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Abstract

Background—In treatment planning for intensity-modulated proton therapy (IMPT), we aim to 

deliver the prescribed dose to the target yet minimize the dose to adjacent healthy tissue. Mixed-

integer programming (MIP) has been applied in radiation therapy to generate treatment plans. 

However, MIP has not been used effectively for IMPT treatment planning with dose-volume 

constraints. In this study, we incorporated dose-volume constraints in an MIP model to generate 

treatment plans for IMPT.

Methods—We created a new MIP model for IMPT with dose volume constraints. Two groups of 

IMPT treatment plans were generated for each of three patients by using MIP models for a total of 

six plans: one plan was derived with the Limited-memory Broyden–Fletcher–Goldfarb–Shanno 

(L-BFGS) method while the other plan was derived with our MIP model with dose-volume 

constraints. We then compared these 2 plans by dose-volume histogram (DVH) indices to evaluate 

the performance of the new MIP model with dose-volume constraints. In addition, we developed a 

model to more efficiently find the best balance between tumor coverage and normal tissue 

protection.

Results—The MIP model with dose-volume constraints generates IMPT treatment plans with 

comparable target dose coverage, target dose homogeneity, and the maximum dose to organs at 

risk (OARs) compared to treatment plans from the conventional quadratic programming method 

without any tedious trial-and-error process. Some notable reduction in the mean doses of OARs is 

observed.
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Conclusions—The treatment plans from our MIP model with dose-volume constraints can meet 

all dose-volume constraints for OARs and targets without any tedious trial-and-error process. This 

model has the potential to automatically generate IMPT plans with consistent plan quality among 

different treatment planners and across institutions and better protection for important parallel 

OARs in an effective way.
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1. Introduction

Proton therapy, which has been used to treat cancer since the 1950s, offers many clinical 

advantages compared with the conventional radiation therapy, such as x-rays or electron 

beams. Compared with intensity-modulated radiation therapy (IMRT), intensity-modulated 

proton therapy (IMPT) can deliver highly conformal dose distributions to the target yet spare 

organs at risk (OARs). Therefore, IMPT can greatly reduce the risk of OAR damage and 

increase the chance of local control of cancer [1, 2].

In treatment planning for IMPT, we aim to deliver the prescribed dose to the target yet 

minimize the dose to adjacent OARs. Dose-volume constraints are used in most modern, 

commercial treatment planning systems, such as Raystation (RaySearch Laboratories), 

Eclipse (Varian Medical Systems), and Pinnacle (Philips Radiation Oncology Systems, 

Philips Healthcare), to generate clinically acceptable treatment plans. These treatment 

planning systems all use quadratic programming models for optimization and many reports 

have described their use in radiotherapy. Wu and Mohan [3] implemented soft dose-volume 

constraints by quadratic programming, with the dose-volume constraints in the objective 

function. Falkinger et al [4] proposed a prioritized optimization algorithm for IMPT 

planning. Gradient-based methods [3] and a genetic algorithm [5] have also been used to 

generate treatment plans. Xing et al [6] reported a method for estimating the parameters for 

the nonlinear objective function and the corresponding algorithm used to determine those 

parameters. Chen et al [7] developed a database-generation procedure for IMPT treatment 

planning.

These methods all use soft constraints and require input of initial optimization parameters, 

for example, penalty weights, to achieve the best balance between tumor coverage and 

normal tissue protection. As a result of the soft constraints applied in those methods, the 

desired dose volume constraints may not be rigidly satisfied in the generated results. In 

addition, the parameters they used are determined based on the planner’s experience. 

Therefore, many time-consuming trial and error iterations are needed to get the optimal 

initial optimization parameters. Ferris et al [11] showed that trial-and-error methods for 

IMRT are impractical because of the complexity of treatment planning and that use of mixed 

integer programming (MIP) is a more efficient method to ensure that the treatment plan 

meets the clinical requirements. In addition, hard constraints used in linear programming 

minimize the variation in plan quality among different treatment planners and across 

institutions, which is important for multiple institution clinical trials.
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Linear programming can model clinic requirement in a mathematical model by linear 

relationships. Linear programming is a special case of mathematical programming, which is 

to optimize a linear objective function, subject to linear equality and linear inequality 

constraints. Additionally, we need to introduce integer variables to deal with dose volume 

constraints since patients’ geometry is voxelized. Therefore, mixed integer programming is a 

very good way for IMPT problem. Compared to quadratic programming, we can use linear 

programming to explicitly implement hard constraints for IMPT with the cost of complexity 

of models and more extensive computation time. Many investigators have studied the use of 

MIP in radiotherapy. For example, Cao et al [8] used MIP for optimizing the beam angle to 

deal with the uncertainties in various scenarios. To improve the plan quality in IMPT, 

Zaghian et al [9] proposed an iterative approach that could satisfy the dose-volume 

constraints in MIP. Tuncel et al [10] derived strong inequalities for MIP in IMRT. Rocha et 

al [12] proposed a programing approach for IMRT using binary integers and obtained a plan 

with improved quality. Romeijn et al [13] proposed a MIP model for IMRT, in which the 

dose-volume constraints are explicitly enforced. However, scant research exists regarding 

how to apply MIP to IMPT treatment planning with dose-volume constraints (except 

Zaghian et al [9]).

In this study, we propose a new method to apply the MIP model with dose-volume 

constraints to the IMPT treatment planning. In the MIP model, we can specify hard dose 

volume constraints on tumors and OARs. The generated treatment plan can satisfy all the 

dose volume constraints for tumors and OARs if any feasible solution exists.

In our MIP model we will specify the dose volume constraints for tumors and OARs in the 

optimization. If the tumor constraints (tumor coverage and homogeneity) are too stringent, 

there may not be a feasible solution. On the other hand, if the tumor constraints are too 

loose, the resultant plan is not optimal in tumor dose distribution even though it meets all the 

requirements for all normal tissue protection. Therefore, given the same normal tissue 

constraints, it is important to find the best tumor dose volume constraint parameters in MIP. 

Again one could use trial and error process to get as good parameters as possible. However it 

is time consuming and the best result is not guaranteed. In this work, we have further 

developed a new method to automatically find the best parameters of tumor dose volume 

constraints in MIP to solve this problem.

2. Model and Formulation

2.1. Patient data and beam configurations

We retrospectively generated IMPT plans for 3 patients: 1 pediatric patient with prostate 

rhabdomyosarcoma (prescription dose, 45 Gy) and 2 patients with head and neck (H&N) 

cancer (prescription dose, 60 Gy or 68 Gy). These three cases are typical clinic cases, and in 

practice it is hard to generate good plans to meet all the dose volume constraints for these 

three cases due to the close proximity of critical organs to tumors. We have chosen them to 

demonstrate the effectiveness of our model. The corresponding dose-volume constraints 

used in our clinic are shown in Table 1. The dose covering a percentage of the structure’s 

volume (D%) derived from the structure’s dose-volume histogram (DVH) was compared. 

The planning target volume (PTV) was formed by uniform expansion of the clinical target 
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volume (CTV) by 5 mm for the prostate rhabdomyosarcoma case and by 3 mm for the H&N 

cases. The PTV D95% and D5%–D95% were used to assess tumor dose coverage and 

homogeneity, respectively. Three beams were used for all three patients. The number of 

beamlets in each structure is also included in Table 1. A resolution of 5 mm was used in the 

dose calculation and optimization.

For each patient, we used 2 optimization methods to generate IMPT plans with identical 

dosimetric goals: the MIP model and quadratic programming method. The optimization 

software, IBM CPLEX (version 12.5) [13] was used to solve the MIP problems. We also 

generated IMPT plans for the same patients using a quadratic programming model solved by 

the Limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) method. L-BFGS is a 

limited-memory quasi-Newton code for unconstrained optimization. L-BFGS is similar to 

the classical gradient descent method, but it uses some approximation to minimize the 

memory overhead. Therefore it is particularly well suited for optimization problems with a 

large number of variables. IMPT treatment planning involves a huge number of variables 

(usually as large as 50,000), thus it is a good application for L-BFGS. Currently the new 

version of the commercial treatment planning system, Eclipse™, has an option to use L-

BFGS as an optimizer. Thus we believe that it is a good idea to benchmark our new method 

with the L-BFGS method. Please note that we used the same beamlets (influence matrix) for 

both quadratic programming and MIP for fair comparison.

2.2. Implementation of dose-volume constraints

For each voxel i within each structure  (tumors are denoted as T),  and 

denote the prescribed dose value and the plan dose, respectively, and  is the percentage of 

the structure volume covered by a certain prescribed dose . In addition,  denotes the 

total number of voxels of the structure , and  (upper) and  (lower) are the 

prescribed doses covering the corresponding  (upper) and  (lower) percentage of the 

volume of the target, respectively. For example, by specifying the  to be 0.95, the 

becomes D95%. The binary decision variables  denote whether the dose at the 

voxel i is less than the prescribed dose value ( ) or not ( ), and 

denotes the binary decision variables for all voxels (i=1, 2, …, n).

The dose-volume constraints are specified for normal organs or for hot spots and cold spots 

in tumors. The dose-volume constraints limit the percentage of the structure volumes with 

doses exceeding the prescribed dose value to be less than or equal to the specified value of 

 or . In addition, to ensure the specified dose-volume constraints are met for cold 

spots in tumors, we limit the percentage of the tumor volumes that receive lower doses than 

the prescribed dose value to be less than or equal to the specified value of . The MIP 

formulation follows (called Model 1 hereafter),

(1a)
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(1b)

(1c)

(1d)

(1e)

(1f)

(1g)

(1h)

(1i)

(1j)

(1k)

(1l)
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(1m)

(1n)

(1o)

where M is a sufficiently large positive number. The role of M is to make the inequality hold 

when the term associated with M takes a value of 1 (i.e., . We can choose M to be the 

upper bound of all possible  for OARs and  for targets. For the cases included in this 

research, it is set to be 100 Gy[RBE]. It is worth noting that it is better not to set M too large, 

because as M becomes larger, all the constraints, which contain M, become less contingent, 

and thus the computation time becomes longer. The objective (1a) is to minimize the total 

dose deviation on tumors. Instead of the quadratic objective function, we used the absolute 

value to compute total dose deviation. Constraints (1b) and (1c) together are to decide 

whether the dose at a voxel i of a normal organ I exceeds the prescribed dose  or not. If 

the dose at a voxel i of a normal organ I does not exceed the prescribed dose , then the 

corresponding binary variable  is 0. Otherwise, the corresponding binary variable  is 1. 

This is facilitated by a sufficiently large positive number M. The role of M is to ensure that 

the constraints hold when y variable is 1. Constraints (1d) are the dose-volume constraints 

for OARs with the help of the binary variable , determined by (1b) and (1c). We limit the 

percentage of the organ I volumes with doses exceeding  to be less than or equal to . 

Similarly, constraints (1e) to (1g) are the dose-volume constraints for tumor hot spots. We 

limit the percentage of the tumor volumes with doses exceeding  to be less than or equal 

to . Constraints (1h) to (1j) are for the dose-volume constraints for tumor cold spots. 

Eqs. (1k) and (1l) represent the total dose to each voxel from all beamlets, and  are 

continuous variables representing the jth beamlet intensity (fluence), while the influence 

matrix, , is the dose contribution of the beamlet j of unit intensity at voxel i. The 

influence matrix is pre-calculated using an in-house developed IMPT dose calculation 

engine [14, 15]. Constraints (1m) and (1n) are the constraints for the binary decision 

variables.

Note that in the objective function, we only include terms for tumors but no terms for OARs, 

this is because all desired constraints for OARs are included in the constraints in the model 

(unlike quadratic programming, the dose volume constraints are usually included in the 

objective function as “soft constraints”). Note that in our model, we have products of 

continuous variables and binary variables. This kind of nonlinear terms can be linearized by 

introducing one additional continuous variable and additional constraints. For example, we 

can linearize  by introducing variable , constant M (large enough) and following 

constraints:
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We have modelled all requirements as hard constraints. In practice, this can ensure all the 

dose volume constraints. Usually, target coverage may be satisfied to satisfy constraints for 

some critical organs such as spinal cord and brain stem. In such situation, we can always 

change the parameters in the constraints to achieve the best balance with the “trial-and-

error” procedure.

2.3. Minimizing the trial-and-error procedure

There is a drawback to our MIP model with dose volume constraints. After we set the dose-

volume constraints for structures, the original optimization problem (Model 1) might not 

have feasible solutions. We have to try different values for D5% and D95% to find the best 

balance between target coverage and protection of OARs, which can ensure good 

homogeneity. If the values are too stringent, Model 1 becomes infeasible; if the values are 

too loose, the resulting plan is not optimal for the tumor dose distribution. Therefore, it is 

important to find ways to obtain the best values of  and so that we obtain the 

optimal balance.

One potential way to acquire optimal parameters is to use the trial-and-error procedure by 

solving Model 1 with different values for  and ; however, this procedure is tedious 

and optimal results are not guaranteed. In this section, we propose the following method to 

find the best parameters for tumors given the same dose volume constraints for normal 

tissues. In the following explanation, we are going to take the prostate case as an example. If 

, the  becomes D95%, and the  becomes D5%. We propose a new 

way to obtain the best parameters more efficiently (called Model 2 hereafter) to minimize 

the trial and error process as follows,

(2a)

(2b)

(2c)

(2d)
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(2e)

(2f)

(2g)

(2h)

(2i)

(2j)

(2k)

(2l)

(2k)

(2l)

(2o)

The  and  are the new decision variables for the dose-volume constraints of the cold and 

hot spots for tumors, respectively. We minimize their difference to ensure that we achieve 
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the best balance. The objective (2a) is to minimize the difference between the dose of the 

cold and hot spots for tumors. Constraints (2b) and (2c) together are to decide whether the 

dose at a voxel i of a normal organ I exceeds the prescribed dose  or not. If the dose at a 

voxel i of a normal organ I does not exceed the prescribed dose , then the corresponding 

binary variable  is 0. Otherwise, the corresponding binary variable  is 1. This is 

facilitated by a sufficiently large positive number M. Constraints (1d) are the dose-volume 

constraints for OARs with the help of the binary variable , determined by (2b) and (2c). 

We limit the percentage of the organ I volumes with doses exceeding  to be less than or 

equal to . Similarly, constraints (2e) to (2g) are the dose-volume constraints for tumor hot 

spots. We limit the percentage of the tumor volumes with doses exceeding  to be less than 

or equal to . Constraints (2h) to (2j) are for the dose-volume constraints for tumor cold 

spots. Eqs. (2k) and (2l) represent the total dose to each voxel from all beamlets, and  are 

continuous variables representing the jth beamlet intensity (fluence), while the influence 

matrix, , is the dose contribution of the beamlet j of unit intensity at voxel i. Constraints 

(2m) and (2n) are the constraints for the binary decision variables. Constraints (1o) enforce 

the nonnegativity of x variables.

3. Results

We have used Model 2 to determine the best parameters for all 3 cases. The optimal values 

derived are supplied to Model 1 to generate the plans for these three cases. Figure 1 shows 

the DVH results for the pediatric patient with prostate rhabdomyosarcoma, and Figures 2 

and 3 show the DVH results for the patients with H&N cancer. The corresponding DVH 

indices are also shown in Table 1 with the corresponding dose volume constraints.

From figure 1, 2 and 3, by comparing DVH results of normal organs and tumors, we can see 

that our results provide comparable tumor dose coverage, tumor dose homogeneity and the 

maximum doses to OARs. At the same time, the mean doses of OARs are notably reduced. 

Another interesting observation is that the DVHs from the MIP method tend to be 

discontinuous, compared to the DVHs from the L-BFGS method.

Figure 4 shows the typical result of the dose distribution at one CT slice. Green line is for 

the CTV, cyan line is for the brainstem, red line is for the prescription iso-dose line (68 Gy) 

and dark blue line is for the iso-dose line of 54 Gy. We can clearly see the better brainstem 

protection from our model. However, small part of the tumor volume is underdosed. In the 

prostate case, after we enforced the dose-volume constraints in the MIP model, D25% of the 

rectum and the bladder improved with dose-volume constraints. However, protection of the 

rectum and bladder came at the cost of tumor coverage. The D95% of the tumors decreased 

in our result from MIP model than that from the quadratic programming method. For both 

H&N cases, interestingly both D98% and D2% – D98% of the tumors are improved with better 

protections of all the normal tissues from our model.

4. Discussion

The MIP model with dose-volume constraints can generate treatment plans that meet all 

dose-volume requirements for OARs. The new model can generate IMPT treatment plans 
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with comparable target dose coverage, target dose homogeneity, and the maximum dose to 

OARs compared to treatment plans from the conventional quadratic programming method 

without any tedious trial-and-error process. Some notable reduction in the mean doses of 

OARs is observed.

In addition, Model 2 is very effective to find the optimal parameters for obtaining the best 

balance between the tumor coverage and OAR sparing. The dose-volume constraints for the 

OARs are rigid especially for some important organs like spinal cord and brain stem. In 

some scenarios tumor coverage may have to be sacrificed slightly to meet the dose volume 

constraints for these important organs.

To demonstrate our method, we have set constraint parameters to certain values to show that 

the plans generated from our proposed method meet our institution’s dose volume 

constraints. We can certainly modify these parameters of dose volume constraints to achieve 

different results to protect normal organs better or relax the requirements for normal organs’ 

protection so that to improve the tumor coverage. This is a medical decision and thus the 

user should be able to modify the corresponding parameters of dose volume constraints to 

achieve the desired plan depending on the patient specific clinical priority. Alternatively we 

can achieve the soft constraints in linear programming using so-called “fuzzy logic based 

optimization”, which will generate the best normal tissue protection given the fixed tumor 

coverage without any tedious trial-and-error process. This is the on-going research in our 

group. On the other hand, we can include soft constraints in the objective function in 

quadratic programming as proposed by Wu and Mohan [3]. This is the most popular way to 

implement the dose volume constraints in radiotherapy planning.

Generally, the maximum dose of normal tissue from the model with the dose-volume 

constraints is comparable to that from the quadratic programming method. However, the 

mean dose of some normal tissues is remarkably reduced (see Figure 1, 2, and 3). This might 

be important for the sparing of some important parallel organs such as parotids, oral cavity, 

total lung etc. Interestingly from Fig. 1, 2 and 3 the DVHs from the MIP method tend to be 

discontinuous, while the DVHs from the L-BFGS method are smooth. We speculate that this 

might be due to the hard constraints used in the MIP method and we believe that these 

insignificant discontinuities would not be clinically important.

Our MIP model only needs to run once to achieve the results, while quadratic programming 

method may need to run several times to get a better result (i.e., trial-and-error). We have 

done “trial-and-error” in quadratic programming to get the best results and compared the 

best results from quadratic programming with results from the MIP model. This shows the 

advantage of our model that the tedious “trial-and-error” process is not needed in our 

proposed method.

This advantage can be explained in more detail. The dose-volume constraints are hard in 

contrast to the soft constraints used in the conventional, heuristic methods. Our method uses 

an accurate model that produces a better result more efficiently. Our model ensures that the 

dose-volume constraints are rigidly met for both OARs and tumors. After solving our model, 

the optimal solution can satisfy all the dose-volume constraints because of these hard 
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constraints. On the other hand, the result from any heuristic algorithm cannot guarantee that 

all the dose-volume constraints are met. Meeting the constraints can improve protection for 

OARs and thus can lead to better quality of life for patients. The proposed model can also 

inform the treatment planner that no optimal solution exists because of too stringent tumor 

dose constraints before we start to solve the problem. Heuristic methods do not have this 

capability. In addition, the iterations of the trial-and-error process used in heuristic methods 

are time-consuming, and an optimal result is not guaranteed, while our second model can 

derive the best parameters for generating plans with the best balance between tumor 

coverage and protection of OARs.

We also compared the beam intensity results from our model with those from a quadratic 

programming model solved by the L-BFGS method. Interestingly, the number of beamlets 

with nonzero intensity was much lower in our linear model than in a nonlinear model, which 

is consistent with other reports [8]. Fewer beamlets with nonzero intensity will improve the 

delivery efficiency, which is another advantage of our linear model.

Given the dose volume constraints of normal tissues, in some situations too stringent tumor 

dose constraints would make the Model 1 infeasible; while in some situations too loose 

tumor dose constraints would lead to undesired tumor dose distribution. Therefore it is 

important to set proper tumor dose constraint parameters in our MIP model. We used Model 

2 to determine the optimal tumor dose constraint parameters that would achieve the best 

balance between tumor dose coverage and OAR sparing more efficiently. In all of our 

example cases, Model 2 allowed a much better balance than the conventional trial-and-error 

procedure. It also turns out that Model 2 always achieves satisfactory tumor dose 

distributions, which meet the tumor dose-volume constraints at least for the three clinical 

cases included in this study. We believe that the use of Model 2 would improve the quality of 

treatment plans.

Our model has certain limitations. First, a complex problem requires substantial time to 

reach a final, optimal solution, so we currently terminate the optimization if we have a 

feasible solution, whose objective value is within a certain gap tolerance compared to the 

optimal solution. In our examples, we can get a feasible solution with 50% gap within two 

hours in all cases (for the case of patient 3, we get the optimal result within 5 seconds). We 

believe that we can significantly improve the efficiency of our current model by using either 

Benders’ decomposition [16] or parallel computing.

5. Conclusion

We have proposed a model that can generate treatment plans meeting all the requirements 

for dose-volume constraints of OARs without any tedious trial-and-error process. This 

model has the potential to automatically generate IMPT plans with consistent plan quality 

among different treatment planners and across institutions and better protection for 

important parallel OARs in an effective way.
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We are working toward developing more efficient algorithms that will allow us to use the 

model for patient population study. To incorporate robust optimization in linear 

programming for IMPT treatment planning is also another future research direction.
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Figure 1. 
DVH for the patient 1 with pediatric prostate rhabdomyosarcoma

Zhang et al. Page 13

J Appl Clin Med Phys. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
DVH for patient 2 with H&N cancer
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Figure 3. 
DVH for patient 3 with H&N cancer
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Figure 4. 
Dose distribution results at one CT slice for patient 2: MIP model with dose-volume 

constraints (left) and quadratic model solved by L-BFGS method (right). Green: Clinical 

target volume (CTV), Cyan: Brain stem. Red: prescription iso-dose line (68 Gy[RBE]), Dark 

Blue: iso-dose line of 54 Gy[RBE]. MIP model with dose-volume constraints generated a 

plan with much better brain stem protection at the cost of slight tumor underdosage.
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Table 1

Dose-volume Constraints

Structure
Dose Volume Constraints
(Gy[RBE])

Achieved Values from MIP
(Gy[RBE])

Achieved Values from L-BFGS
(Gy[RBE])

Prostate (with 3837 beamlets)

 Planning target volume D95% >44 44 44

 Planning target volume D5%–D95% <2 1.6 2

 Bladder D25% < 45 44.2 44.5

 Femoral heads D10% < 28 12.4 14.1

 Rectum D25% < 45 45 44.8

H&N, case 1 (with 7773 beamlets)

 Planning target volume D98% > 59 60 59.3

 Planning target volume D2%–D98% < 2 0 1.3

 Whole brain D1% < 62 60 59.5

 Brain stem D1% < 55 55 53

 Optic chiasm D1% < 55 55 56.1

H&N, case 2 (with 9905 beamlets)

 Planning target volume D98% > 67 68 67.6

 Planning target volume D2%–D98% < 2 0 0.8

 Brain stem D1% < 55 25.2 24.3

 Mucosa avoid D1% < 30 15.4 16.3

 Spinal cord D1% < 45 20.2 21.9
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