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Abstract

Motion artifacts are now recognized as a major methodological challenge for studies of functional 

connectivity. As in-scanner motion is frequently correlated with variables of interest such as age, 

clinical status, cognitive ability, and symptom severity, in-scanner motion has the potential to 

introduce systematic bias. In this review, we describe how motion-related artifacts influence 

measures of functional connectivity, and discuss the relative strengths and weaknesses of 

commonly used de-noising strategies. Further, we illustrate how motion can bias inference, using a 

study of brain development as an example. Finally, we highlight directions of ongoing and future 

research, and provide recommendations for investigators in the field.
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Introduction

Since the advent of medical imaging, it has been recognized that motion artifacts have the 

potential to degrade image quality. In the context of task-based functional MRI, motion has 

been known to impact measures of activation for over two decades (Friston et al., 1996). 

More recently, there has been an acceleration of research regarding covariance in fMRI 

timeseries—broadly called “functional connectivity” MRI (fc-MRI; Biswal et al., 1995). fc-

MRI is a powerful and versatile tool that is capable of delineating functional brain network 
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organization across the lifespan, in both health and disease (Fox and Raichle, 2007; Van Dijk 

et al., 2010; Craddock et al., 2013). However, despite evidence from task fMRI and other 

imaging modalities, for the first 20 years of its use investigators largely ignored the 

implications of in-scanner motion for fc-MRI.

In three reports published near-simultaneously in 2012, independent groups demonstrated 

that motion artifacts can have a marked impact on fc-MRI (Power et al., 2012a; 

Satterthwaite et al., 2012; Van Dijk et al., 2012). Indeed, it was quickly recognized that in-

scanner motion had the potential to alter inference in studies of lifespan development, 

individual differences, and clinical groups. This prompted substantial re-evaluation of a 

broad array of published research, and has spurred a proliferation of techniques to mitigate 

the impact of motion artifacts on functional connectivity. While the diversity of new 

techniques has been welcome, it nonetheless has led to significant confusion among 

investigators, and controversy during peer review.

In this review, we seek to provide an accessible overview of this rapidly evolving sub-field. 

First, we begin by delineating several basic properties of motion artifacts in fc-MRI. Second, 

we describe common strategies for minimizing motion artifacts as part of the processing 

pipeline. In particular, we describe the relative benefits and drawbacks of using global signal 

regression (GSR), an approach that has generated substantial controversy in the field. Third, 

we summarize recent data regarding the relative strengths and weaknesses of several 

approaches as defined by comparison to a set of intuitive benchmarks. Fourth, we use a 

study of brain development as an example of how motion artifacts may systematically bias 

inference. We close by examining limitations of current approaches, future directions for 

additional research, and by providing recommendations for investigators.

Characteristics of Motion Artifacts in fc-MRI

Understanding the characteristics of motion artifacts is a prerequisite for identifying 

potentially artifactual results and for the development of effective de-noising approaches. 

Accordingly, here we summarize the spatial and temporal properties of motion artifacts. We 

begin by providing a brief orientation to the ways in which in-scanner motion is commonly 

measured in fc-MRI studies.

Measurement of in-scanner motion

In-scanner motion is typically estimated from the functional timeseries itself. During 

preprocessing each volume of the timeseries is usually rigidly realigned to a reference 

volume; this produces set of 6 realignment parameters (RPs; 3 translations, 3 rotations) 

describing how much a given volume within the timeseries must be moved. These 

realignment parameters can be summarized as the frame displacement (FD), which is 

computed in relative terms versus the prior volume, thus providing a concise index of 

volume-to-volume motion (Power et al., 2012a). Motion across an entire scanning sequence 

for a given subject can be summarized as mean FD.

FD has been calculated in several different ways. Overall, measures tend to be highly 

correlated, but may scale differently (see Figure 1). For example, FD as calculated by Power 
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et al. (2012a) is approximately twice the magnitude the FD provided by Jenkinson et al. 

(2002). Work by Yan et al. has shown that the matrix root mean squared formulation derived 

by Jenkinson et al. aligns best with voxel-specific measures of displacement (Yan et al., 

2013a). Below, unless noted otherwise, the FD measures reported and displayed in figures 

are calculated using FD as implemented in FSL (Jenkinson et al., 2002).

Importantly, all such measures are based on volume-based realignment procedures, and thus 

are limited in temporal resolution, which is equivalent to the repetition time of the image. 

These methods therefore do not effectively capture within-volume motion. Furthermore, 

realignment estimates may be inaccurate in images that are substantially corrupted by 

motion-related artifacts. Perhaps most importantly, FD measures are difficult to compare 

across studies with different acquisition sequences. With the advent of multiband imaging, 

repetition times are often only 20% of previous sequences. However, scanning faster does 

not obviate concerns about motion artifacts, and also makes FD more difficult to compare 

across studies. For example, a mean FD of 0.2mm denotes much higher motion in a 

multiband sequence with a repetition time of 600ms compared to a standard sequence with a 

repetition time of 3000ms. Converting FD into a standardized measure such as millimeters 

of RMS displacement per minute would alleviate such scaling by the acquisition TR and aid 

in comparisons of motion across studies (Reuter et al., 2015).

Spatial distribution of motion and motion artifacts

In order to understand the spatial distribution of motion, at least three studies have used 

voxel-specific measures of FD, which can be computed directly from the image header (Yan 

et al., 2013a; Satterthwaite et al., 2013; Spisák et al., 2014). As expected by the 

biomechanical constraints of the neck, motion is minimal near the atlas vertebrae (where the 

skull attaches to the neck) and increases with the distance from the atlas (Figure 2A; 

Satterthwaite et al., 2013). Furthermore, the high motion in frontal cortex is most likely due 

to the preponderance of y-axis rotation, associated with a nodding movement. Nonetheless, 

the motion as described by voxel-specific measures is quite correlated with global (whole-

brain) measures of FD (r=0.89; Figure 2B; Satterthwaite et al., 2013).

Several groups have attempted to leverage spatial heterogeneity of motion in the de-noising 

process, yet these attempts have not been shown to out-perform other commonly used 

pipelines (see below). This lack of improvement is most likely due to the fact that motion is 

highly correlated across voxels, and results in a drop in signal intensity across the entire 

brain parenchyma (Figure 3A; Satterthwaite et al., 2013). In contrast to signal decrements 

observed in the brain parenchyma, areas at the edge of the brain demonstrate large increases 

in signal, most likely due to partial volume effects. Similar partial volume effects occur at 

tissue class boundaries. Furthermore, Schienost et al. demonstrated that due to these global 

effects, motion produces increased image smoothness (Scheinost et al., 2014), and 

accounting for differences in smoothness is a potentially effective post-processing strategy 

(see below).
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Temporal properties of motion artifacts

With the goals of improving de-noising, several studies have examined the temporal 

characteristics of signal artifacts that result from motion. Our group demonstrated that 

motion results in a substantial drop in signal immediately following the movement event, 

which scales with the magnitude of motion (Figure 3B; Satterthwaite et al., 2013). These 

signal changes are temporally circumscribed, and maximal at the volume being acquired 

immediately after an observed movement. As described below, censoring techniques target 

such consistent large-amplitude artifacts for removal.

In addition to such temporally circumscribed artifacts, longer-duration (up to 8-10s) also 

occur idiosyncratically in individual timeseries (Power et al., 2012a; Power et al., 2013). 

While at present the origin of these sporadic longer-duration artifacts remains unknown, 

some speculate that they are due to motion-related changes in CO2 that accompany yawning 

or deep breathing (Power et al., 2012a; Power et al., 2013). Also, it may be possible that 

large disruptions in signal induced by motion may only equilibrate over such longer 

durations. Finally, interactions between the specific direction of motion and the image phase 

encoding plane may also produce temporally variable results.

These data build upon prior studies that that lend insight into the properties of motion related 

artifacts based on the MRI physics of image acquisition . Crucially, many of these effects 

introduce a non-linear relationship between the signal intensity at a particular voxel and 

head motion. This is important because nonlinearities are difficult to remove using 

movement of estimates based upon rigid body (affine) models. Examples of non-linear 

effects include spin excitation history effects, which can persist for some time after 

movement (Friston et al, 1996). Other important (non-linear) effects include interpolation 

artefacts during image reconstruction and interactions between the magnetic field and head 

position, which introduce distortions in EPI time series (Andersson et al., 2001; Grootoonk 

et al., 2000). As we discuss later, these non-linear effects motivate the use of non-linear 

motion parameters in confound regression.

Signal frequency of motion artifacts

Convergent data has demonstrated that most functional connectivity signal is driven by low-

amplitude fluctuations (Cordes et al., 2001). Accordingly, it is common to use the amplitude 

of low-frequency fluctuations (ALFF; Yang et al., 2007) or fractional amplitude of low 

frequency fluctuations (fALFF; Zou et al., 2008) as a voxelwise proxy of connectivity. To 

retain only frequencies in the low-amplitude range, it is a common but somewhat 

controversial practice (Carp, 2011), to apply a band-pass filter that retains signals in the 

0.01-0.1 Hz range (Weissenbacher et al., 2009). However, based on evidence suggesting that 

higher-frequency signals also carry connectivity information (Fornito et al., 2011; Niazy et 

al., 2011), increasingly only a high-pass filter is applied. Understanding which signal 

frequencies are most impacted by motion artifacts could help investigators decide whether or 

not to apply temporal filtering, as the temporal filter could be tailored to remove frequency 

bands that are most contaminated by artifacts.

Satterthwaite et al. Page 4

Hum Brain Mapp. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Relatively little work has focused on spectral properties of motion artifacts. In one earlier 

study, we found that motion increased the magnitude spectra across all frequencies, but this 

effect was greater at higher frequencies (Satterthwaite et al., 2013). These results accord 

well with those from a smaller independent study of adults by Hlinka et al., who found that 

motion artifacts were more prevalent at high frequencies (Hlinka et al., 2010). Discrepancies 

in results from both an earlier study from our group (Satterthwaite et al., 2012) and work by 

Yan et al. (2012) are likely due to the use of standardization procedures (such as z-scoring) 

of statistical maps in these earlier papers.

Following effective confound regression (with a 36-parameter model and spike regression, 

see below) we have found that the effect of motion is attenuated in low frequencies but not 

higher frequencies (Figure 4; Satterthwaite et al., 2013). However, this analysis was limited 

in that it only considered average effects across 160 nodes covering the brain. In contrast, 

Kim et al. examined 1000 participants scanned as part of the Genome Superstruct Project, 

and delineated the impact of motion on voxelwise power-spectrum maps (Kim et al., 2014). 

When the data was processed without GSR, they found that motion was associated with 

greater amplitude in both high and low frequency bands, but that artifacts were particularly 

prominent in frontoparietal and default mode networks. Once GSR was used, they found 

elevated high-frequency fluctuations with motion, but in fact found reduced signal amplitude 

in lower frequency bands in select DMN and frontoparietal network regions. Taken together, 

available data suggests that the impact of motion is consistent at higher frequencies, but 

varies at lower frequencies on a regional basis in part due to the preprocessing applied.

Distance-dependence of motion artifacts

One important fact recognized by two of the initial reports on motion artifacts in fc-MRI 

were that the impact of motion on functional connectivity depended strongly on the 

Euclidean distance between regions (Power et al., 2012a; Satterthwaite et al., 2012). 

Specifically, when data were processed using GSR, motion increased the apparent strength 

of short-range connections, but weakened the apparent strength of long-range connections. 

This was of particular concern for studies of development in youth, as prior work had 

reported that long-distance connections strengthened with age (Dosenbach et al., 2010; Fair 

et al., 2007).

Subsequent work demonstrated that this distance-dependence was strongly modulated by 

pre-processing strategy, especially the inclusion of GSR. As shown in Figure 5A 

(Satterthwaite et al., 2013), in data processed without GSR, motion is associated with 

stronger connectivity of both short and long range connections. While some distance 

dependence is present, it is relatively minor, with motion producing somewhat less of an 

increase in connectivity in long-range connections than short-range connections. In contrast, 

in data processed with GSR (Figure 5B), the effect of motion on connectivity is weaker, but 

there is marked distance dependence (Satterthwaite et al., 2013). When GSR is used, motion 

is associated with stronger connectivity for short-range connections, but is conversely 

associated with weaker connectivity for long-range connections. This demonstrates a critical 

trade-off in the choice of processing pipeline: while GSR results in reduced impact of 

motion on connectivity, it tends to exacerbate distance-dependence. While the reason GSR 
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exacerbates distance-dependence is not fully understood, analyses by Power et al. (2012a)a 

and Satterthwaite et al. (2013a)suggest it relates to the fact that the motion-induced increase 

in correlation between distant regions is also shared with the global signal and can therefore 

be removed by GSR. In contrast, regionally-localized motion artifacts will increase local 

(short-range) connectivity but cannot be readily removed by GSR.

Processing Approaches to Mitigate Motion Artifacts

Having described certain properties of motion artifacts, we next review common 

postprocessing strategies to limit their impact on functional connectivity data. In particular, 

we focus on confound regression approaches, censoring methods, as well as spatial and 

temporal filtering. It should be noted that this review is not comprehensive: readers should 

reference original research regarding several novel but less-commonly used techniques, as 

well as a thorough recent review (Caballero-Gaudes and Reynolds, 2016). We begin with 

confound regression, which remains the single most common strategy for removing motion 

artifacts in functional connectivity data. The many confound regression approaches used can 

be loosely grouped by what signals are regressed from the data: realignment parameters 

(RPs), tissue-specific signals, the global signal, signals from principal components analysis 

(PCA), and signals isolated using independent components analysis. For each, the most 

common implementation is to regress one or more of these confounding signals from the 

functional timeseries data using linear regression, and then use the residual timeseries for 

subsequent analyses. Notably, these techniques are not mutually exclusive, and in fact are 

often applied in combination with each other and with censoring techniques.

Confound regression: realignment parameters

At present, RPs remain the single most common confound regression technique used in fc-

MRI de-noising. As noted above, 6RPs are derived from the rigid-body registration of the 

functional timeseries during realignment, including three translations and three rotations. 

These 6 RPs are commonly used as nuisance regressors in both task-based and fc-MRI 

analyses. In order to account for time lags in motion effects, the first temporal derivative of 

these 6 RPs is often also included (12RP model). Furthermore, over 20 years ago, Friston et 

al. proposed using a second-order polynomial expansion of the RPs (Friston et al., 1996). In 

practice, quadratic terms are often calculated for both the original RPs and their temporal 

derivatives, thus yielding 24 parameters in total (24RP model).

Tissue-specific signals

Beyond RPs, it has been common practice to regress out timeseries from white matter (WM) 

and cerebrospinal fluid (CSF) voxels, which are impacted both by motion and by 

physiological signals of no interest such as respiration. Regression of mean gray matter 

(GM) signal is less common, but due to its near-unity correlation with the global signal (r > 

0.97) it should be considered essentially equivalent to GSR. The specific method used in the 

construction of WM masks is important, as superficial white matter signals are highly 

correlated with the global signal due to partial-volume effects (r > 0.9); thus investigators 

who do not erode WM masks may be applying GSR inadvertently (Power et al., 2016). One 

alternative to using the mean WM signal is ANATICOR (Jo et al., 2010), which was 
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designed to account for spatial heterogeneity in artifacts. The approach uses a local WM 

regressor for each GM voxel, based on the average signal within an eroded WM mask within 

a 15mm radius. In theory, this technique allows confound regression to model local 

disturbances due to scanner artifacts or motion.

Global signal regression

Although currently most common in studies of fc-MRI, global signal regression (GSR) was 

in fact previously used in PET (Friston et al., 1990) and task fMRI research (Aguirre et al., 

1998), and in part led to the use of general linear models for timeseries analyses. GSR was 

introduced to account for large, non-physiological shifts in the fMRI signal (Fox et al., 

2005), and rapidly became a standard part of pre-processing pipelines. It should be noted 

that GSR is distinct from fMRI preprocessing steps like grand mean scaling (which is 

typically applied) and volume-based intensity normalization (which is not commonly used). 

Use of GSR is one of the most contentious debates in neuroimaging, and is the topic of 

many dedicated articles (Fox et al., 2009; Murphy et al., 2009; Weissenbacher et al., 2009; 

Gotts et al., 2013; Chai et al., 2012; Saad et al., 2012); a full account is beyond the scope of 

this review, and the debate is expertly summarized in a recent article by Fox and Murphy 

(2017). However, accumulating evidence demonstrates that GSR is a simple and highly 

effective de-noising technique that limits the influence of motion artifacts in studies of 

functional connectivity. GSR's effectiveness is thought to be largely due to the fact that in-

scanner motion causes distributed drops in signal across the brain (see Figure 3A; 

Satterthwaite et al., 2013). The potential utility of GSR for de-noising is underscored by 

persuasive recent data from Power et al., who examined over 1000 scans from 8 scanning 

sites, and demonstrated that artifacts due to head motion, respiration, and scanner artifacts 

are captured by the global signal across datasets (Power et al., 2016). Furthermore, as 

described below, recent data from benchmarking studies suggests that adding GSR to de-

noising pipelines mitigates the impact of motion artifacts (Burgess et al., 2016; Ciric et al., 

2016).

PCA-based confound regression: CompCor

In addition to the use of global or local confound regressors derived from specific tissue 

classes, many studies have used principal components analysis (PCA) based approaches to 

identify and remove confounding signals. While PCA could be applied to the complete 

whole-brain voxelwise timeseries, the two most common PCA approaches attempt to isolate 

parts of the image that are thought to be more strongly impacted by motion and other noise. 

Behzadi et al. (2007) introduced two variants of this method as part of the popular CompCor 

technique (Behzadi et al., 2007): anatomic CompCor (aCompCor) and temporal CompCor 

(tCompCor). In aCompCor, a PCA is performed on voxelwise CSF signals and eroded WM, 

whereas in tCompCor high noise regions are identified by their temporal standard deviation. 

In Behzadi et al. (2007), the number of principle components included was determined using 

Monte-Carlo simulations (yielding a mean of 4-6 regressors per subject). Building on this 

work, Muschelli et al. proposed a variant of aCompCor where components explaining the 

top 50% of signal variance were retained; this approach performed better than using a fixed 

set of 5 regressors (Muschelli et al., 2014).

Satterthwaite et al. Page 7

Hum Brain Mapp. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Independent component analysis

ICA is a blind source separation technique that seeks to detect mixed signals derived from 

nearly-independent sources. ICA is among the most commonly used techniques for defining 

intrinsic connectivity networks at the group level, typically by concatenation of subject 

timeseries (Beckmann et al., 2005; van de Ven et al., 2004). At the group level, ICA yields 

spatial maps of functional networks that are present across individuals. However, ICA can 

also be used for subject-level de-noising, where the timeseries of noise components are 

regressed from the data (Kochiyama et al., 2005; Tohka et al., 2008; Bhaganagarapu et al., 

2013). When ICA is applied to data from individuals, the number, spatial distribution, and 

temporal characteristics of ICA components vary substantially. Due to the lack of 

correspondence of components across individuals, several techniques have been developed 

to identify and remove noise components from single-subject data, which can broadly be 

grouped as classifiers that require labeled components and automated algorithms.

While many ICA-based de-noising techniques have been described, at present only two have 

been directly evaluated for the control of motion artifacts in studies of functional 

connectivity. In a pair of papers, Salimi-Khorshidi et al. and Griffanti et al. introduced and 

validated ICA-FIX (Salimi-Khorshidi et al., 2014; Griffanti et al., 2014), which is the 

standard de-noising technique for the Human Connectome Project (Smith et al., 2013). This 

approach uses a multi-level machine learning classifier to identify noise components with 

high accuracy. However, this classifier requires labeled training data, ideally from the same 

scanner and acquisition protocol; use of detailed published procedures for manually 

identifying noise components aid in this time-consuming process (Griffanti et al., 2016). In 

contrast, ICA-AROMA identifies noise components using a pre-defined set of features that 

are extracted automatically from the image (Pruim et al., 2015b; Pruim et al., 2015a).

Temporal censoring

All of the techniques surveyed thus far (RPs, WM signals, GSR, PCA, ICA) are variants of 

confound regression, and differ mainly in their approaches to identifying noise signals. In 

addition to regression of nuisance time series, a number of temporal censoring methods are 

commonly used to reduce the impact of motion artifacts, where motion-corrupted volumes 

are identified and either excised or interpolated. These approaches include scrubbing (Power 

et al., 2012b; Power et al., 2012a; Power et al., 2013), spike regression (Satterthwaite et al., 

2013), and despiking techniques (Jo et al., 2013; Patel et al., 2014). While these techniques 

have many similarities, approaches differ in the way motion-corrupted data is identified, 

what threshold for removal is used, how many volumes are removed, and whether 

interpolated data is retained in the final timeseries. One potential solution to the problem of 

thresholding spike regression is the use of a variance-weighting approach that de-weights 

timepoints along a continuum on the basis of signal quality and the presence of detected 

artifact (Diedrichsen and Schadmehr, 2005). Although not yet applied to rsfc-MRI data, such 

an approach could integrate the virtues of a temporal censoring approach but without the 

need to select an arbitrary threshold for designating the presence of a spike.

Scrubbing and spike regression are highly similar as implemented in most recent 

approaches: while scrubbing literally excises motion-corrupted timeseries, spike regression 
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removes the influence of that volume in the confound regression step by adding a binary 

regressor indexing each timepoint where motion occurs. Scrubbing interpolates flagged 

volumes temporarily before filtering and subsequent removal, ultimately concatenating non-

corrupted timeseries (Power et al., 2012b; Power et al., 2012a; Power et al., 2013). In 

contrast, spike regression interpolates corrupted volumes (Satterthwaite et al., 2013). In both 

approaches, motion-corrupted data is typically identified using an FD threshold, a signal 

change threshold, or a combination of the two. Signal change has been most commonly 

calculated using the DVARS metric introduced by Power et al., which indexes the RMS 

intensity difference across volumes (Power et al., 2012b). As typically used, FD- and 

DVARS-based criteria flag entire volumes for removal as part of spike regression or 

scrubbing. Over time, the threshold for the scrubbing applied has become more stringent 

(Power et al., 2012b; Power et al., 2012a; Power et al., 2013).

Similarly, there has been substantial variability in the amount of adjacent data removed in 

spike regression and scrubbing. To eliminate longer-duration artifacts associated with 

motion, the most commonly implemented version of scrubbing removes one volume before 

and two after a motion event (Power et al., 2012b; Power et al., 2012a; Power et al., 2013). 

In contrast, our group typically removes only a single corrupted volume as part of spike 

regression, allowing retention of more data (Satterthwaite et al., 2013). This is motivated by 

data from Satterthwaite et al. (2013a), where we found that including spike regressors to 

cover a larger temporal window did not provide additional de-noising benefit (Figure 6). 

Furthermore, we found that identifying motion spikes using a dual-criterion FD + DVARS 

approach did not provide additional benefit beyond a single-criterion (FD-only) approach. 

However, these results do not fully accord with data from Power et al. (Power et al., 2013), 

suggesting that optimal censoring parameters may potentially vary by dataset.

In contrast to scrubbing and spike regression, which remove or adjust all voxels in particular 

volumes, despiking techniques have been implemented to be spatially adaptive, so that 

motion-induced signal changes can be selectively removed from voxels affected by artifact. 

Despiking techniques identify signal spikes in voxel-level timeseries using measures such as 

the local median absolute deviation (as implemented in AFNI; Cox, 1996). One promising 

approach uses wavelet decompositions to identify and then remove spikes in the data (Patel 

et al., 2014). This approach has been shown to be superior to standard despiking methods, 

but does requires parameter tuning (Patel and Bullmore, 2016). It should be noted that all 

temporal censoring operations have the potential to alter both the signal dynamics and the 

autocorrelation structure of the timeseries data.

Temporal and spatial filtering

In contrast to the proliferation of confound regression and censoring approaches, temporal 

and spatial filtering approaches have received less attention. As noted above, prior work has 

demonstrated that motion tends to result in increased signal amplitude at higher frequencies 

(Satterthwaite et al., 2013). However, such effects are clearly dependent on the confound 

regression strategy used: data processed using pipelines with lower-order confound 

regression or with pipelines that do not include GSR show less frequency-band selectivity, 

with motion being associated with higher signal amplitude across a wide range of 
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frequencies (Satterthwaite et al., 2013; Kim et al., 2014). Thus, one strategy for mitigating 

the impact of motion is to use a low-pass filter that removes higher frequencies that are more 

susceptible to motion. However, this strategy remains controversial as any connectivity 

information present at higher frequencies will be lost (Niazy et al., 2011). Indeed, a recent 

paper by Vergara et al. suggests that multivariate classification performance may be 

improved when higher frequencies are retained (up to 0.24Hz), although it is unknown if 

such effects are driven in part by the subtle influences of data quality (Vergara et al., 2016). 

Furthermore, it is not known how generalizable such frequency-specific effects are across 

different acquisition protocols that vary in their repetition time: data from both Satterthwaite 

et al. and Kim et al. used single-band echoplanar imaging, rather than new multiband 

sequences that provide a great increase in temporal resolution. One pitfall that should be 

uniformly avoided is performing confound regression on band-pass filtered timeseries with 

regressors that have not been filtered in the same manner, which can re-introduce artifactual 

signals in the very frequency bands that were removed by the band-pass filter (Hallquist et 

al., 2013).

To our knowledge, only one study has examined the impact of spatial filtering on motion 

artifacts. Scheinost et al. demonstrated that higher motion data has greater smoothness, and 

that smoothing each dataset to a uniform degree of smoothness can reduce the effect of 

motion artiacts on functional connectivity (Scheinost et al., 2014). In this approach, higher 

motion data, which starts out with greater smoothness due to the presence of artifacts, 

receives less additional smoothing than lower-motion data.

Putting it all together: common combinatorial approaches

The techniques described above do not need to be applied in a mutually exclusive fashion. 

For example, the pipeline most commonly used in our group uses expansions of the global, 

white matter, and CSF signals in addition to the realignment parameters (36 parameter 

model; called “36P” below) and spike regression (Satterthwaite et al., 2013). In contrast, the 

minimal preprocessing pipeline used by the HCP does not use GSR, but includes 24 

realignment parameters and ICA-FIX (Smith et al., 2013). However, recent work by Burgess 

et al. suggests that a GSR analogue (mean greyordinate timeseries) can improve de-noising 

when added to ICA-FIX (Burgess et al., 2016). Given the many techniques available and 

their myriad combinations, the choice of a de-noising strategy has understandably led to 

confusion among investigators, reviewers, and the field at large. In the next section, we 

summarize a recent effort from our group to evaluate denoising pipelines according to 

several intuitive benchmarks.

Comparing Confound Regression Methods

Benchmarks of de-noising success

Before comparing de-noising pipelines, one must first define success. Several different 

outcome measures have been used in existing de-noising studies. First, the single most 

intuitive benchmark is the residual relationship with motion, which can be quantified with 

the correlation between functional connectivity and in-scanner motion after denoising (or 

“QC-FC” correlation). This correlation is generally taken across subjects. In other words, if 
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subjects who move more show more (or less) functional connectivity, it can be assumed that 

a portion of functional connectivity can be attributed to movement. Second, prior work has 

shown that the use of certain de-noising pipelines (especially ones that use GSR) can help 

mitigate QC-FC correlations but simultaneously result in distance-dependent motion 

artifacts. Distance dependence is thus a useful secondary benchmark, and can be quantified 

as the correlation between inter-node Euclidean distance and the effect of motion on 

connectivity (i.e., the slope of the QC-FC correlation over distance). Third, to ensure that de-

noising does not remove a substantial amount of signal along with motion-related noise 

(Bright and Murphy, 2015), it is useful to evaluate network identifiability. Network 

identifiability can be summarized as network modularity quality (Q) (Newman, 2006), 

which quantifies the degree to which structured sub-networks are present; prior studies have 

also used overlap with a priori templates (Pruim et al., 2015b; Pruim et al., 2015a).

In addition to these three measures, other benchmarks have been proposed and may be of 

substantial utility. Test-retest reliability is a particularly appealing measure. At present, there 

is relatively less data on test-retest reliability of different de-noising pipelines (but see: Yan 

et al., 2013a & 2013b) as large-scale within-subject designs with repeated measurement 

remain uncommon. Moving forward, this will certainly change as investigators begin to 

capitalize upon the enormous resources provided by the Consortium of Reliability and 

Reproducibility (CORR; Zuo et al., 2014), which includes 5,093 scans across 1,629 

participants. However, it should be cautioned that test-retest reliability should not be 

evaluated in isolation: because in-scanner motion itself is relatively consistent within 

individuals across scanning sessions, there is the potential for residual motion effects to 

artifactually enhance test-retest reliability. An additional benchmark that may be appealing is 

discriminability, which summarizes the degree to which a given pipeline enhances 

sensitivity to group or individual differences. Relatively little prior work has used this 

outcome measure, which has intuitive appeal (see Vergara et al., 2016 for one example). 

However, as for test-retest reliability, discriminability should explicitly be evaluated in the 

context of other benchmarks, as group or individual differences could be inflated by the 

differential presence of residual noise across individuals or groups, as certain groups (such 

as children, older adults, and many patient groups) are more likely to move during the scan.

It must be emphasized that the research hypothesis should dictate the choice of benchmark 

used. For example, in developmental and psychiatric neuroimaging, it is often a primary 

concern that motion will confound individual or group differences, leading to type I error. 

For these studies, it is reasonable to prioritize a QC-FC benchmark. In contrast, for studies 

of network topology that are not focused on individual differences, minimizing distance-

dependence may be a reasonable priority. Thus, as previously noted elsewhere, the 

processing pipeline should be chosen in accordance with the goals, and no single pipeline 

will be appropriate for all studies.

In this section, we summarize recent work evaluating the performance of 14 commonly used 

pipelines (Figure 7) in a sample of 393 youth ages 14-22 who underwent neuroimaging as 

part of the Philadelphia Neurodevelopmental Cohort (PNC) (Satterthwaite et al., 2014; 

Calkins et al., 2015; Satterthwaite et al., 2015). Note that pipelines that require substantial 

training (i.e., ICAFIX) or parameter tuning (i.e., wavelet despiking) were not evaluated. For 
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each of these 14 pipelines, we examined the residual relationship with motion, distance 

dependence, and network identifiability in two different node systems (for full details, see 

Ciric et al., 2017). As described below, de-noising pipelines have clear trade-offs when 

multiple benchmarks are evaluated jointly.

De-noising pipelines have differential efficacy in limiting associations between 
connectivity and motion

A primary benchmark is the residual relationship between motion (estimated prior to 

preprocessing) and connectivity after preprocessing, which can be quantified as the 

percentage of edges exhibiting a significant QC-FC relationship. As shown in Figure 8, no 

pipeline completely abolished the relationship between head movement and connectivity. 

However, different approaches exhibited widely varying degrees of efficacy, with high 

convergence among the two node systems evaluated. The top four confound regression 

strategies all included 36 confound parameters, which is comprised of an expansion of GSR, 

tissue-specific regressors (WM, CSF), and realignment parameters (36P model). Beyond this 

36-parameter model, all censoring techniques provided some additional benefit, reducing the 

number of edges that were significantly related to motion to less than 7% (and less than 1% 

in some cases).

In contrast, many commonly-used pipelines performed much less well, as demonstrated by a 

majority of edges that had a significant relationship with motion even after de-noising. For 

example, 89% of edges were impacted by motion after employing a simple confound model 

using 6 RPs; the performance of the commonly-used 24P model comprised of an expansion 

of the RP parameters was similarly dismal (88% edges). There was no great benefit for use 

of the local WM regressor included in ANATICOR (77% edges), which in fact performed 

substantially worse than a model that included the mean WM signal (39% edges). 

Furthermore, different CompCor approaches using PCA demonstrated markedly divergent 

performance. Specifically, PCA of WM and CSF in aCompCor clearly outperformed PCA 

performed within voxels identified by their temporal characteristics (tCompCor; 13% vs. 

70% edges). Similar to findings reported by Burgess, who found that addition of a GSR-

analogue improved performance of ICA-FIX, we found that adding GSR to ICA-AROMA 

reduced the residual relationship with motion (28% significant edges without GSR, 13% 

with GSR). Somewhat to our surprise, the classic 9-parameter de-noising model that 

includes 6RPs, WM, CSF, and GSR performed relatively well (13%).

Notably, the top-performing pipelines all included GSR. The effectiveness of GSR is most 

likely due to the nature of motion artifact itself: in-scanner head motion tends to induce 

widespread reductions in signal intensity across the entire brain parenchyma (see “Spatial 

distribution of motion artifacts”, above). Recent data from Power et al., 2016 demonstrates 

that such artifacts are highly reproducible across datasets, and are effectively modeled by 

GSR. Beyond GSR, a second strategy that clearly minimizes QC-FC relationships is 

temporal censoring. All three censoring variants we evaluated (including scrubbing, spike 

regression, and de-spiking) aided in de-noising, above and beyond GSR.
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Global signal regression aids de-noising but results in some distance-dependence

While the relationship between motion and connectivity is a reasonable primary benchmark 

for de-noising pipelines, it should not be considered in isolation. Another benchmark that 

has received considerable attention is the distance dependence of motion artifacts. Two of 

the initial studies of motion artifacts demonstrated that in-scanner motion resulted in higher 

connectivity for short-range connections, and diminished connectivity for long-range 

connections. However, both of these initial reports included GSR in pre-processing; 

subsequent work showed that this distance-dependence varied by pre-processing pipeline. 

Thus, distance dependence is a valuable measure to consider alongside QC-FC relationships. 

In particular, one prior paper focused on this outcome measure, and suggested using a local 

WM regressor to minimize distance dependence. While this approach did result in minimal 

distance-dependence, this was a consequence of lack of efficacy across all distances (i.e., 

77% of edges showing a significant relationship with motion).

We found that both GSR and censoring appeared effective in minimizing QCFC 

relationships, but they exhibited divergent relationships with distance-dependence (Figure 

9). While temporal censoring techniques consistently minimized distance-dependence, GSR 

was associated with increased distance-dependence. In fact, models that include GSR (9-

parameter, 36-parameter) had among the greatest distance-dependence. However, is 

important to underscore that the distance-dependence associated with GSR is not the result 

of worsening associations with motion in certain connections. Instead, GSR de-noises with 

differential efficacy, with better performance for long-distance connections than for short-

range connections. This is most likely because GSR effectively captures by global artifacts 

which impact signal in distant brain regions. In contrast, GSR is less effective at removing 

regionally-specific artifact, which can specifically impact short-range corrections. The 

resulting distance-dependence that occurs with GSR can be mitigated by the addition of 

temporal censoring, with scrubbing demonstrating the greatest efficacy compared to spike 

regression or de-spiking (perhaps due to removing more volumes).

The model that resulted in nearly zero distance-dependence was ICA-AROMA. However, it 

should be noted that data processed using ICA-AROMA included substantially greater 

residual relationships with motion than models that included GSR and censoring (i.e., 28% 

compared to <1%). Furthermore, when GSR was added to ICA-AROMA, there were less 

edges related to motion but at a cost of an increased distance-dependence, which surpassed 

that seen with the 36-parameter + scrubbing pipeline.

Effective de-noising enhances network identifiability

In any de-noising process, it is important to evaluate the robustness of residual signal, not 

just the presence of residual noise. For example, a non-specific de-noising pipeline could 

potentially minimize the relationship between motion and connectivity, but also remove 

valuable signal simultaneously. Accordingly, a third benchmark to consider is network 
identifiability. In Ciric et al. (2017), we operationalized this idea by calculating the 

modularity quality of the network, which quantifies the presence of structured sub-networks 

in the data. As displayed in Figure 10, the 4 models that exhibited the strongest residual 

relationship with motion (6RPs, 24RP, wmLocal, and tCompCor) also were impaired in their 
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ability to reveal functional modules. This suggests that the presence of motion artifacts 

reduce network identifiability, most likely by blurring signal across functional communities.

Similarly, many of the models that yielded the best results in terms of minimizing the 

residual relationship with motion artifacts (i.e., QC-FC, as above) also performed well in 

terms of network identifiability. For example, models that combined higher-order confound 

regression (36P) and temporal censoring tended to have high network identifiability. Among 

temporal censoring techniques, spike regression and despiking performed better than 

scrubbing. Together, these results go some distance to allay the concern that these models 

are overly aggressive and risk removing too much signal along with motion-related noise.

Finally, both the 9P model and ICA-AROMA performed quite well in terms of network 

identifiability. In fact, the network modularity for the 9P model was numerically higher than 

both 36P+ despike and 36P + spike regression. However, the difference was quite negligible, 

and any small marginal benefit in terms of network identifiability should be considered in 

the context of substantially inferior de-noising efficacy. Overall, these results emphasize and 

that there is not a clear trade-off between de-noising efficacy and network identifiably. 

Rather, models that fail to provide effective de-noising tend to have poor network 

identifiability, and pipelines that successfully mitigate the influence of motion artifacts also 

allow preserved signal related to subnetwork structure. While speculative, we expect that 

there is likely to be an “inverted-U” shaped relationship between de-noising aggressiveness 

and network identifiability. However, the present data suggest current models only sample 

the “ascending limb” of this curve, and current techniques are not so aggressive that sub-

network topology is removed.

Controlling For Motion in Group Level Analyses

When faced with potentially confounding residual effects of motion on connectivity, 

investigators have frequently included motion as a covariate in group-level analysis. 

However, by definition, this approach will impede detection of connectivity features that are 

related to both the subject level variable of interest (e.g., age, disease status) and motion. 

Thus, inclusion of this as a model covariate is likely to reduce power, and potentially “over-

control” for artifacts. This possibility is supported by data showing connectivity differences 

in individuals who have a propensity for higher motion, even on independent scans where 

motion was matched to a comparator group (Zeng et al., 2014).

Given this effect, it is preferable to control for motion artifacts during subject-level 

processing. However, in large datasets with substantial statistical power, there may be a 

significant residual relationship with motion even when an effective processing pipeline was 

used. Thus, it is essential to include sensitivity analyses where motion is included as a 

group-level covariate, and also report associations with both the subject variable of interest 

(age, clinical group, etc.) and also the imaging measures of interest. It should be noted that a 

linear FD covariate will not control for nonlinear effects of motion or interactive effects with 

other subject level variables (e.g., group by motion interactions) unless they are specifically 

modeled (Power et al., 2013). Indeed, as illustrated by the example in the next section, 

combining a less-effective preprocessing pipeline and a single linear group-level covariate 
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may not provide adequate protection against the confounding effects of motion. One 

potential alternative to co-varying for motion is to instead correct for changes in global 

connectivity (GCOR; Saad et al., 2013); a highly similar approach is to co-vary for the mean 

of the connectivity matrix in group-level regression (“mean regress”; Yan et al., 2013a; Yan 

et al., 2013c). However, given the strong relationship between motion and mean 

connectivity, many of the same caveats described above regarding inclusion of mean FD as a 

covariate may be relevant for GCOR and mean regress as well.

The Confounding Impact of Motion Artifacts on Inference

Given the clear heterogeneity in the efficacy of commonly-used de-noising pipelines, it is 

not surprising that preprocessing choices can have a substantial impact on the conclusions of 

a study. This is particularly problematic when motion is strongly associated with the subject-

level variable of interest, such as age, sex, group status, or disease severity. As described 

below, recent studies have emphasized the degree to which motion can confound such 

inference.

The potential confounding effects of motion have been investigated most thoroughly in 

studies of brain development, where motion has a strongly negative association with age 

(i.e., younger kids move more). Indeed, two of the initial three reports regarding motion 

artifacts in functional connectivity highlighted the degree to which motion could inflate 

apparent developmental effects (Power et al., 2012a; Satterthwaite et al., 2012). For 

example, in Satterthwaite et al. (2014) we evaluated apparent age-related changes in 

connectivity, comparing a “standard” de-noising pipeline (Fox et al., 2005; the 9-paramter 

model, which includes 6RPs, WM, CSF, and GSR) and an “improved” pipeline (36-

parameter model + spike regression) (Satterthwaite et al., 2013). Furthermore, for each 

model, we examined age effects with and without the inclusion of mean FD as a group-level 

model covariate. In this sample, age has a small but highly significant correlation (r = -0.19, 

p < 0.001) with motion, even after stringent exclusion criteria are applied (i.e., a mean FD of 

0.2mm). As shown in Figure 11, this collinearity between age and motion can markedly 

inflate apparent developmental associations with connectivity. While de-noising with the 9P 

model and no FD covariate resulted in approximately 15% of edges having a significant 

(FDR Q<0.05) association with age, use of the 36P + spike regression model and a group 

level FD covariate reduced this to <5% of edges. Critically, simply adding a group-level FD 

covariate to the 9P model did not yield equivalent results; the 9P+covariate model had more 

significant associations with age than a 36P + spike regression model, even without a group-

level FD covariate. Furthermore, subsequent work has shown that the 9P model in fact out-

performs many other commonly-used pipelines, suggesting that age effects would be much 

higher if models such as tCompCor, wmLocal (ANATICOR), or 24P were used.

Other studies have demonstrated that the potential confounding effects of motion are not 

specific to studies of development. For example, in a recent paper using data from the 

Human Connectome Project, Siegel et al. demonstrated that observed associations between 

functional connectivity and various cognitive measures including fluid intelligence were 

inflated through their shared association with motion (Siegel et al., 2016). Associations 

between connectivity and IQ were highly significant when using the default HCP pipeline, 
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and markedly reduced when de-noising strategies including GSR and censoring were 

applied.

Conclusions

While there has been rapid progress in understanding the impact of in-scanner motion on 

studies of functional connectivity, it should be emphasized that most current studies of 

motion artifacts and de-noising (and all reviewed here) have primarily considered post-

processing strategies to mitigate the influence of artifact in data that has already been 

acquired. However, improvements in data acquisition have the potential to both reduce the 

presence of motion artifacts and also aid in de-noising. One promising approach is the use of 

dual (Bright and Murphy, 2013) or multi-echo acquisitions (Kundu et al., 2015; Kundu et al., 

2013). These techniques allow a better separation of signal and noise in the timeseries. 

Similarly, it should be emphasized that almost all data reviewed here were acquired using 

standard BOLD sequences that did not utilize multi-band acquisition techniques. While 

certain studies (such as Burgess et al., 2016) suggest that similar effects are likely to occur 

with multi-band data, this clearly merits further verification.

Additionally, while existing research suggests that motion impacts all commonly used 

measures of functional connectivity (Satterthwaite et al., 2012; Yan et al., 2013b), it remains 

poorly described whether certain outcome measures are more resistant to such artifact. For 

example, it is not known whether network edges defined using a Pearson's correlation (the 

most common method) are more or less impacted by motion than alternative approaches 

such as coherence (Gu et al., 2015) or mutual information (Zhou et al., 2009), or other 

measures of functional connectivity. Robust techniques that de-weight motion-related 

timeseries outliers could potentially be quite advantageous, but have not been rigorously 

investigated. Similarly, it remains unknown how recently-developed network-level 

representations such as sparse connectivity patterns (Eavani et al., 2014) compare to 

standard procedures such as ICA.

Additionally, further research is needed to understand how generalizable de-noising results 

are across acquisition sequences and scanning platforms. While one recent large-scale study 

regarding the impact of motion artifacts on the global signal suggests that associations are 

likely to be highly similar across acquisitions and sites (Power et al., 2016), replication of 

benchmarking results in multiple datasets would help ensure generalizability and increase 

investigator confidence in choosing a de-noising pipeline. However, preliminary results from 

a very large-scale study that includes 13 datasets and 64 processing pipelines suggests 

substantial convergence with several of the results reported here, including the benefit of 

GSR (Vogelstein and Milham, Personal Communication; see https://github.com/neurodata/

discriminability/blob/master/Draft/discriminability.pdf)

These caveats notwithstanding, recent work emphasize the marked performance 

heterogeneity of commonly-used pipelines. Notably, both GSR and temporal censoring 

techniques seem to be effective methods for minimizing the residual relationship between 

functional connectivity and motion artifacts. When GSR is used, investigators should be 

aware of worsening the distance-dependence of motion artifacts. However, it should be 
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emphasized that this is due to differential de-noising efficacy, and GSR does not induce 
motion artifacts. In contrast, temporal censoring mitigates such distance-dependence, thus 

enhancing the benefits of pairing censoring with GSR. Furthermore, available data suggest 

that the theoretical trade-off between de-noising and signal preservation is not particularly 

problematic for most commonly-used pipelines. Indeed, motion artifacts tend to obscure 

network topology, and pipelines that allow artifacts to be retained thus tend to have low 

network identifiability. Conversely, pipelines that combine GSR and censoring both 

minimize the relationship between motion and connectivity, and simultaneously allow better 

detection of functional sub-networks.

In considering available strategies, investigators should be aware of their relative strengths 

and weaknesses. Clearly, the relative merit of each approach will vary by research question 

and study design. For example, in studies of network organization, minimizing distance 

dependence and maximizing network identifiability may be of most interest. In these cases, 

ICA-AROMA appears to be an excellent choice, as it has high network identifiability and 

low distance dependence. In contrast, for studies of group or individual differences, 

minimizing QC-FC relationships is likely to be of paramount importance so as to limit the 

possibility of Type I error driven by motion artifacts. As illustrated above, this is a 

particularly relevant concern for studies of brain development, where motion is 

systematically related to age. For such studies, models that include both GSR and censoring 

are a good choice.

Lastly, it cannot be over-emphasized that use of a given confound regression pipeline does 

not alter the need for investigators to investigate and transparently report relevant data 

regarding associations with motion. Simple and intuitive plots are available for subject-level 

exploration (Power, 2016); while QC-FC plots are undeniably useful, group level statistics 

should not be a replacement for careful examination of subject-level data. Furthermore, all 

papers should clearly report the relationship between motion and both key subject variables 

as well as functional connectivity measures. Providing this information is a necessary 

prerequisite for confidence that reported findings are not driven by motion artifacts; group-

level sensitivity analyses incorporating motion as a covariate are also helpful. Moving 

forward, there is no doubt that additional gains will accrue in this rapidly-moving sub-field, 

but in the meantime such transparency remains critical.
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Figure 1. Commonly used of measures of frame displacement (FD) are highly correlated but not 
identical
While FD as calculated according to Power et al. (2012a) is correlated at a level of r = 0.99 

with the average root mean squared displacement calculated by Jenkinson et al (2002), the 

scaling varies by an approximately 2:1 ratio. Data from the sample of 393 youth described in 

Ciric et al., 2017.
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Figure 2. Spatial variation of motion artifacts
A) Motion is minimal in the center of the brain, and is maximal in frontal cortex. B) Voxel-

specific measures of motion are highly correlated with mean FD. Reprinted with permission 

(Satterthwaite et al., 2013).

Satterthwaite et al. Page 24

Hum Brain Mapp. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Spatial distribution and time course of motion artifacts
A) Motion reduces BOLD signal (blue, negative % signal change) throughout the brain 

parenchyma, but increases signal around the rim of brain (red, positive percent signal 

change). B) Motion produces a large reduction in global BOLD signal that is maximal in the 

volume following subject movement. The magnitude of signal reduction increases as motion 

amplitude increases (red, >0.3mm displacements; green, >0.5mm, blue >0.7mm). Results 

are from a fixed impulse response analysis of the global signal timeseries. Reprinted with 

permission (Satterthwaite et al., 2013).
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Figure 4. Motion increases signal magnitude at higher frequencies
When an effective confound regression model is used (36 parameters + spike regression), 

demographically-matched high and low motion groups diverge only at frequencies above 

0.08 Hz. Starred gray bar indicates a significant difference between magnitude of high and 

low motion groups at each frequency. Reprinted with permission (Satterthwaite et al., 2013).
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Figure 5. Global signal regression affects distance-dependence of motion artifacts
A) Plot of the correlation between mean FD and pairwise connectivity across subjects in a 

network of 160 ROIs (12,720 unique connections) versus inter-node Euclidean distance, 

when the global signal is not included in confound regression. Motion tends to increase 

connectivity between regions; this effect is maximal at short ranges but is present across the 

range of inter-region distance. B) Plot of the correlation between mean FD and pairwise 

connectivity in a network of 160 ROIs versus inter-node distance when the global signal is 
included in confound regression. In this model, motion increases connectivity between 

adjacent nodes, but diminishes connectivity between more distant nodes. However, when 

GSR is included in confound regression, on average the effect of motion on connectivity is 

diminished (i.e., centered around zero). Reprinted with permission from (Satterthwaite et al., 

2013).
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Figure 6. Confound regression of motion spikes
Spike regression was evaluated using a single-criterion identification method (FD, measured 

as mean relative RMS displacement in FSL; grey diamonds) and a dual-criteria method (FD 

+ DVARS; black circles). These two methods were tested over a range of windows (xb,yf 

denotes x TRs before spike, y TRs after spike). The single-criterion approach without an 

expanded temporal window (0b,0f) produced the least number of significantly different 

connections between high and low motion groups (A) and the lowest mean absolute 

correlation between FD (mean relative displacement) and functional connectivity (B). 

Reprinted with permission from (Satterthwaite et al., 2013).
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Figure 7. Schematic of the 14 de-noising models evaluated
For each of the 14 models indexed at left, the table details which processing procedures and 

confound regressors were included in the model. De-noising models were selected from the 

functional connectivity literature and represented a range of commonly-used strategies. 

Reprinted with permission (Ciric et al., 2017).
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Figure 8. Number of edges significantly related to motion after de-noising
Successful denoising strategies reduced the relationship between connectivity and motion. 

The number of edges (network connections) for which this relationship persists provides 

evidence of a pipeline's efficacy. A) The percentage of edges significantly related to motion 

(FDR Q<0.05) in a 264-node network (Power et al., 2011). Fewer significant edges is 

indicative of better performance. B) The percentage of edges significantly related to motion 

(Q<0.05) in a second, 333-node network (Gordon et al., 2014). C) Renderings of significant 

edges with QC-FC correlations of at least 0.2 for each de-noising strategy, ranked according 

to efficacy. Strategies that include regression of the mean global signal are framed in blue 

and consistently ranked as the best performers. Reprinted with permission (Ciric et al., 

2017).
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Figure 9. Distance-dependence of motion artifacts after de-noising
The magnitude of motion artifacts varies with the Euclidean distance separating a pair of 

nodes, with closer nodes generally exhibiting greater impact of motion on connectivity. A) 
The residual distance-dependence of motion artifacts in a 264-node network (Power et al., 

2011) following confound regression. B) The residual distance-dependence of motion 

artifacts in a second, 333-node network (Gordon et al., 2014). C) Density plots indicating the 

relationship between the Euclidean distance separating each pair of nodes (x-axis) and the 

QC-FC correlation of the edge connecting those nodes (y-axis). The overall trend lines for 

each de-noising strategy, from which distance-dependence is computed, are indicated in red. 

For each plot, the ordinate is rescaled to the data; thus, the ordinate does not reflect the 

width of the distribution of QC-FC correlations. The best performing models either excised 
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high-motion volumes (36-parameter + scrubbing) or used more localized regressors (ICA-

AROMA and wmLocal). In general, approaches that made use of GSR without censoring 

resulted in substantial distance-dependence. This effect was driven by differential efficacy of 

de-noising, with effective de-noising for long-range connections but not short-range 

connections. Reprinted with permission (Ciric et al., 2017).
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Figure 10. Identifiability of network structure after de-noising
Although de-noising approaches remove motion artifacts from BOLD time series, it is 

possible that they also remove signal of interest. We quantified the retention of signal of 

interest using the modularity quality of the de-noised connectome. A) The modularity 

quality in a 264-node network (Power et al., 2011) following confound regression. B) The 

modularity quality in a second, 333-node network (Gordon et al., 2014). ICA-, GSR-, and 

tissue class-based models performed relatively well, while models that allowed substantial 

noise to be retained (tCompCor, 6P, wmLocal, 24P; see Figure 8) were less able to identify 

network sub-structure. Reprinted with permission (Ciric et al., 2017).
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Figure 11. Inadequate de-noising inflates apparent associations with development in youth
A) Using a sample of 780 youth imaged as part of the PNC, the chart displays the number of 

statistically significant connections (FDR Q<0.05) within a network 34,716 unique edges 

(Power et al., 2011). Age effects were evaluated across four different analysis procedures, 

varying factors of subject-level confound regression and group-level covariation of motion. 

Standard confound regression included 9 parameters (6 realignment parameters + global, 

WM, CSF timecourses); improved confound regression included 36 parameters (i.e., 

standard parameters + their temporal derivatives, quadratic terms, and quadratic of 

derivative) as well as spike regression. Age effects were investigated at the group level either 

without a motion covariate or with motion (mean relative displacement) added as a 

covariate. Sex was included as a covariate in all models. B) Graphical representation of the 

42 connections that displayed significant age effects following improved preprocessing and 

group-level analysis with a motion covariate. Due to the large number of FDR-corrected 

significant connections, only connections that surpassed a Bonferroni-corrected statistical 

threshold (corrected p<0.05, uncorrected p<1.4×10−6) are displayed. Reprinted with 

permission (Satterthwaite et al., 2013).
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