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Abstract

We provide an overview of the relative merits of ratio measures (relative risks, risk ratios, and rate 

ratios) compared with difference measures (risk and rate differences). We discuss evidence that the 

multiplicative model often fits the data well, so that rarely are interactions with other risk factors 

for the outcome observed when one uses a logistic, relative risk, or Cox regression model to 

estimate the intervention effect.

As a consequence, additive models, which estimate the risk or rate difference, will often exhibit 

interactions. Under these circumstances, absolute measures of effect, such as years of life lost, 

disability- or quality-adjusted years of life lost, and number needed to treat, will not be externally 

generalizable to populations other than those with similar risk factor distributions as the 

population in which the intervention effect was estimated. Nevertheless, these absolute measures 

are often of the greatest importance in public health decision-making.

When studies of high-risk study populations are used to more efficiently estimate effects, these 

populations will not be representative of the general population’s risk factor distribution. The 

relative homogeneity of ratio versus absolute measures will thus have important implications for 

the generalizability of results across populations.

In part one of this two-part commentary, the sixth in this series, we provide an overview of 

the considerations involved in the choice of the intervention effect estimator, primarily but 

not exclusively focusing on the relative merits of ratio measures (relative risks, risk ratios, or 

rate ratios), compared with difference measures (risk or rate differences). These terms are 

defined in the box on the next page.

Nearly all studies we are aware of in population health, including public health evaluations, 

are designed to obtain accurate and precise measures of the primary measure of effect, 

which may sometimes mean forfeiting generalizability. By design, the distribution of the 
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covariates will not be representative of any general population of interest, as it is through 

these distributions that a high-risk population is obtained. This principle has been exploited 

in epidemiology to often favor cohort and case–control studies in high-risk populations 

because of either high exposure levels or high background risk—for example, uranium 

miners in the study of the health effects of radon progeny3—or in populations in which loss 

to follow-up and misclassification can be expected to be minimized, such as the Nurses’ 

Health Study.4 Both of these strategies provide cost-and time-efficient means for obtaining 

high-quality effect estimates. This foundational epidemiological design principle has made it 

possible for an enormous amount of information about risk factors for most common 

diseases to have been obtained over the past 35 years.

The logistic regression model became quite popular in population sciences because it is very 

stable numerically and may give odds ratio parameter estimates that quite closely 

approximate the risk ratio when exponentiated. As is well established, the odds ratio is not a 

parameter of interest in public health research.5 However, in cohort studies aimed at 

estimating the cumulative incidence of disease by the end of follow-up and in cumulative-

incidence-sampled case–control studies, if the disease risk is less than 10%, unless the 

intervention has a very strong effect, the odds ratio will well approximate the risk ratio; 

otherwise, it tends to overestimate it. When the intervention effect is weak or moderate, the 

logistic approximation to the risk ratio will often provide sufficient accuracy for disease 

risks even greater than 10%.6,7 However, important examples in which the logistic 

approximation has led us astray have been given.8,9 The rare disease assumption is obviated 

when rates are the measure of disease frequency in cohort studies and in incidence-density, 

or risk-set-sampled case–control studies. The appendix (available as a supplement to the 

online version of this article at http://www.ajph.org) contains a more in-depth overview of 

these points.

THE DOMINANCE OF THE MULTIPLICATIVE MODEL

Expressions for the additive and multiplicative models are provided in the box on the next 

page. Although models 1 and 2 in the box on the next page are interchangeable, this is not 

the case when one needs to adjust for confounding, as in models 3 and 4, located in the box 

on the next page. In fact, if model 3, the multiplicative model, fits the data and the risk 

difference is of interest, there will be modification of the risk difference by each of the 

confounders, except in the absence of an effect of the confounders or in the absence of an 

effect of the exposure itself. This is quite an undesirable situation because, as is well known, 

when effect modification is present, it is desirable to report effects by each level of the 

jointly cross-classified modifiers, or some sort of averaging or standardization procedure 

must be used to obtain an externally generalizable effect estimate.2

DEFINITIONS AND MODELS

The risk ratio, also known as the relative risk (RR), is the ratio of the risk, probability, or 

cumulative incidence of a health outcome of interest in the exposed, treated, or 

intervention group, r1, divided by the same in the unexposed or control group, r0. The risk 
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difference (RD) subtracts the health outcome risk in the control group from the health 

outcome risk in the intervention group. That is,

(1)

As a relative measure of effect, the RR is most directly estimated by the multiplicative 

model when it fits the data. The risk difference is an absolute measure of effect, most 

directly estimated by the additive model when it fits the data. Cumulative incidences, 

risks, and proportions are synonyms. Rates, such as mortality rates or disease incidence 

rates, are used as outcome measures when censoring, staggered enrollment, or competing 

risks are in play. The interpretation of a risk depends critically upon the duration of 

follow-up over which it is calculated. Their primary disadvantage is more difficulty in 

interpretability, as they require units of person-time, which can be difficult to explain to 

nontechnical audiences.

In an individually randomized intervention of sufficient sample size, straightforward 

methods for a single 2×2 table can be used to estimate RRs and RDs, as there is no need 

to adjust for confounding. Alternatively, in an individually randomized intervention 

design, the risk ratio can be modeled on the multiplicative scale as

(2)

where Yi is the binary outcome upon which the intervention is focused, Xi is 1 if the 

participant was randomized to the intervention and 0 otherwise, eb1 is the relative risk 

and greater than 1 otherwise, eb0 is the risk in the control group, and E[·] denotes the 

expected value, which for binary data are equivalent to the outcome model probability. If 

the difference measure is of interest, the risk difference can be modeled on the additive 

scale as

(3)

where the risk difference is α1. The parameters of models 1 and 2 have a one-to-one 

correspondence; thus, from the point of view of validity, in individually randomized 

studies with no loss to follow-up, staggered entry, or competing risks, the choice between 

the ratio or difference measure—that is, the choice between model 1 and 2, does not 

matter, and α0 = eβ0 and α1= eβ0+β 1 − eβ0.

Things change when confounding needs to be considered. As discussed in a previous 

column in this series,1 in cluster-randomized studies, unless there is a large number of 

clusters or outcome rates between clusters are relatively constant, residual between-

cluster confounding is likely. Then, to validly estimate the intervention effects, models 1 

and 2 need to be expanded:
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(4)

where C1ij, …, Cpij are the p covariates measured in the study that are needed to validly 

estimate the intervention effect, the relative risk, eb1, for the ith participant in cluster j. A 

similar model could be fit if the risk difference were the parameter of interest:

(5)

Further details on definitions and models are given in the appendix, available as a 

supplement to the online version of this article at http://www.ajph.org.

Although models 1 and 2 are interchangeable in the sense that a simple algebraic 

transformation of one leads to the other as shown here, this is not the case when 

confounding needs to be adjusted for, as in models 3 and 4. In fact, if model 3 fits the 

data and the risk difference is of interest, except under the null, there will be modification 

of the risk difference by each of C1ij, …, Cpij, not just individually but jointly by all of 

their higher order interactions. This is quite an undesirable situation because, as is well-

known, when effect modification is present, it is desirable to report effects by each level 

of the jointly cross-classified modifiers, or some sort of averaging or standardization 

procedure must be used to obtain a marginal effect estimate.2 Otherwise, if model 3 fits 

the data, but a difference measure is of primary interest, model 2 could be fit to the data 

and the average risk difference obtained would be applicable only to the study population 

at hand in a randomized trial and those with identical, or at least similar, joint 

distributions of the covariates, C1ij, …, Cpij.

With these basic principles established and further elaborated in the appendix (available as a 

supplement to the online version of this article at http://www.ajph.org) we can now move to 

considerations driving the choice of the model within which the intervention effect is to be 

estimated. Our recommendation is simple—let the data tell us on which scale to fit the 

model. If the data fit the multiplicative model best—that is, by using the log or logistic link 

function—then that is what must be done, and similarly if the additive model provides the 

better fit. Methods for formal statistical determination of relative goodness of fit between 

nonnested models such as these are underdeveloped. An informal comparison of log-

likelihoods of the fits of models 3 and 4 will indicate that the model associated with the 

largest log-likelihood is the one with the best fit.

Parsimony is an additional source of information: if the log-link function provides a model 

with no interaction terms, particularly none with the intervention variable, and the identity 

link function provides a model that needs many interaction terms, finite sample statistical 

stability will be obtained by choosing the former. Also of importance, the poor fit of additive 

models to most studies of binary health outcomes is underscored by the common experience 

that such models often fail to converge.
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Although more formal quantitative work is needed, there is extensive anecdotal evidence 

that suggests that often in public health the multiplicative models fit the data well. The first 

author has published nearly 650 peer-reviewed scientific publications in a diverse range of 

substantive areas including chronic disease epidemiology, HIV/AIDS, and environmental 

health, and, for nearly all of these, her primary contribution to the research was that of the 

study statistician. In almost all of these, the multiplicative model fit the data consistently and 

extraordinarily well. The second author, who has devoted much of his methodological work 

to interaction, has numerous examples of interaction on additive scales but, in more than 230 

articles, can think of only two examples of multiplicative interaction that replicated across 

studies (e.g., VanderWeele et al.10).

These impressions are further confirmed by other senior researchers: our department chair, 

Albert Hofman, has informed us that he cannot think of a single important multiplicative 

modifier uncovered during his long research career among his more than 2000 scientific 

articles. Similarly, Walter Willett, former chair of Harvard’s nutrition department, could 

think of four multiplicative modifiers among more than 1700 scientific publications.

Despite an enormous amount of research on gene–environment interactions on the 

multiplicative scale, very few have yet been found and replicated.11,12 Recent careful 

modeling of potential gene–environment interaction in breast cancer research likewise 

indicated little evidence of multiplicative interaction.13 This is, of course, anecdotal 

evidence that could be confirmed with a more systematic and far-reaching study, but the 

anecdotal evidence comes from very many studies.

Summaries of meta-analyses have also reported higher rejection rates for risk difference 

homogeneity than risk-ratio homogeneity,14,15 although it is unclear whether statistical 

power favors the heterogeneity test on one scale versus the other.16,17 There may also be 

mathematical reasons for greater homogeneity of risk ratios than risk differences.17 

Although further and more formal quantitative work evaluating the relative degree of 

heterogeneity for risk ratio versus risk differences may be important, the previously 

mentioned considerations do seem to provide some indication that, for whatever reason, risk 

ratio modification is uncommon. Importantly, this implies that risk difference modification is 

nearly universal, a point to which we will return, mostly in part two of this commentary, to 

appear in a future edition of this journal.

Air Pollution Exposure and All-Cause Mortality

To illustrate these points, we analyzed data from the Nurses’ Health Study looking at the 

relationship over time between fine particulate matter of 2.5 micrometers or less (PM2.5) 

exposure, a constituent of air pollution that has been found to be particularly toxic, and all-

cause mortality.18 Among 628 186 person-years between 2000 and 2006, 8617 deaths 

occurred among 108 767 nurses. A Poisson regression model with the identity link function, 

with adjustment for five-year age groups, was used to fit the additive model, and the Cox 

model was used to fit the multiplicative model, with age in months as the time scale. As is 

our typical experience fitting additive models, the model gave a warning message and it is 

uncertain if the results provided are indeed the maximum likelihood estimates, although they 

may be. Table 1 provides the results on the multiplicative and additive scales. A significant 
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association is observed on the multiplicative scale, but not on the additive scale, consistent 

with an overall poor model fit on this scale. As is often the case, there is no evidence for any 

modification of the effect of PM2.5 by either age or race on the multiplicative scale. As 

expected, therefore, there are substantial and significant additive interactions of the PM2.5 by 

both age and race. To the extent that they are interpretable, the strong additive interactions 

will have important implications for the quantification and interpretation of absolute effects, 

which will be discussed in the next column in this series.

INTERNAL AND EXTERNAL VALIDITY

Internal validity occurs in the absence of bias attributable to confounding, measurement 

error or misclassification, and selection bias, such that the “in-sample” effect estimate 

accurately approximates its underlying true value.

External validity occurs when an estimate is both internally valid and applicable to a 

broader population to which it is thought to be relevant.

It has proven difficult to find examples in the literature in which the additive model fit the 

data and (negative) interaction was evident on the multiplicative scale, but examples 

certainly do exist; two such recent examples can be found in Crump et al.19 and Colangelo et 

al.20

The Search for Interactions

Best practice in the analysis of data, including data from randomized studies, involves 

investigation of modification of the effect of primary interest by the other strong 

determinants of the outcome and any other a priori suspected modifiers. This is 

recommended because there is no a priori reason to assume that the model chosen to fit to 

the data is linear in the chosen link function—that is, that there is no effect measure 

modification. The term “measure” is inserted here because effect modification is scale-

dependent. Again, no effect modification of the risk ratio almost certainly suggests effect 

modification of the risk difference, and vice versa.

Nevertheless, a number of well-known pitfalls associated with statistical significance tests 

and related procedures complicate the implementation of this best-practice recommendation. 

First, there is the multiple comparisons problem, in which the probability of a chance 

significant finding increases as the number of statistical tests performed increases. Many 

chronic diseases and other health outcomes of interest to public health investigators have 20 

or more known or suspected risk factors. Under the global null of no effect modification by 

any of these, in any given study, on average, one should manifest as a statistically significant 

modifier at the P less than or equal to .05 level of significance. Thus, it is additionally 

recommended that for exploratory investigation of effect modification among known and 

suspected risk factors for the outcome, any significant findings should be reported with 

caution, as is recommended for exploratory analysis in general.

Correcting for multiple comparisons can also often offset any optimism that an interaction 

has been detected. Often significant effect modification discovered through exploratory 
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analysis will fail to be replicated. This phenomenon has been well-documented in the gene-

by-environment interaction literature in which many such disappointments have occurred.11 

Sometimes, it appears that interactions associated with P values less than .05 occur less than 

5% of the time. For example, in the Pooling Project of Diet and Cancer in Men and 

Women,21 we systematically worked through most of their hypothesized dietary causes of 

the major types of cancer—breast, colon, lung, ovarian, pancreatic, and renal. Pooling of 

initially eight studies to up to more than 30 presently, from around the world, we have 

diligently checked for effect modification on the multiplicative scale for each dietary 

exposure of interest with respect to the other major risk factors for the cancer, but Stephanie 

Smith-Warner, the leader of this project, recalls two among hundreds of diet–cancer 

endpoint associations investigated. What we mostly showed was that the effect modification 

reported in a small number of publications by individual studies was most likely attributable 

to random variation and failed to replicate in the pooled analysis, illustrative of the multiple 

comparison problem.

Next, there is the problem, in large studies and in pooled analyses, meta-analyses, and the 

analysis of data from consortia, that the tests for effect modification can be “overpowered,” 

whereby significant interactions can be observed for very small departures from the null 

hypothesis of no effect modification. For example, in a recent article on the population 

attributable risk of modifiable post-menopausal breast cancer risk factors among 8421 cases 

and 2 400 000 person-years of follow-up in the Nurses’ Health Study, among scores of 

possible two-way interactions among 13 well-established breast cancer risk factors, three 

were significant at P less than or equal to .05.22 Among these, none had any material 

importance whatsoever—that is, magnitudes of the differences between relative risks for one 

risk factor among levels of another were too small to be of any consequence. This is a 

judgment call that needs to be made by researchers leading large studies, including public 

health researchers in the context of evaluation of large-scale interventions.

Finally, there is the “under-powering” issue. As most evaluations are not designed with 

effect modification in mind, they are justifiably not powered to detect it. Given budgetary 

constraints, it is typically a struggle to design a sufficiently powerful evaluation aimed at 

accurate and reliable estimation of the main intervention effect. Powering subgroup analysis 

is simply prohibitive in most situations.23,24

FUTURE DIRECTIONS AND CONCLUSIONS

In summary, it is best to estimate intervention effects on the scale that best fits the data, 

which seems very often to be the multiplicative scale. Importantly, whenever the results are 

internally valid, if effect modification is absent across measured and unmeasured 

confounders, then results are externally generalizable as well. The box on page 1090 

provides definitions of internal and external validity. Even when ratio measures are used for 

modeling, various absolute measures will often be of interest for public health decision-

making. In the next commentary in this series, we will discuss options for the selection of an 

absolute effect measure and methods for producing externally valid ones for public health 

and policy purposes. Questions of effect estimation for precision public health25 also will be 

addressed in part two of this commentary.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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