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Abstract

Computer models can be useful in planning interventions against novel strains of influenza. 

However such models sometimes make unsubstantiated assumptions about the relative infectivity 

of asymptomatic and symptomatic cases, or conversely assume there is no impact at all. Using 

household-level data from known-index studies of virologically confirmed influenza A infection, 

the relationship between an individual’s infectiousness and their symptoms was quantified using a 

discrete-generation transmission model and Bayesian Markov chain Monte Carlo methods. It was 

found that the presence of particular respiratory symptoms in an index case does not influence 

transmission probabilities, with the exception of child-to-child transmission where the donor has 

phlegm or a phlegmy cough.
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Background

The emergence of several novel strains of influenza and respiratory viruses over the past 

decade has challenged public health systems [1,2]. Computational models can be useful 

tools when planning for epidemics, especially those caused by novel pathogens for which 

there is little evidence for the effectiveness of interventions. Examples where models’ 

predictions were subsequently validated empirically include the effectiveness of antiviral 

ring prophylaxis [3,4] and the closure of schools during influenza pandemics to slow down 

the spread of infection [5,6]. However, models are inherently limited by the accuracy of the 

data or assumptions used to construct them, and there are key unknowns that may impact the 

reliability of findings derived from modelling studies. For interventions against influenza 

pandemics, for instance, models need to make assumptions about the relative infectivity of 

asymptomatic or subclinical cases—these individuals are less likely to be detected by 

surveillance or to reduce their social contacts, and so may play an important role in 

propagating transmission. Many of the most influential models [7,8] assume that 

asymptomatic cases are half as infectious as symptomatic ones, an assumption that dates 

back to Elveback et al’s self-declared “guesstimate” in the 1970s [9], but which does not 

appear to have been substantiated by evidence then or since.

This study quantifies the relationship between an individual’s infectiousness and their 

symptoms, using household-level data in which index cases and their cohabitants had 

influenza A infection virologically confirmed and logged symptoms in a diary, and a 

discrete-generation transmission model combined with Bayesian Markov chain Monte Carlo 

methods.

Methods

Data

Data were obtained from household influenza studies conducted in Hong Kong between 

February 2007 and June 2009. These were from a community-based randomized controlled 

trial that recruited individuals with influenza-like-illness from outpatient clinics across Hong 

Kong, and their households. Detailed information on the study design can be found in [10]. 

Briefly: index cases were recruited into the study if they (i) experienced the onset of at least 

2 symptoms of acute respiratory illness (temperature ≥ 37.8°C, headache, myalgia or cough) 

within 48 hours, (ii) lived in a household with at least two individuals, none of whom had a 

reported acute respiratory illness in the previous 14 days and (iii) had a positive result using 

the QuickVue Influenza A + B rapid diagnostic test (Quidel, San Diego, California). At a 

later date, influenza was confirmed using either RT-PCR (during the 2008/2009 seasons) or 

viral culture (during 2007). The study involved three home visits over a period of 7–10 days. 

The first home visit occurred ideally within 36 hours of recruitment, during which nasal and 

throat specimens were collected from all consenting household members. Recruited 

individuals and household members were then asked to keep a self-reported daily symptom 

diary for approximately one week. Subsequent home visits occurred 3 and 6 days after 

recruitment, to collect additional nasal and throat specimens from household members. All 

specimens were tested by RT-PCR (during the 2008/2009 seasons) or viral culture (during 

2007).
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All index cases with laboratory confirmed influenza A (either RT-PCR or culture) were 

identified. For each of these individuals and their household members, we extracted from 

their symptom diaries the presence of the following respiratory symptoms: sore throat, 

cough, runny nose, phlegm, or the combination of cough and phlegm; missing values 

(~1.5% of symptoms) were treated as indicating symptom absence. Household members 

were considered to display evidence of infection if they had laboratory confirmed influenza 

A during follow up as the accuracy of these tests is high (~90% sensitivity and ~80% 

specificity, [11]). Individuals were categorized as being adults if aged over 18. The dataset 

used in the models has 462 influenza A cases (331 index cases and 131 secondary cases).

Model

We developed an age structured chain binomial model [12] with transmission probabilities 

that varied by symptom presence. This model was separately fit to each symptom one at a 

time. This represents transmission as occurring in discrete infection generations, with those 

infected on generation g able to infect those as yet uninfected on generation g + 1 but not on 

subsequent generations. The transmission probability from individual i of age group ai(= 0 if 

i is a child and 1 otherwise), where i has symptoms if si = 1 and not if 0, to individual j, is 

. These 8 risks were modelled as free parameters.

Infection of those uninfected within the household at each generation is assumed to be 

independent, with risk from multiple sources compounding, i.e. if  is the set of infection 

in generation g, infection to  is with probability . Transmission 

ends when no new infections occur in any generation.

Four variants of the basic model were considered—no symptoms, half infectious, free 
parameter and multiple symptoms. The first ignored symptoms to obtain baseline 

transmission risks by age category of infective and household member. The second fixed the 

infectivity of asymptomatic cases at half that of symptomatic cases (as in Elveback et al [9] 

and more recent papers). The free parameter model by contrast has an additional class of 

parameters that accounts for any respiratory symptoms present. The multiple symptoms 
model used the number ni of respiratory symptoms for each case i with infection risk 

, truncated to [0,1] and the probability of infection varies with the 

number of symptoms.

For all models, the likelihood function could be evaluated directly if the generation of each 

infection were known. This happens if only the index fulfils case criteria, or if the index and 

one cohabitant do. For more infections, the order of infection must be explored, either by 

summing the probabilities of all infection generation combinations, or by data augmentation 

[13], i.e. treating the unobserved generation as an additional parameter to estimate (more 

details in the Supporting Information). As there were households with four infections, we 

used the latter, for it was more computationally efficient than the former when the number of 

combinations was large.

Flat priors over [0,1] for all proportions were taken (or on [−10,10] for the parameters of the 

multi-symptom model) and a Markov chain Monte Carlo algorithm was used to sample the 
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resulting posterior. This used 10 chains each of 100 000 iterations with every 100th iteration 

retained and convergence assessed by visual inspection of trace plots. Posterior samples 

were converted to obtain equal tailed 95% credible intervals (CI) for relevant estimands, and 

the distribution of risks with and without symptoms were compared by the posterior 

distribution of absolute difference in transmission risk. No adjustment for multiple 

estimation was attempted.

We screened for the model that fits the data best of the candidate models we considered 

using Deviance Information Criteria (DIC) described by Gelman et al [14]. All analyses 

were performed in the R statistical environment with a custom-designed script.

Results

The risk of transmission from an infected child to a second child was 21.9% (95%CI 14.5–

30.2%), higher than the corresponding risk to a cohabiting adult (11.4%, 95%CI 9.1–14.2%; 

relative risk 1.9, 95%CI 1.2–2.8). Adults were less likely than children to transmit infection 

to other adults (6.9%, 95%CI 4.4–10.1%; relative risk 0.6, 95%CI 0.3–0.96) or to children 

(10.0%, 95%CI 4.5–18.0%; relative risk 0.5, 95%CI 0.2–1.0).

Estimated transmission risks from either adults or children to adults were not strongly 

affected by any of the respiratory symptoms assessed (Figure 1, Table 1), which may have 

modulated transmission potential by at most 8.4 percentage points (from adults) or 13 

percentage points (from children). There was much less certainty in the effect of adult 

symptoms on transmission potential to children (Figure 1). In contrast, there was clear 

evidence that the presence of phlegm or a phlegmy cough in children was associated with an 

increased risk of infection among other children in the household (20 percentage points 

(95%CI 3.1–35) for phlegm, 21 percentage points (95%CI 3.2–34) for phlegm and cough). 

The effect of cough and runny nose was in the same direction, though the sample sizes did 

not permit confirmation. The presence of a sore throat among infected children did not 

notably increase transmission risk to other children.

For the model that assessed the effect of total number of symptoms, ignoring their type, the 

number of symptoms was not associated with infection risk, with nonsignificant effect sizes 

ranging from −0.5% to 0.6% depending on the age combinations.

There was moderate to strong support in favour of the no symptom effect model compared 

to the models that allowed the infectivity of those with symptoms to be arbitrarily higher 

(ΔDIC = 6.02) or twice (ΔDIC = 2.67) that of the asymptomatic individuals and to a model 

that considered the presence of multiple symptoms (ΔDIC = 57.57).

Discussion

Our results suggest that the presence of particular respiratory symptoms in influenza-

infected individuals does not influence transmission probabilities, unless there is child to 

child transmission. Additionally, the number of symptoms present does not influence 

transmission probabilities, whether treated linearly or dichotomised (not shown). Taken 

together these results suggest that the absence of any particular symptoms in an influenza 
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case, or the overall number of symptoms, might not be associated with a decreased risk of 

infectivity. This is an important finding, as several influential influenza A models assume 

that symptomatic cases are twice as infectious as asymptomatic cases [7,8].

Our results however reveal that the presence of specific respiratory symptoms, notably 

phlegm or a cough with phlegm, in paediatric index cases increases their risk of transmitting 

influenza A to other children. The occurrence of this phenomenon may be explained by 

studies finding that children are more likely to spread infection to other household members, 

as well as the notion that children are more at risk of influenza A infection due to their 

increased susceptibility and higher rate of contact with potentially contaminated surfaces 

[15,16]. It is possible that a more sophisticated analysis that pooled information between 

symptoms might illuminate the effect of other symptom presentations, but the lack of 

statistical significance for the models combining symptoms suggests otherwise, unless the 

sample size were substantially larger.

There are several assumptions underlying our study. Due to the study design we were unable 

to correct for pre-season antibody levels, or for the possibility that an asymptomatic case 

preceded the assumed index. However, other studies have shown that even after correcting 

for preseason HI titres, children have an elevated risk of household infection compared to 

adults [17], and the impact of prior immunity or cryptic indices is likely to impact the risk of 

infection but not the difference due to symptom presentation. We assumed that households 

are independent of each other, which is plausible in the absence of spatial clustering of 

recruited household, and that all secondary household cases obtained influenza from the 

index case.

The method of recruitment into this study has inherent selection bias, favouring index cases 

that have severe enough symptoms to seek medical assistance from their healthcare provider, 

and high enough viral loads to have a laboratory confirmed case of influenza A. Index cases 

were recruited if they experienced the onset of at least 2 symptoms of acute respiratory 

illness, so the effect of any one symptom could be confounded by the presence of the other 

symptom whose presence codetermines enrolment eligibility. Despite these limitations, this 

study suggests that assumptions in modelling papers about the rate of asymptomatic 

transmission may need to be reviewed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The effects of respiratory symptoms on the transmission risks from either adults or children 

to adults or children. Points are posterior medians, curves are posterior distributions 

truncated to within 95% credible intervals. Differences are in probability of infection 

between combinations of ages (children (C) and adults (A)).

Wardell et al. Page 7

Epidemiol Infect. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wardell et al. Page 8

Ta
b

le
 1

T
he

 e
st

im
at

ed
 tr

an
sm

is
si

on
 r

is
ks

 f
ro

m
 e

ith
er

 a
du

lts
 o

r 
ch

ild
re

n 
to

 a
du

lts
 o

r 
ch

ild
re

n 
w

ith
 o

r 
w

ith
ou

t s
ym

pt
om

s.

Sy
m

pt
om

s
P

at
h‡

R
is

k 
w

it
ho

ut
 S

ym
pt

om
s

R
is

k 
w

it
h 

Sy
m

pt
om

s
A

bs
ol

ut
e 

R
is

k 
D

if
fe

re
nc

e

M
ed

ia
n

95
%

 C
I†

M
ed

ia
n

95
%

 C
I†

M
ed

ia
n

95
%

 C
I†

C
ou

gh

C
 ⟶

C
0.

12
(0

.0
09

5,
0.

36
)

0.
25

(0
.1

6,
0.

36
)

0.
13

(−
0.

12
,0

.2
9)

C
 ⟶

A
0.

12
(0

.0
61

,0
.2

1)
0.

11
(0

.0
8,

0.
14

)
−

0.
01

5
(−

0.
1,

0.
05

4)

A
 ⟶

C
0.

23
(0

.0
7,

0.
47

)
0.

09
1

(0
.0

34
,0

.1
9)

−
0.

14
(−

0.
38

,0
.0

41
)

A
 ⟶

A
0.

06
(0

.0
19

,0
.1

3)
0.

07
6

(0
.0

45
,0

.1
2)

0.
01

6
(−

0.
05

7,
0.

07
2)

C
ou

gh
 w

ith
 P

hl
eg

m

C
 ⟶

C
0.

07
1

(0
.0

06
,0

.2
3)

0.
28

(0
.1

9,
0.

4)
0.

21
(0

.0
32

,0
.3

4)

C
 ⟶

A
0.

14
(0

.0
87

,0
.2

)
0.

1
(0

.0
71

,0
.1

3)
−

0.
04

1
(−

0.
11

,0
.0

22
)

A
 ⟶

C
0.

12
(0

.0
37

,0
.2

4)
0.

13
(0

.0
45

,0
.2

7)
0.

01
7

(−
0.

14
,0

.1
7)

A
 ⟶

A
0.

05
8

(0
.0

25
,0

.1
1)

0.
08

3
(0

.0
46

,0
.1

3)
0.

02
4

(−
0.

03
5,

0.
08

2)

Ph
le

gm

C
 ⟶

C
0.

06
5

(0
.0

05
7,

0.
22

)
0.

28
(0

.1
7,

0.
39

)
0.

2
(0

.0
31

,0
.3

5)

C
 ⟶

A
0.

15
(0

.0
88

,0
.2

2)
0.

1
(0

.0
73

,0
.1

3)
−

0.
04

6
(−

0.
13

,0
.0

22
)

A
 ⟶

C
0.

06
5

(0
.0

09
1,

0.
18

)
0.

17
(0

.0
73

,0
.3

2)
0.

11
(−

0.
03

8,
0.

26
)

A
 ⟶

A
0.

06
1

(0
.0

25
,0

.1
2)

0.
07

8
(0

.0
43

,0
.1

2)
0.

01
6

(−
0.

04
7,

0.
07

5)

R
un

ny
 N

os
e

C
 ⟶

C
0.

07
6

(0
.0

03
,0

.2
9)

0.
25

(0
.1

6,
0.

36
)

0.
17

(−
0.

05
4,

0.
31

)

C
 ⟶

A
0.

12
(0

.0
47

,0
.2

3)
0.

11
(0

.0
83

,0
.1

4)
−

0.
00

78
(−

0.
13

,0
.0

7)

A
 ⟶

C
0.

23
(0

.0
52

,0
.4

6)
0.

1
(0

.0
4,

0.
19

)
−

0.
12

(−
0.

38
,0

.0
64

)

A
 ⟶

A
0.

06
1

(0
.0

19
,0

.1
3)

0.
07

4
(0

.0
44

,0
.1

1)
0.

01
3

(−
0.

05
9,

0.
06

8)

So
re

 th
ro

at

C
 ⟶

C
0.

3
(0

.1
7,

0.
45

)
0.

18
(0

.0
88

,0
.3

)
−

0.
11

(−
0.

29
,0

.0
59

)

C
 ⟶

A
0.

11
(0

.0
71

,0
.1

6)
0.

11
(0

.0
79

,0
.1

5)
0.

00
13

(−
0.

05
5,

0.
05

7)

A
 ⟶

C
0.

18
(0

.0
65

,0
.3

6)
0.

08
1

(0
.0

21
,0

.1
9)

−
0.

1
(−

0.
28

,0
.0

53
)

A
 ⟶

A
0.

08
5

(0
.0

43
,0

.1
4)

0.
06

2
(0

.0
33

,0
.1

1)
−

0.
02

2
(−

0.
08

4,
0.

03
5)

† Po
st

er
io

r 
m

ed
ia

ns
 o

f 
th

e 
es

tim
at

ed
 tr

an
sm

is
si

on
 p

ro
ba

bi
lit

ie
s 

w
ith

 th
e 

co
rr

es
po

nd
in

g 
95

%
 c

re
di

bl
e 

in
te

rv
al

s 
(C

I)
.

‡ T
he

 a
rr

ow
s 

in
di

ca
te

 th
e 

tr
an

sm
is

si
on

 p
at

hw
ay

s 
of

 in
fl

ue
nz

a 
A

 w
ith

 th
e 

do
no

r 
on

 th
e 

le
ft

 a
nd

 th
e 

in
he

ri
to

r 
on

 th
e 

ri
gh

t. 
C

 ⟶
A

 w
ou

ld
 r

ep
re

se
nt

 a
 c

hi
ld

-t
o-

ad
ul

t t
ra

ns
m

is
si

on
.

Epidemiol Infect. Author manuscript; available in PMC 2018 March 01.


	Abstract
	Background
	Methods
	Data
	Model

	Results
	Discussion
	References
	Figure 1
	Table 1

