 

continuous equations are discretized, the Lagrangian equations are approximated on a 

curvilinear mesh, the Eulerian equations are approximated on a Cartesian grid, and the 

Lagrangian-Eulerian interaction equations are approximated by replacing the singular 

kernels by regularized delta functions. A major advantage of this approach is that it permits 

nonconforming discretizations of the fluid and the immersed structure. Specifically, the IB 

method does not require dynamically generated body-fitted meshes, a property that is 

especially useful for problems involving large structural deformations or displacements, or 

contact between structures.

In many applications of the IB method, the elasticity of the immersed structure is described 

by systems of fibers that resist extension, compression, or bending [3]. Such descriptions can 

be well suited for highly anisotropic materials commonly encountered in biological 

applications, and have facilitated significant work in biofluid dynamics [4–16], including 

three-dimensional simulations of cardiac fluid dynamics [17–28]. Fiber models are also 

convenient to use in practice because they permit an especially simple discretization as 

collections of points that are connected by springs or beams. The fiber-based approach to 

elasticity modeling also presents certain challenges. For instance, it can be difficult to 

incorporate realistic shear properties into spring network models [29]. Further, fiber models 

often must use extremely dense collections of Lagrangian points to avoid leaks if the models 

are subjected to very large deformations [14].

The fiber-based elasticity models often used with the conventional IB method are a special 

case of finite-deformation structural models in which the structural response depends only 

on strains in a single material direction (i.e., strains in the fiber direction). The mathematical 

framework of the IB method is not restricted to fiber-based material models, however, and 

several distinct extensions of this methodology have sought to use more general finite-

deformation structural mechanics models. For instance, Liu, Wang, Zhang, and co-workers 

developed the immersed finite element (IFE) method [30–34], which is a version of the IB 

method in which finite element (FE) approximations are used for both the Lagrangian and 

the Eulerian equations. Like the IB method, the IFE method couples Lagrangian and 

Eulerian variables by discretized integral transforms with regularized delta function kernels, 

although because the IFE method is designed to use unstructured discretizations of the 

Eulerian momentum equation, the IFE method uses different families of smoothed kernel 

functions than those typically used with the IB method. Devendran and Peskin proposed an 

energy functional-based version of the conventional IB method that obtains a nodal 

approximation to the elastic forces generated by an immersed hyperelastic material via an 

FE-type approximation to the deformation of the material [35, 36], and Boffi, Costanzo, 

Gastaldi, Heltai, and co-workers developed a fully variational IB method that avoids 

regularized delta functions altogether [37–39]. Other work led to the development of the 

immersed structural potential method, which uses a meshless method to describe the 

mechanics of hyperelastic structures immersed in fluid [40, 41].
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In this paper, we describe an alternative approach to using FE structural discretizations with 

the IB method that combines a Cartesian grid finite difference method for the incompressible 

Navier-Stokes equations with a nodal FE method for the structural mechanics. We consider 

both flexible structures with a hyperelastic material response, and also rigid immersed 

structures in which rigidity constraints are approximately imposed via a simple penalty 

method. The primary contribution of this work is its treatment of the equations of 

Lagrangian-Eulerian interaction. Conventionally, structural forces are spread directly from 

the nodes of the Lagrangian mesh using the regularized delta function, and velocities are 

interpolated directly from the Eulerian grid to the Lagrangian mesh nodes. This discrete 

Lagrangian-Eulerian coupling approach is adopted by the classical IB method as well as the 

IFE method [30–34], the energy-based method of Devendran and Peskin [35, 36], and the 

immersed structural potential method [40, 41]. A significant limitation of this approach is 

that if the physical spacing of the Lagrangian nodes is too large in comparison to the spacing 

of the background Eulerian grid, severe leaks will develop at fluid-structure interfaces. A 

widely used empirical rule that generally prevents such leaks is to require the Lagrangian 

mesh to be approximately twice as fine as the Eulerian grid [3], potentially requiring very 

dense structural meshes, especially for applications that involve large structural 

deformations.

The Lagrangian-Eulerian coupling scheme introduced in this paper overcomes this 

longstanding limitation of the classical IB method. Specifically, rather than spreading forces 

from the nodes of the Lagrangian mesh and interpolating velocities to those mesh nodes, we 

instead spread forces from and interpolate velocities to dynamically selected interaction 
points located within the Lagrangian structural elements. Here, the interaction points are 

constructed by quadrature rules defined on the structural elements. In contrast to both the 

conventional IB method and the IFE method, in our method, the nodes of the structural mesh 

act as control points that determine the positions of the interaction points, but the mesh 

nodes are not required to be locations of direct Lagrangian-Eulerian interaction.† Our 

approach thereby takes full advantage of the kinematic information provided by the FE 

description of the structural deformation, which yields approximations not only to the 

positions of the nodes of the Lagrangian mesh, but also to the positions of all material points 

of the structure.

A related IB method was introduced by Shankar et al. [42], who use a radial basis function 

(RBF) approach to describe the deforming geometry of two-dimensional models of 

circulating platelets, which are described as elliptical shells with linear elasticity models. In 

that approach, velocities are interpolated to data sites, which are analogous to the control 

points of the present FE scheme, but forces are spread from a fixed collection of sample sites 
that are distributed along the surface of the platelet. Unlike the RBF scheme, the interaction 

operators of the present FE approach satisfy a discrete adjoint property that implies that the 

method satisfies energy conservation during Lagrangian-Eulerian interaction. As 

demonstrated by Shankar et al., satisfying the discrete adjoint property is not required to 

obtain a convergent scheme, but this property is crucial for some applications, such as the 

†In fact, the structural mesh nodes can be both control points and interaction points if the quadrature rules that generate the interaction 
points include the mesh nodes as quadrature points, as in Gauss-Lobatto rules.
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design of efficient IB methods for rigid bodies [43, 44]. The importance of satisfying the 

adjoint property also seems to depend on the choice of regularized kernel functions. 

Lagrangian-Eulerian coupling schemes that do not satisfy the adjoint property seem to be 

prone to induce numerical instabilities when used with kernel functions developed by Peskin 

that satisfy moment conditions along with a “sum-of-squares” condition [3], like those used 

in this work. Shankar et al. consider a kernel function that may be less sensitive to these 

aspects of the discretization.

We apply the present IB method to benchmark fluid-structure interaction (FSI) problems 

involving elastic, rigid, and actively contracting structures, including an idealized model of 

the left ventricle of the heart [45]. For elastic structures, we consider two weak formulations 

of the equations of motion suitable for standard nodal (C0) FE methods for structural 

mechanics. One of these formulations, referred to herein as the unified weak form, is similar 

to those used by earlier IB-like methods [30–34,37–39]. This formulation uses a single 

volumetric force density to describe the mechanical response of the immersed structure. The 

other formulation, referred to herein as the partitioned weak form, uses both an internal 

volumetric force density, which is supported throughout the immersed elastic structure, and 

also a transmission surface force density, which is supported only on the surface of the 

immersed structure. In a numerical scheme, the unified formulation effectively regularizes 
the transmission surface force density by projecting it onto the volumetric FE shape 

functions. The partitioned formulation described herein, which does not appear to have been 

used in previous versions of the IB or IFE methods, avoids this additional regularization step 

by treating the surface and volume force densities separately. We present numerical tests that 

demonstrate that this partitioned scheme can yield accurate results even for Lagrangian 

meshes that are significantly coarser than the background Eulerian grid.

An important feature of our discretization approach is that obtaining a “watertight” structure 

simply requires using a dense enough collection of interaction points so as to prevent leaks. 

Moreover, because it is straightforward to use dynamic quadrature schemes that account for 

highly deformed elements, this approach can ensure that the structure remains watertight 

even in the presence of very large structural deformations. One benefit of our approach is 

that the Lagrangian resolution may be determined primarily by accuracy requirements for 

the structural model rather than by the requirements of the Lagrangian-Eulerian coupling 

scheme. Further, for problems involving immersed rigid structures, we demonstrate that 

using coarser Lagrangian meshes can reduce discretization errors by an order of magnitude 

compared to finer Lagrangian meshes for a given Eulerian grid spacing. The present method 

also yields improved volume conservation in comparison to the IFE method [33] for both 

coarse and fine structural meshes. To our knowledge, the present IB method is the first IFE-

type method to explicitly enable the effective use of such relatively coarse Lagrangian 

meshes.

2. CONTINUOUS FORMULATIONS

2.1. Immersed elastic bodies

In the IB formulation of problems involving an immersed elastic body, the momentum, 

velocity, and incompressibility of the coupled fluid-structure system are described in 
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Eulerian form, whereas the deformation and elastic response of the immersed structure are 

described in Lagrangian form. A similar formulation is used in the case of an immersed rigid 
structure; see sec. 2.2. Let x = (x1, x2, …) ∈ Ω ⊂ ℝd, d = 2 or 3, denote Cartesian physical 

coordinates, with Ω denoting the physical region that is occupied by the coupled fluid-

structure system; let X = (X1,X2, …) ∈ U ⊂ ℝd denote Lagrangian material coordinates that 

are attached to the structure, with U denoting the Lagrangian coordinate domain; and let 

χ(X, t) ∈ Ω denote the physical position of material point X at time t. The physical region 

occupied by the structure at time t is χ(U, t) ⊆ Ω, and the physical region occupied by the 

fluid at time t is Ω\χ(U, t). See fig. 1. We do not assume that the Lagrangian coordinates are 

the initial coordinates of the elastic structure, nor, more generally, do we require that U ⊆ Ω.

To use an Eulerian description of the fluid and a Lagrangian description of the elasticity of 

the immersed structure, it is necessary to describe the stress of the fluid-structure system in 

both Eulerian and Lagrangian forms. Let σ(x, t) denote the Cauchy stress tensor of the 

coupled fluid-structure system. In the present formulation, we assume that

(1)

in which σf(x, t) is the stress tensor of a viscous incompressible fluid and σe(x, t) is the 

stress tensor that describes the elastic response of the immersed structure. The fluid stress 

tensor is the usual one for a viscous incompressible fluid,

(2)

in which p(x, t) is the pressure, μ is the dynamic viscosity, and u(x, t) is the Eulerian velocity 

field.

To describe the elasticity of the structure with respect to the Lagrangian material coordinate 

system, we use the first Piola-Kirchhoff elastic stress tensor ℙe(X, t), which is defined in 

terms of σe via

(3)

in which the deformation gradient tensor associated with the deformation χ : (U, t) ↦ Ω is

(4)
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and J(X, t) = det( (X, t)) is the Jacobian determinant of the deformation gradient. Although 

ℙe is only defined within the solid region, it is convenient to extend σe(x, t) by zero in the 

fluid region.

For simplicity, we primarily restrict our attention to hyperelastic constitutive models, which 

may be characterized by a strain-energy functional We( ). For such constitutive laws,

(5)

Our formulation does not rely on the existence of such an energy functional, however, and it 

permits a material description defined only in terms of a stress response. For instance, 

separate work using the present methodology relies on this feature to treat active tension 

generation in dynamic models of muscle contraction [45–48].

2.1.1. Strong formulation—As shown by Boffi et al. [37], the strong form of the 

equations of motion is

(6)

(7)

(8)

(9)

in which ρ is the mass density of the coupled fluid-structure system, 

 is the material derivative, fe(x, t) is the Eulerian elastic 

force density, and  is the d-dimensional delta function.

Two different types of Lagrangian elastic force densities appear in these equations. The 

Lagrangian internal force density, ∇X · ℙe, is a volumetric force density that is distributed 

throughout the elastic body, whereas the Lagrangian transmission force density, −ℙeN, is a 

surface force density that is distributed along the fluid-solid interface. Eq. (8) generates a 

corresponding Eulerian description of the elastic forces from the volumetric and surface 

forces. Notice that fe(x, t) will generally have a δ-layer of force along the fluid-solid 
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interface. It is possible to show that fe is variationally equivalent to ∇ · σe (for instance, by 

integrating against a test function). Doing so, it is clear that fe is singular along the fluid-

solid interface wherever σen is discontinuous. Indeed, because elastic stresses are present 

only within the structure, σen is generally discontinuous at the fluid-structure interface. 

These discontinuities must be exactly balanced by discontinuities in σfn to ensure that the 

total stress, σ = σf + σe, has a continuous traction vector. If ℙe(X, t) is sufficiently smooth, 

the internal force acts as a regular (i.e., nonsingular) body force and may be treated with 

higher-order accuracy by the IB method [37, 49]. However, the transmission force always 

acts as a singular force layer, and although this force will induce jumps in the pressure and 

shear stress along ∂χ(U, t), such force layers may also be readily treated by the IB method.

An integral transform is also used in eq. (9) to determine the velocity of the immersed elastic 

structure from the material velocity field u(x, t). The defining property of δ(x) implies that 

eq. (9) is equivalent to

(10)

which may be interpreted as the no-slip and no-penetration conditions of a viscous 

incompressible fluid. Notice, however, that the no-slip and no-penetration conditions do not 

appear as constraints on the fluid motion. Instead, these conditions determine the motion of 

the immersed structure.

2.1.2. Weak formulations—To use standard nodal (C0) FE methods for nonlinear 

elasticity with the IB formulation, it is necessary to introduce a weak formulation of the 

equations of motion. Here we consider two different formulations that each employ a weak 

form of the Lagrangian equations. Because we use a finite difference scheme to approximate 

the incompressible Navier-Stokes equations, we do not develop a weak formulation for the 

Eulerian equations or the equations of Lagrangian-Eulerian interaction.

We begin with the partitioned weak formulation of the equations. To do so, we first define 

the internal elastic force density, F(X, t), that is variationally equivalent to ∇X · ℙe by 

requiring

(11)

to hold for arbitrary smooth V(X). Integrating by parts, it is clear that eq. (11) implies that

(12)
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for all smooth V(X). Assuming sufficient regularity, F = ∇X · ℙe pointwise. It is also 

convenient to define the transmission force density, T(X, t), pointwise along ∂U via

(13)

With F and T so defined, the equations of motion become

(14)

(15)

(16)

(17)

(18)

in which f (x, t) is the Eulerian internal elastic force density and t(x, t) is the Eulerian 

transmission elastic force density. It is important to notice that, under relatively mild 

regularity requirements, F and T are both smooth functions on their domains of definition, 

and f is piecewise smooth. Under these conditions, the only singular function in this 

formulation is t.

Alternative weak definitions of the Lagrangian elastic force density are possible. The 

formulation typically used with the IFE method defines a total elastic force per unit volume, 

G(X, t), by requiring

(19)

for arbitrary V(X). It is possible to see that G(X, t) accounts for the effects of both the 

internal and transmission force densities of the strong form of the equations. To do so, we 

again integrate by parts to find that
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(20)

for all V(X). Thus, G(X, t) can be a continuous function only if ℙeN≡0. In general, G is in 

fact a distribution that accounts for both the internal force per unit volume and the 

transmission force per unit area, in which the transmission force gives rise to a singular force 

layer concentrated along ∂U. It is possible to use eq. (19) with standard finite element 

methods; however, when doing so, the transmission surface force density is effectively 

projected (in an L2 sense) onto the volumetric basis functions. Specifically, the FE basis 

functions serve to regularize the transmission force.

Using this definition of G, we may state a unified weak formulation that includes only a 

single, unified body forcing term:

(21)

(22)

(23)

(24)

in which g(x, t) is the Eulerian total elastic force density. This weak form of the equations of 

motion is essentially the formulation employed in the IFE method [30–34], the energy-based 

formulation of Devendran and Peskin [35, 36], and the fully variational IB method [37–39]. 

To our knowledge, the partitioned formulation described here has not been widely used in 

previous work.

2.2. Immersed rigid structures

The equations of motion for a fixed, rigid structure are similar to those used in the case of an 

immersed elastic structure:

(25)
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(26)

(27)

(28)

in which here, F(X, t) is a Lagrange multiplier for the constraint . Thus, this fully 

constrained formulation takes the form of an extended saddle-point problem with two 

Lagrange multipliers, p(x, t) for the incompressibility constraint and F(X, t) for the rigidity 

constraint. Solving this system effectively requires specialized techniques that are the 

subject of active research [43, 44]. In this work, we consider instead a penalty formulation 

for an immersed stationary structure, in which the Lagrange multiplier force is approximated 

by

(29)

in which κ ≥ 0 is a stiffness penalty parameter and η ≥ 0 is a damping penalty parameter. As 

κ → ∞, χ(X, t) →χ(X, 0) and , so that this formulation is equivalent to the 

constrained formulation. In principle, it is not necessary to include the damping parameter η; 

however, we have found that using damping reduces numerical oscillations, especially at 

moderate-to-high Reynolds numbers.

3. SPATIAL DISCRETIZATION

For simplicity, we describe the numerical scheme in two spatial dimensions. The extension 

of the numerical scheme to the case d = 3 is straightforward.

3.1. Eulerian discretization

We use a staggered-grid finite difference scheme to discretize the incompressible Navier-

Stokes equations in space. Compared to collocated discretizations (i.e., purely cell- or node-

centered schemes), such Eulerian discretization approaches yield superior accuracy when 

used with the conventional IB method [50]. To simplify the exposition, assume that Ω is the 

unit square and is discretized using a regular N × N Cartesian grid with grid spacings 

. Let (i, j) label the individual Cartesian grid cells for integer values of i 
and j, 0 ≤ i, j < N. The components of the Eulerian velocity field u = (u1, u2) are 

approximated at the centers of the x1- and x2-edges of the Cartesian grid cells, i.e., at 
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positions  and , respectively. A staggered scheme 

is also used for the Eulerian body force f = (f1, f2). We use the notation 

, and  to denote the discrete values of u and f. The 

pressure p is approximated at the centers of the Cartesian grid cells, and its discrete values 

are denoted pi,j. See fig. 2.

Let ∇h · u≈∇ · u, ∇hp ≈∇p, and  respectively denote standard second-order 

accurate finite difference approximations to the divergence, gradient, and Laplace operators 

[51]. In this approach, ∇h · u is defined at cell centers, whereas both ∇hp and  are 

defined at cell edges. We use a staggered-grid version [50, 51] of the xsPPM7 variant [52] of 

the piecewise parabolic method (PPM) [53] to discretize the nonlinear advection terms. 

Where needed, physical boundary conditions are discretized and imposed along ∂Ω as 

described by Griffith [51]. In some numerical examples, we use a locally refined Eulerian 

discretization that employs Cartesian grid adaptive mesh refinement (AMR) following the 

discretization approach described by Griffith [26].

3.1.1. Eulerian inner products—If u and v are discrete staggered-grid vector fields, we 

denote by [u] and [v] the corresponding vectors of grid values. If Ω has periodic boundaries, 

we define the discrete L2 inner product on Ω by

(30)

Minor adjustments to this definition are required when non-periodic physical boundary 

conditions are used [51] or near coarse-fine interfaces in locally refined grids [26].

3.2. Lagrangian discretization

Let h = ∪eUe be a triangulation of U composed of elements Ue, in which e indexes the 

elements of the mesh. We denote by  the nodes of the mesh, and by 

nodal (Lagrangian) FE basis functions. The time-dependent physical positions of the nodes 

of the Lagrangian mesh are , and, using the FE basis functions, we define an 

approximation to χ(X, t) by

(31)

An approximation to the deformation gradient is given by
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(32)

3.2.1. Immersed elastic structures—SFor an immersed elastic structure, we use the FE 

approximation to the deformation gradient tensor h(X, t) to compute  and Th(X, t), 
which are approximations to the first Piola-Kirchhoff stress tensor and the Lagrangian 

transmission force density, respectively. ‡ We approximate the Lagrangian force densities 

F(X, t) and G(X, t) by

(33)

(34)

The nodal values  and  must be determined from  via discretizations 

of eq. (11) and eq. (19). We use a standard Galerkin approach, so that after rearranging 

terms, eq. (11) becomes

(35)

for each m = 1, …,M. Similarly, eq. (19) becomes

(36)

for each m = 1, …,M. In practice, these integrals are approximated via Gaussian quadrature.

‡This flow also possesses well-known corner singularities that reduce the convergence rate of the incompressible flow solver. 
Although it is possible to devise numerical schemes that accurately treat the corner singularities present in the classical lid-driven 
cavity flow [65], we do not employ such a method in this work.
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3.2.2. Immersed rigid structures—For a fixed, rigid immersed structure, we directly 

evaluate the discretized Lagrangian penalty force Fh(X, t) via

(37)

Because χh(X, t) and Fh(X, t) are defined in terms of the same basis functions, Fh(X, t) is 

given by

(38)

in which

(39)

3.2.3. Lagrangian inner products—Letting [F] denote the vector of nodal coefficients 

of Fh, we write eq. (35) as

(40)

in which [ℳ] is the mass matrix that has entries of the form ∫U ϕl(X) ϕm(X) dX. Eq. (36) 

may be rewritten similarly. The mass matrix [ℳ] can also be used to evaluate the L2 inner 

product of Lagrangian functions on U. In particular, for any Uh(X, t) = ΣlUl(t) ϕl(X) and 

Vh(X, t) = ΣlVl(t) ϕl(s),

(41)

Different choices of mass matrices (e.g., lumped mass matrices) induce different discrete 

inner products on U.

To simplify notation, in the remainder of this paper we drop the subscript “h” from our 

numerical approximations to the Lagrangian variables.

3.3. Lagrangian-Eulerian interaction

We next describe Lagrangian-Eulerian coupling operators that take advantage of the 

kinematic information encoded in the FE approximation to the deformation of the immersed 
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structure. As in the conventional IB method, we approximate the singular delta function 

kernel appearing in the Lagrangian-Eulerian interaction equations by a smoothed d-

dimensional Dirac delta function δh(x) that is of the tensor-product form 

. Except where otherwise noted, in this work, we take the one-

dimensional smoothed delta function δh(x) to be the four-point delta function of Peskin [3].

To compute an approximation to f = (f1, f2) on the Cartesian grid, we construct for each 

element Ue ∈ h a Gaussian quadrature rule with Ne quadrature points  and 

weights , Q = 1, …,Ne. We then compute f1 and f2 on the edges of the Cartesian grid cells 

via

(42)

(43)

with F(X, t) = (F1(X, t), F2(X, t)). We use the notation

(44)

in which  (χ(·, t)) is the force-prolongation operator implicitly defined by eqs. (42) and 

(43). Notice that

(45)

(46)

in which ΔX is proportional to the Lagrangian mesh spacing and O(ΔXq) corresponds to 

quadrature error that may be controlled by the choice of numerical quadrature rules.

A corresponding velocity-restriction operator  (χ(·, t)) determines the motion of the nodes 

of the Lagrangian mesh from the Cartesian grid velocity field via
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(47)

There are many possible ways to construct ; however, we have found that an effective 

approach is to require  to satisfy the discrete power identity,

(48)

which implies that the semi-discrete unified formulation conserves energy during 

Lagrangian-Eulerian interaction [3]. This power identity can be rewritten as

(49)

i.e.,  = *.

To construct  explicitly, it is convenient to use matrix notation. Identifying [ ] and [ ] 

with the matrix representations of  and , we have that

(50)

(51)

Eq. (49) then becomes

(52)

If eq. (52) is to hold for any [F] and [u], then [ ] must be defined via

(53)
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In our time-stepping scheme, which is stated below in appendix A, notice that we need only 

to apply [ ] to discrete velocity fields defined on the Cartesian grid. Specifically, we do not 

need to compute [ ] explicitly.

It is straightforward to show that this construction of  implies that  is an 

approximation to the L2 projection of the Lagrangian vector field 

, with

(54)

(55)

Because the components of UIB(X, t) are not generally linear combinations of the FE basis 

functions, generally .

For the semi-discretized partitioned formulation, f is computed on the Cartesian grid via f = 

 F. The Eulerian transmission force density t is computed in a similar manner, but in this 

case, the numerical integration occurs only over those element boundaries that coincide with 

∂U. We use the notation t = ∂UT to denote this operation. We use the same regularized 

delta function δh(x) to construct both  and ∂U. For simplicity, we use the same velocity-

restriction operator for both formulations. This choice ensures that the two formulations 

coincide whenever T≡ 0.

The Lagrangian-Eulerian interaction operators introduced in this work are different from 

analogous operators generally used in standard IB methods. Standard IB methods and 

schemes such as the IFE method use regularized delta functions to apply nodal forces 

directly to the Cartesian grid and to interpolate Cartesian grid velocities directly to the 

Lagrangian nodes [3]. In such schemes, f (x, t) would be approximated on the Eulerian grid 

by expressions similar to

(56)

(57)

Griffith and Luo Page 16

Int J Numer Method Biomed Eng. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in which fIB denotes the Eulerian force determined by the standard IB force-spreading 

operator and  denotes the volume associated with Lagrangian node l. In this approach, 

each nodal force Fl is applied only to Cartesian grid cells within the support of δh(x−χl), and 

the Lagrangian mesh must therefore be finer than the Cartesian grid to avoid leaks [3]. The 

corresponding approach to velocity restriction used by such methods would be to set 

 .

Our Lagrangian-Eulerian interaction operators communicate between a collection of 

Lagrangian control points (the nodes of the structural mesh) and the Cartesian grid via a 

collection of interaction points (the Lagrangian quadrature points). The force-prolongation 

operator can be seen as the composition of two operations: first, the Lagrangian force 

density is evaluated at the interaction points in terms of data defined at the control points; 

then, the standard IB delta function δh(x) spreads volume- or area-weighted force densities 

from the interaction points to the Cartesian grid. See fig. 3. Velocity restriction is similar: 

First, the Cartesian velocity field is interpolated to the interaction points using δh(x); then, 

these velocities are accumulated to form the right-hand-side of a system of equations that 

determines  at the control points. Our approach is similar to methods used in RBF-based 

IB methods [42].

In general, it is necessary that the same interaction points are used in the discrete force-

spreading and velocity-interpolation operators if those operators are to satisfy a discrete 

adjoint property. It is possible to construct an interpolation operator that uses the control 

points as the interaction points, but then satisfying the discrete adjoint property requires that 

the control points are also used as the interaction points in the spreading operator.

Our numerical tests indicate that in our scheme, the Lagrangian structure appears watertight 

to the fluid so long as the net of interaction points is sufficiently dense. Denser nets of 

interaction points can be obtained by increasing the order of the quadrature rule, and this 

may be done in an adaptive manner as the simulation progresses. In our numerical tests, we 

use dynamically adapted Gaussian quadrature rules to construct  and  that provide, on 

average, at least a 3 × 3 net of quadrature points per Cartesian grid cell.

4. IMPLEMENTATION

This version of the IB method is implemented in the open-source IBAMR software [54], 

which is a C++ framework for developing FSI models that use the IB method. IBAMR 

provides support for distributed-memory parallelism and adaptive mesh refinement (AMR). 

IBAMR relies upon the SAMRAI [55–57], PETSc [58–60], hypre [61, 62], and libMesh 

[63, 64] libraries for much of its functionality.

5. NUMERICAL RESULTS

5.1. Thick elliptical shell

This section presents results from tests that use a thick elastic shell [23, 37, 49] to 

demonstrate the convergence properties of our method for different types of material models.
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In these computations, the physical domain is Ω = [0, 1] × [0, 1] with periodic boundary 

conditions, and, following Boffi et al. [37], the Lagrangian coordinate domain U is defined 

using curvilinear coordinates s = (s1, s2) ∈ U instead of reference coordinates, with U = [0, 
2πR] × [0, w] for R = 0.25 and w = 0.0625, and with periodic boundary conditions in the s1 

direction. The coordinate mapping χ : (U, t) ↦ Ω is given at time t = 0 by

(58)

For γ = 0, the initial configuration of the shell is a circular annulus with inner radius R and 

thickness w, which corresponds to an equilibrium configuration of the structure. For γ ≠ 0, 

the initial configuration is an elliptical annulus that is out of equilibrium. In our tests, we use 

γ = 0 for static problems and γ = 0.15 for dynamic problems. In either case, we discretize Ω 
using an N-by-N Cartesian grid. The Lagrangian discretization is constructed so that the 

nodes of the Lagrangian mesh are physically separated by a distance of approximately 

MfacΔx. Specifically, we discretize U using a 28M-by-M mesh of bilinear (Q1) elements, 

with . Representative numerical results using N = 128 are shown in figs. 4 and 7.

Although this is a relatively simple benchmark problem, the static version (γ = 0) is one of 

the only test problems available for the IB method that we know of that permits a simple 

analytic solution. Moreover, because certain choices of ℙe allow the IB method to attain 

higher-order convergence rates, this test case allows us to verify that our implementation 

attains its designed order of accuracy.

5.1.1. Anisotropic shell—We first consider an idealized anisotropic material model 

defined in terms of

(59)

so that

(60)

This model corresponds to an idealized elastic material composed of a continuous family of 

extension-resistant fibers that wrap the thick shell. Because U is periodic in the s1 direction, 

ℙeN≡ 0 along ∂U. If we view the structure as a fiber-reinforced material, none of the fibers 

terminate along the boundary of the structure. Because the transmission force vanishes in 

this case, the unified and partitioned weak formulations are identical.
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Setting γ = 0, so that the structure is in equilibrium, and requiring ∫Ωp(x, t) dx = 0, it can be 

shown [37] that

(61)

with r = ||x− (0.5, 0.5)|| and . We set ρ = 1, μ = 1, and μe = 1, and we 

consider the time interval 0 ≤ t ≤ 3. fig. 5 summarizes the error data at time t = 3 for N = 64, 

128, 256, 512, and 1024, using Mfac = 1, 2, and 4, with Δt = 0.25Δx. Second-order 

convergence rates are observed in the L1, L2, and L∞ norms for the velocity field. Second-

order convergence rates are also observed for the pressure in the L1 norm; however, because 

the pressure field is C0 but not C1, only first-order convergence rates are observed for the 

pressure in the L∞ norm, and intermediate convergence rates (approximately order 1.5) are 

observed in the L2 norm.

We also consider the case in which γ = 0.15, so that the initial configuration of the shell is 

not in equilibrium. We set ρ = 1, μ = 0.01, and μe = 1, yielding a Reynolds number of 

approximately 50. We consider the time interval 0 ≤ t ≤ 0.75, which corresponds to 

approximately one damped oscillation of the shell. Because an exact solution is not available 

in this case, we use a Richardson extrapolation approach, as described in detail in previous 

work [49]. fig. 6 summarizes the error data at time t = 0.75 for N = 64, 128, 256, and 512 

and Mfac = 1, 2, and 4, with Δt = 0.25Δx. Essentially second-order convergence rates are 

observed in the L1, L2, and L∞ norms for the velocity field. The pressure converges at a 

second-order rate in the L1 norm, at a first-order rate in the L∞ norm, and at an intermediate 

rate (approximately 1.5) in the L2 norm. Convergence rates for the deformation are 

somewhat less regular, with nearly second-order convergence rates being observed in the L1 

and L2 norms and between first- and second-order convergence rates observed in the L∞ 

norm. The robustness of the convergence rate in the deformation can be improved by using 

higher-order structural elements. Because the overall accuracy of the discretization is also 

limited by the Eulerian discretization and the form of the regularized kernel function, 

however, the use of higher-order elements does not in itself increase the overall order of 

accuracy of the method.

Notice that in both the static and dynamic test cases, virtually identical errors are attained for 

all of the values of Mfac considered. This indicates that for these tests, the method is able to 

use relatively coarse structural meshes without appreciable loss in accuracy. In particular, 

these results suggest that the scheme does not allow leaks at fluid-structure interfaces, even 

for Lagrangian meshes that are quite coarse compared to the Eulerian grid.

5.1.2. Orthotropic shell—The second case that we consider uses a neo-Hookean material 

model,
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(62)

with ℂ = T  and I1(ℂ) = tr(ℂ), so that

(63)

Because of the form of the mapping from curvilinear coordinates to initial coordinates, this 

material behaves as an orthotropic fiber-reinforced solid rather than as an isotropic material. 

One way of viewing the elastic response is that the body is composed of two continuous 

families of fibers. The first family of fibers wraps the elliptical shell circumferentially, and 

the second family is composed of radial fibers that are orthogonal to the circumferential 

fibers. Because one family of fibers terminates along the fluid-structure interfaces, there are 

singular force layers along ∂χ(U, t) that must be balanced by discontinuities in the pressure 

and viscous stress. Therefore, in this case the discretized unified and partitioned 

formulations yield different results.

Setting γ = 0, so that the structure is in equilibrium, and requiring ∫Ωp(x, t) dx = 0, it can be 

shown [37] that

(64)

with r = ||x− (0.5, 0.5)|| and . We set ρ = 1, μ = 1, and μe = 1, 

and we consider the time interval 0 ≤ t ≤ 3. fig. 8 summarizes the error data at time t = 3 for 

N = 64, 128, 256, 512, and 1024, using Mfac = 1, 2, and 4, with Δt = 0.25Δx. First-order 

convergence rates are observed for u in all norms. First-order convergence rates are also 

observed for p in the L1 norm. Because p possesses discontinuities at fluid-structure 

interfaces for this problem, however, the present method yields convergence rates of 0.5 in 

the L2 norm and does not converge in the L∞ norm.

We also consider the case in which γ = 0.15, so that the initial configuration of the shell is 

not in equilibrium. We set ρ = 1, μ = 0.01, and μe = 1, yielding a Reynolds number of 

approximately 100. We consider the time interval 0 ≤ t ≤ 1.25, which corresponds to 

approximately one damped oscillation of the shell. Again, an exact solution is not available, 

and so convergence rates are estimated using Richardson extrapolation [49]. fig. 9 

summarize the error data at time t = 0.75 for N = 64, 128, 256, and 512 and Mfac = 1 and 4, 

with Δt = 0.25Δx. Essentially first-order convergence rates are observed for u and χ in all 

norms, whereas p exhibits first-order convergence in only the L1 norm.
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For this problem, we find that the unified and partitioned formulations yield similar accuracy 

in most cases for u and χ. By contrast, the partitioned formulation offers significantly better 

accuracy for the pressure for relatively coarse Lagrangian meshes. This property appears 

also to result in improvements in volume conservation; see sec. 5.2.

5.2. Soft elastic disc in lid driven cavity

This section presents results from tests that use a soft elastic structure in a lid-driven cavity 

flow to demonstrate the volume-conservation properties of our method.

In these computations, the physical domain is Ω = [0, 1] × [0, 1], and the immersed structure 

is a disc of radius 0.2 that is initially centered about x = (0.6, 0.5). The boundary conditions 

imposed along ∂Ω are u ≡ 0 on the left (x1 = 0), right (x1 = 1), and bottom (x2 = 0) 

boundaries of Ω, and u ≡ (1, 0) on the top (x2 = 1) boundary of Ω. We use an isotropic neo-

Hookean model,

(65)

and we consider both p0 = 0 and p0 = μe. Because generally ℙeN ≢ 0, the solution has 

discontinuities in the pressure and viscous stress at fluid-structure interfaces. In such cases, 

we expect the IB method to yield no better than first-order convergence rates.‡ The flow 

induced by the driven lid brings the structure nearly into contact with the moving upper 

boundary of the domain; see fig. 10. This near contact is handled automatically by the IB 

formulation using a version of a modified kernel function approach introduced by Griffith et 

al. [24] and enhanced by Kallemov et al. [43]. No additional specialized methods are 

required by the present scheme to handle this case.

As in previous studies of this test case [33,66], we set μ = 0.01 and ρ = 1. We consider μe = 

0.2, which is a relatively “soft” case. The initial velocity is u ≡ 0, and the reference 

coordinates X are taken to be the initial coordinates, so that χ(X, 0) ≡ X. The physical 

domain is discretized using an N × N Cartesian grid. The Lagrangian coordinate domain is 

discretized using an unstructured mesh of quadratic triangular (P2) elements constructed so 

that the elements are approximately a factor of Mfac coarser than the background Eulerian 

grid, so that in the reference configuration, the nodes of the Lagrangian mesh are physically 

separated by a distance of approximately MfacΔx. The time step size is Δt = 0.125Δx. We 

consider the time interval 0 ≤ t ≤ 10, during which the disc is subjected to slightly more than 

one rotation within the cavity. The structure becomes entrained in the shearing flow along 

the cavity lid from t ≈ 4 until t ≈ 6, and during this time is subjected to very large 

deformations. fig. 11 shows the percent change in disc volume for different values of N and 

Mfac. With p0 = 0, the maximum volume change yielded by the unified formulation is 

approximately 2.3% for N = 64 and Mfac = 4, 0.4% for N = 64 and Mfac = 2, and 0.2% for N 
= 64 and Mfac = 1. The split formulation yields substantially improved accuracy: the 

maximum volume change is approximately 0.12% for N = 64 and Mfac = 4, 0.2% for N = 64 

and Mfac = 2, and 0.15% for N = 64 and Mfac = 1. Setting p0 = μe improves the accuracy of 

the unified formulation substantially, especially at coarser relative mesh spacings, whereas it 

Griffith and Luo Page 21

Int J Numer Method Biomed Eng. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



results in slightly poorer volume conservation for the split formulation. With p0 = μe, the 

maximum volume change is less than 0.4% in all cases considered. At smaller values of 

Mfac, there is essentially no difference in the volume changes produced by the unified and 

partitioned formulations. In all cases, the maximum volume change converges to zero at a 

first-order rate.

In general, the partitioned formulation appears to yield superior volume conservation for this 

problem, especially at relatively coarse Lagrangian mesh spacings. Moreover, the volume-

conservation properties of the partitioned scheme seem to be relatively insensitive to the 

relative coarseness of the Lagrangian mesh. Using either formulation, volume errors 

converge to zero at essentially a first-order rate. These results compare very favorably to 

those obtained by the IFE method, which, even for relatively fine Lagrangian meshes, can 

yield volume losses of up to 20% when applied to the same test without using a volume-

conservation algorithm. A modification of the IFE method to improve its volume 

conservation still yields volume losses of approximately 2.5% for this test [33].

5.3. Flow past a cylinder

This section presents results from tests using the widely used benchmark of viscous flow 

past a stationary circular cylinder. In these computations, the physical domain is Ω = [−15, 

45]× [−30, 30], and the immersed structure is a thin circular interface of radius 0.5 centered 

about x = (0, 0). This domain size and cylinder placement corresponds to ‘Case C’ 

considered by Taira and Colonius [67]. Along the inflow boundary (x1 = −15), we set a 

uniform inflow velocity, u ≡ (1, 0). Along the outflow boundary (x1 = 45), we set the normal 

traction and tangential velocity to zero, whereas along the top (x2 = 30) and bottom (x2 = 

−30) boundaries, we set the normal velocity and tangential traction to zero. The boundary 

condition treatment is the same as that described by Griffith [51]. We set ρ = 1 and μ = 

0.005. Using the inflow velocity as the characteristic velocity u∞ and the cylinder diameter 

d as the characteristic length, the Reynolds number is . The computational 

domain is discretized using an adaptively refined Cartesian grid with six nested grid levels 

and a refinement ratio of two between levels. The Cartesian grid spacing on the finest grid 

level is Δxfinest = 2−5Δxcoarsest, with . The cylinder is discretized using a mesh 

of one-dimensional quadratic (P2) elements with a node spacing of approximately 

MfacΔxfinest. The time step size is Δt = 0.1Δxfinest, yielding a maximum CFL number of 

approximately 0.1–0.2. Rigidity constraints are approximately imposed using tether forces 

as in eq. (29). For each grid spacing considered, we use approximately the largest stable 

values of the penalty parameters κ and η as permitted by the time step size. These values are 

empirically determined by a simple optimization procedure. Representative results are 

shown in fig. 12.

Table I compares results obtained using the present method with the standard four-point 

kernel [3], N = 128, and Mfac = 2 with corresponding experimental and computational 

results from prior studies. We compute the lift coefficient, , drag 

coefficient, , and Strouhal number, St = fsd/u∞, in which F = (Fx, Fy) is 

the net force on the cylinder and fs is the shedding frequency. The present results are seen to 

be in excellent quantitative agreement with these earlier results.
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fig. 13 shows the lift and drag coefficients as functions of time for N = 32, 64, and 128 and 

for Mfac = 1, 2, and 4 using the four-point regularized kernel function [3]. Similar results are 

shown in fig. 14 for the similar three-point kernel [71], whereas fig. 15 shows results for a 

recently developed six-point kernel with higher continuity order [72]. By construction, the 

structural meshes obtained for a fixed value of N are nested versions of each other (i.e. they 

can be viewed as obtained via Lagrangian mesh refinement). Under simultaneous 

Lagrangian and Eulerian grid refinement, the scheme converges to the same dynamics for all 

values of Mfac. For the four- and six-point kernels, however, the best accuracy is obtained for 

larger values of Mfac. In particular, by using relatively coarser structural meshes, the scheme 

yields more accurate forces (CL and CD) and vortex shedding dynamics (characterized by, 

e.g., St). In fact, for the coarsest Eulerian discretization considered (N = 32), the six-point 

kernel yields erratic results for the finest structural discretization (Mfac = 1) that do not occur 

for the coarser structural discretizations (Mfac = 2 and 4). In contrast, with the three-point 

kernel, comparable results are obtained for all values of Mfac considered here. Although not 

shown here, results obtained using a two-point piecewise-linear kernel are similar to those 

obtained using the three-point kernel.

A striking feature of these results is that the use of Lagrangian mesh refinement alone 

generally lowers the accuracy of the computation for a fixed Eulerian grid. A complete 

theoretical explanation for this behavior is lacking at present.

5.4. Idealized model of left ventricular mechanics

To demonstrate the capabilities of the methodology to treat more complex geometries and 

structural models, this section briefly presents results from tests using an idealized model of 

the left ventricle of the heart, as used in a previous benchmarking study of cardiac 

mechanics codes by Land et al. [45].

For these tests, the undeformed geometry of the idealized left ventricle is described as a 

truncated ellipsoid. Using parametric coordinates (t, u, v), the ventricular geometry is 

defined by

(66)

with length measured in millimeters. The endocardial surface is defined by t = 0, 

, and v ∈ [−π, π], and the epicardial surface is defined by t = 1, u ∈ 
[−π, ], and v ∈ [−π, π]. The model ventricle is truncated at the base, which is 

taken to correspond to z = 5 mm. See fig. 16(A). The passive elasticity of the heart wall is 

described using a transversely isotropic hyperelastic constitutive law by Guccione et al. [73], 

which is defined with respect to a local fiber-aligned coordinate system via

(67)
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with

(68)

in which  is the Green-Lagrange strain tensor and C, bf, bt, bfs are 

material parameters. The structure is discretized using trilinear (Q1) hexahedral elements. 

The computational domain Ω is a 4 cm × 4 cm × 4 cm region. Except where noted, Ω is 

discretized using a uniform 64 × 64 × 64 Cartesian grid. The model is run to steady state 

under steady loading conditions, corresponding to a quasi-static analysis, as in earlier work 

[74].

5.4.1. Passive inflation of an isotropic left ventricle model—Figs. 16(B,E) and 

17(A) show results of passively inflating an isotropic version of the left ventricle model. We 

use C = 10 kPa and bf = bt = bfs = 1 along with a uniform pressure load of 10 kPa. This 

corresponds to ‘Problem 2’ from Land et al. [45]. Notice that our formulation permits very 

large structural deformations. The computed longitudinal, circumferential, and radial strains 

in the inflated configuration are in excellent agreement (within 1%) with values obtained by 

other structural mechanics codes using the same model [45]. This test problem was judged 

to be relatively easy, and all of the methods considered in the benchmarking study yielded 

virtually identical results.

5.4.2. Active contraction of a fiber-reinforced left ventricle model—Figs. 16(C,F) 

and 17(B) show the results from a simulation of active contraction using this model. In this 

case, we use a fiber-reinforced material model, in which the fiber direction in the reference 

configuration Ef is given by

(69)

yielding a 180° transmural fiber rotation with a linear relationship between fiber angle and 

tissue depth. In addition to passive elasticity, the test also includes active contractile forces, 

which are accounted for in the first Piola-Kirchhoff stress via

(70)

with Ta corresponding to the active stress acting in the fiber direction. We use C = 2 kPa, bf 

= 8, bt = 2, bfs = 4, and Ta = 60 kPa. A uniform pressure load of 15 kPa is also applied along 

the endocardial surface. This corresponds to ‘Problem 3’ from Land et al. [45]. No special 

treatment is used for the fiber singularity at u = −π. To demonstrate convergence, the 

differences in the structural displacement obtained using uniform N × N × N grids for N = 
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48, 64, and 96 are shown in fig. 18. The maximum difference in the displacement between N 
= 48 and N = 64 is 2.5%; this difference is 1.8% between N = 64 and N = 96, indicating 

approximately first-order convergence. This test problem was judged to be relatively difficult 

when compared to Problem 2 [45], but as in the case of passive deformations, the actively 

contracting model is in excellent agreement (within 1%) with grid-converged consensus 

results obtained by other structural codes using the same idealized left ventricular model 

[45]. The distribution of fiber strain within the model is shown in fig. 19. It is interesting to 

see that although the ventricular wall is mostly compressed, as indicated by the negative 

values of the fiber strain, there are parts of the wall that are very slightly stretched, primarily 

in the midwall. This is because the fibers rotate across the wall, and the middle layer 

experiences circumferential stretch even though the whole left ventricle is substantially 

compressed in the longitudinal direction. The comparatively small stretches near the apex 

reflect the different fiber distribution in that region.

6. DISCUSSION AND CONCLUSIONS

This paper describes a version of the IB method for fluid-structure interaction that uses 

either a structured or unstructured FE discretization of the immersed structure while 

retaining a Cartesian grid finite difference scheme for the Eulerian equations. This method 

has already proved useful in a variety of biological and biomedical applications [46–48, 74–

81], but its performance has not previously been examined using standard benchmark cases 

such as those that are the focus of this work. This paper also demonstrates the suitability of 

this method to simulate cardiac mechanics using an idealized model of the left ventricle of 

the heart [45].

A feature of this method is that it uses standard discretization technology for both the 

Lagrangian and Eulerian equations. In practice, it should be feasible to use this approach to 

couple existing structural analysis and incompressible flow codes by passing forces from the 

structural code to the fluid solver, and by passing velocities from the fluid solver back to the 

structural code. Although we focus on cases in which the immersed structure is hyperelastic, 

our numerical scheme does not rely on the availability of a hyperelastic energy functional, 

and the present approach is also demonstrated to treat immersed rigid bodies and structures 

with active contractile stresses.

A key contribution of this paper is that it introduces an approach to Lagrangian-Eulerian 

interaction that overcomes a longstanding limitation of the IB method, namely the 

requirement that the Lagrangian mesh must be relatively fine compared to the background 

Eulerian grid to avoid leaks at fluid-structure interfaces. This restriction results in structural 

meshes that are excessively dense, potentially leading to reduced efficiency and even 

reduced accuracy. Numerical examples demonstrate that our scheme permits the use of 

Lagrangian meshes that are at least four times as coarse as the background Eulerian grid 

without leak, and we expect that there are cases in which even coarser structural meshes 

would yield good accuracy. Even with very coarse structural discretizations, the present 

methodology can yield improved volume conservation when compared to the IFE method 

[33]. Of course, fine Lagrangian meshes are still needed in practice to resolve fine-scale 

geometrical features, and an approach such as Lagrangian adaptive mesh refinement may be 
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crucial for accurately treating extremely large structural deformations. Nonetheless, the 

present approach enables the effective use of spatial discretizations that are tailored to the 

requirements of the structural model rather than dictated by the background Eulerian 

discretization.

Our method is based on a formulation of the continuous IB equations introduced by Boffi et 

al. [37]. We consider two different statements of these equations that each use a weak 

formulation of the Lagrangian equations of nonlinear elasticity. One of these formulations 

treats the internal and boundary stresses within the immersed elastic structure using a single, 

unified, volumetric elastic force density. This form of the equations of motion is essentially 

that used in the IFE method [30–34] as well as other similar approaches [35–39]. The other 

formulation considered in this work partitions these stresses into a internal elastic force 

density supported on the interior of the structure, and a transmission elastic force density 

supported on fluid-structure interfaces; this approach does not appear to have been used 

previously to develop a numerical scheme. Both formulations are demonstrated to yield 

similar convergence rates, but the partitioned formulation is seen to yield higher accuracy for 

Lagrangian meshes that are relatively coarse in comparison to the background Eulerian grid, 

especially in terms of volume conservation.

A limitation of the partitioned formulation is that it does not satisfy a discrete power identity 

that implies that energy is conserved during Lagrangian-Eulerian interaction. Such a power 

identity is satisfied by the unified formulation, and may be necessary to obtain an 

unconditionally stable implicit time-stepping scheme [82]. Developing a symmetric 

partitioned formulation will likely require the introduction of additional boundary degrees of 

freedom, so that volumetric operators (i.e.  and ) couple the volumetric structural 

variables to the background grid, and corresponding surface operators (e.g. ∂U and  ∂U) 

couple the surface degrees of freedom to the Eulerian variables. Lagrange multipliers or 

penalty methods could be used to ensure that the surface discretization moves with the 

immersed body.

For immersed rigid bodies, tests suggest that relatively coarse structural discretizations can 

yield superior accuracy when compared to relatively fine discretizations. For the standard 

test case of viscous flow past a circular cylinder, we demonstrate that relatively fine 

structural discretizations can produce spurious drag, suggesting that the effective numerical 

size of the immersed body is determined in part by the spacing of the control points. 

Although not studied here in detail, there appears to be a relatively sharp transition, and the 

results obtained by the method for structural meshes that are coarser than a minimum 

spacing appear to be relatively insensitive to the choice of Lagrangian meshwidth. The 

threshold spacing appears to depend on the choice of regularized kernel function. For 

instance, when using a three-point kernel function, the method yields good results for 

relative mesh spacing values of Mfac = 1, whereas this same relative structural mesh spacing 

yields poor results with four- and six-point kernels.

In a constrained formulation, using a mesh of control points that is too fine with respect to 

the background grid will result in an ill-conditioned system of equations, and for a 

sufficiently fine mesh of control points, the constrained formulation becomes singular. It is 
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interesting to note that in our formulation, we obtain high accuracy even with extremely 

dense meshes of interaction points so long as the control points are sufficiently far apart 

from each other. Projecting the standard IB velocity field UIB onto the FE shape functions 

filters velocity fluctuations at length scales that are smaller than structural mesh width. For 

relatively coarse structural meshes, this additional filtering appears to improve the accuracy 

of the IB method, dramatically reducing errors in the lift and drag forces. Such errors have 

been previously described to be a fundamental aspect of the IB method, but we believe that 

our results show that such numerical artifacts are not intrinsic to this methodology, but rather 

result from the use of overly dense structural meshes. The present work provides a 

framework for coupling relatively course structural models without leak at fluid-structure 

interfaces.

In closing, we remark that the partitioned formulation developed in this work could be useful 

in constructing higher-order versions of the IB method. For instance, this formulation is well 

suited for developing a hybrid approach in which the IB method is used to treat the 

volumetric internal force density, and another method is used to treat the singular 

transmission force density. Because the transmission force density of the partitioned 

formulation is defined on a closed surface, it is feasible to treat it with higher-order accuracy 

by a version of the immersed interface method [83–89]. Such an extension of this method 

could yield a fully second-order accurate generalization of the IB method for cases, like 

those considered in this work, in which the immersed structure is of codimension zero with 

respect to the fluid.
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A. TEMPORAL DISCRETIZATION

A.1. Basic time-stepping scheme

Let χn, un, and  denote the approximations to the values of χ and u at time tn, and to 

the value of p at time , respectively. We advance the solution values forward in time by 

the increment Δt as follows. First, we determine a preliminary approximation to the 

deformed structure configuration at time  via

(71)

Griffith and Luo Page 31

Int J Numer Method Biomed Eng. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Then, we solve

(72)

(73)

(74)

(75)

(76)

for χn+1, un+1, and , in which  is computed via a 

PPM-type approximation to the nonlinear advection term [50, 51]. The time-stepping 

scheme for the unified formulation is analogous. Notice that solving eqs. (72)–(76) for χn+1, 

un+1, and  requires the solution of a Crank-Nicolson-type discretization of the time-

dependent incompressible Stokes equations. We solve this system of equations via the 

flexible GMRES (FGMRES) algorithm [90], using un and  as initial approximations to 

un+1 and , and using a pressure-free projection method with inexact multigrid 

subdomain solvers as a preconditioner [51].

A.2. Initial time step

Because time step-lagged values of u and p are used by the time-stepping scheme of sec. A.

1, we cannot use that scheme for the initial time step. Instead, we use a two-step predictor-

corrector method: First, we solve

(77)
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(78)

(79)

(80)

(81)

for χ̃n+1, ũn+1, and , with An = un · ∇hun. Because we do not have an initial value for 

the pressure, we use p = 0 as an initial guess for . Second, we set  and 

solve eqs. (72)–(76) for χn+1, un+1, and , except that we use 

with .
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Figure 1. 
Lagrangian and Eulerian coordinate systems. The Lagrangian material coordinate domain is 

U, and the Eulerian physical coordinate domain is Ω. The physical position of material point 

X at time t is χ(X, t), the physical region occupied by the structure is χ(U, t), and the 

physical region occupied by the fluid is Ω\χ(U, t).
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Figure 2. 
Schematic of the staggered-grid layout of Eulerian degrees of freedom in two spatial 

dimensions. The pressures are approximated at cell centers, indicated by (i, j), the x1-

components of the velocity and force are approximated on the x1-edges, ( , j) or ( , j), 

and the x2-components of the velocity and force are approximated on the x2-edges, (i, ) 

or (i, ).
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Figure 3. 
Prolonging the elastic force density from the Lagrangian mesh onto the Eulerian grid. 

Starting with an approximation to the force density at the nodes of the Lagrangian mesh (A), 

we use the interpolatory FE basis functions to determine the force density at interaction 

points that are defined by a quadrature rule (B), and then spread those forces from the 

interaction points to the background Eulerian grid using the smoothed delta function δh(x) 

(C). This approach permits Lagrangian meshes that are significantly coarser than the 

Eulerian grid so long as the “net” of interaction points is sufficiently dense. Denser nets of 

interaction points can be obtained, for instance, by increasing the order of the numerical 

quadrature scheme.
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Figure 4. 
Representative results from the dynamic (γ = 0.15) version of the idealized anisotropic shell 

model of sec. 5.1.1 for N = 128 over the time interval 0 ≤ t ≤ 0.75. The computed pressure 

and structure deformation for Mfac = 4 are shown in A and B. The computed deformations 

obtained with Mfac = 1 and Mfac = 4 are compared in C. The coarse and fine structural 

meshes yield essentially identical kinematics.
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Figure 5. 
Errors in u and p in L1, L2, and L∞ norms for the static (γ = 0) version of the idealized 

anisotropic shell model of sec. 5.1.1. Reference lines with slopes of −1 and −2 are also 

shown. The velocity converges at second-order accuracy in all norms, whereas the pressure 

converges at second-order in the L1 norm, at first-order in the L∞ norm, and at order 1.5 in 

the L2 norm.
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Figure 6. 
Errors in u, p, and χ in L1, L2, and L∞ norms for the dynamic (γ = 0.15) version of the 

idealized anisotropic shell model of sec. 5.1.1. Reference lines with slopes of −1 and −2 are 

also shown. The velocity converges at second-order accuracy in all norms, whereas the 

pressure converges at second-order in the L1 norm, at first-order in the L∞ norm, and at 

order 1.5 in the L2 norm. The displacement converges at essentially second-order rates in the 

L1 and L2 norms, and at a slightly lower rate in the L∞ norm.
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Figure 7. 
Similar to fig. 4, but here showing results obtained using the orthotropic shell model of sec. 

5.1.2 for N = 128 and the partitioned (split) weak formulation over the time interval 0 ≤ t ≤ 

1.25. As in fig. 4, the coarse and fine structural meshes yield very similar kinematics.
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Figure 8. 
Errors in u and p in L1, L2, and L∞ norms for the static (γ = 0) version of the orthotropic 

shell model of sec. 5.1.2. Errors for the unified formulation appear as solid lines, and errors 

for the partitioned formulation appear as dashed lines. Reference lines with slope −1 are 

provided for the u error data. For p, reference lines with slopes −1 and −0.5 are provided for 

the L1 and L2 norm data, respectively. Because this test includes discontinuities in the 

pressure at fluid-structure interfaces, the present method does not yield convergence in p in 

the L∞ norm. The partitioned formulation generally yields improved accuracy compared to 

the unified formulation, especially for the pressure for relatively coarse structural mesh 

spacings.
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Figure 9. 
Errors in u, p, and χ in L1, L2, and L∞ norms for the dynamic (γ = 0.15) version of the 

orthotropic shell model of sec. 5.1.2. Errors for the unified formulation appear as solid lines, 

and errors for the partitioned formulation appear as dashed lines. Reference lines with slope 

−1 are provided for the u and χ error data. For p, reference lines with slopes −1 and −0.5 are 

provided for the L1 and L2 norm data, respectively. The unified formulation generally yields 

modest improvements in the accuracy for u and χ, whereas the partitioned formulation 

generally yields improved accuracy for p, especially for relatively coarse structural mesh 

spacings.
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Figure 10. 
A soft neo-Hookean disc in a lid-driven cavity flow using the partitioned (split) weak 

formulation with N = 128 and Mfac = 4 over the time interval 3 ≤ t ≤ 7.
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Figure 11. 
Percent change in structure volume for the soft elastic disc benchmark of sec. 5.2 as a 

function of time using eq. (65) with A.p0 = 0 and B.p0 = μe. Results are shown for Cartesian 

grids of size N = 64, 128, and 256 with relative Lagrangian mesh spacings Mfac = 4, 2, and 

1. The amount of spurious volume change converges to zero at first order. At coarser relative 

mesh spacings, the partitioned (split) formulation yields substantially better volume (area in 

two spatial dimensions) conservation than the unified (unsplit) formulation. Volume 

conservation is substantially improved for the unified formulation by setting p0 = μe. The 
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volume change is less than 0.4% for all cases considered except for the unified formulation 

with p0 = 0 and Mfac = 4.
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Figure 12. 
Vortices shed from a stationary circular cylinder at Re = 200. This computation uses a six-

level locally refined grid with a refinement ratio of two between levels and an N × N coarse 

grid with N = 128. Regions of local mesh refinement are indicated by rectangular boxes, 

with lighter grey boxes indicating coarser levels of refinement and black boxes indicating the 

finest regions of the locally refined grid. A. The full computational domain and B. a 

magnified view of the flow field near the cylinder.
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Figure 13. 
Lift (CL) and drag (CD) coefficients for flow past a stationary cylinder at Re = 200. The 

computational domain Ω is discretized using a six-level locally refined grid with a 

refinement ratio of two between levels and an N × N coarse grid. The spacing between the 

nodes of the immersed structure is approximately MfacΔxfinest. Under simultaneous 

Lagrangian and Eulerian grid refinement, the scheme converges to the same dynamics for all 

values of Mfac. Notice, however, that the best accuracy is obtained for larger values of Mfac. 

Using a relatively finer structural mesh spacing results in larger lift and drag coefficients and 

lower vortex shedding frequencies. Thus, smaller values of Mfac increase the effective 
numerical size of the cylinder.
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Figure 14. 
Similar to figs. 13 and 15, but here using a three-point kernel function [71]. Unlike the case 

of the four- and six-point kernels, comparable accuracy is obtained for all values of Mfac 

considered.
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Figure 15. 
Similar to figs. 13 and 14, but here using a six-point kernel function with higher continuity 

order [72]. As with the four-point kernel, the best accuracy is obtained for larger values of 

Mfac. In this case, however, using relatively fine structural mesh spacings yields erratic 

results on coarser Eulerian grids (e.g. Mfac = 1 for N = 32).
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Figure 16. 
Inflation and active contraction of an idealized model of the left ventricle of the heart. A. 
The reference configuration of the left ventricle model is a truncated ellipsoid. B. Passive 

inflation of an isotropic version of the left ventricular model. C. Active contraction of a 

transversely isotropic left ventricular model that includes transmural fiber rotation. Notice 

the torsion induced by the active contractile forces. D–F. Slices of the configurations shown 

in panels A–C.
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Figure 17. 
Circumferential, longitudinal, and transverse strains along the endocardium, epicardium, and 

midwall in the idealized left ventricular model for (A) passive inflation and (B) active 

contraction. Strains are plotted at selected points running from apex to base. See Land et al. 

[45] for additional details on the positions of the sample points. The computed strains are in 

excellent agreement (within 1%) with consensus results obtained by other structural 

mechanics codes using the same model [45].
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Figure 18. 
Difference in the displacement of the actively contracting fiber-reinforced left ventricle 

model using different N × N × N Cartesian grids. A. Distribution of difference in the 

structural displacement obtained using N = 48 and N = 64. B. Distribution of difference in 

the structural displacement obtained using N = 64 and N = 96.
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Figure 19. 
Fiber strain distribution in the actively contracting fiber-reinforced left ventricle model 

obtained using a 64 × 64 × 64 Cartesian grid.
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Table I

Comparison of experimental and computational values of lift (CL) and drag (CD) coefficients and Strouhal 

numbers (St) for flow past a circular cylinder at Re = 200.

CL CD St

Lai and Peskin [68] — — 0.190

Linnick and Fasel [69] ±0.69 1.34 ± 0.044 0.197

Liu et al. [70] ±0.69 1.31 ± 0.049 0.192

Taira and Colonius [67] (Case C) ±0.68 1.34 ± 0.047 0.195

Roshko (experimental) [70] — — 0.190

Williamson (experimental) [70] — — 0.197

present (four-point kernel, N = 128, Mfac = 2) ±0.70 1.36 ± 0.046 0.195
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