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Abstract

Cross-population covariance of brain morphometric quantities provides a measure of inter-areal 

connectivity, as it is believed to be determined by the coordinated neurodevelopment of connected 

brain regions. Although useful, structural covariance analysis predominantly employed bulky 

morphological measures with mixed compartments, whereas studies of the structural covariance of 

any specific subdivisions like myelin are rare. Characterizing myelination covariance is of interest, 

as it will reveal connectivity patterns determined by coordinated development of myeloarchitecture 

between brain regions. Using myelin content MRI maps from the Human Connectome Project, 

here we showed that the cortical myelination covariance was highly reproducible, and exhibited a 

brain organization similar to that previously revealed by other connectivity measures. Additionally, 

the myelination covariance network shared common topological features of human brain networks 

like small worldness. Furthermore, we found that the correlation between myelination covariance 

and resting-state functional connectivity (RSFC) was uniform within each resting-state network 

(RSN), but could considerably vary between RSNs. Interestingly, this myelination covariance-

RSFC correlation was appreciably stronger in sensory and motor networks than cognitive and 

poly-modal association networks, possibly due to their different circuitry structures. This study has 

established a new brain connectivity measure specifically related to axons, and this measure can be 

valuable to investigating coordinated myeloarchitecture development.
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Introduction

Cross-population covariance of brain morphometric measures, such as gray matter density or 

cortical thickness, has been frequently utilized to study brain connectivity (Alexander-Bloch, 

et al., 2013a; Lerch, et al., 2006; Mechelli, et al., 2005), based on the rationale that 

synchronized morphological changes measured by structural covariance is determined by 

coordinated neurodevelopment of connected brain regions (Alexander-Bloch, et al., 2013b). 
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Indeed, the structural covariance analysis has revealed multiple network architectures in both 

adult (Evans, 2013; Guo, et al., 2015; He, et al., 2007) and developing brains (Alexander-

Bloch, et al., 2013b; Zielinski, et al., 2010).

Previous structural covariance analysis predominantly used bulky morphological measures 

without differentiating separate compartments, whereas our knowledge of the structural 

covariance of a specific cortical component like myelin content remains rather limited 

(Accolla, et al., 2014; Carmeli, et al., 2014; Hunt, et al., 2016). Bridging this knowledge gap 

is of great interest, as characterizing myelination covariance will reveal connectivity patterns 

determined by coordinated development of myeloarchitecture between brain regions.

In mammals, myelin around axons plays a critical role in the central and peripheral nervous 

systems, as it is essential for efficient propagation of action potentials (Vanderah, et al., 

2016). Myelin density is highly variable across the cortex as revealed by meta-analysis of 

postmortem histology data (Nieuwenhuys and Broere, 2016). In addition to spatial 

variability of myelin density within a given subject, variability of myelination across 

subjects has been reported (Van Essen and Glasser, 2014). Therefore, analysis of cross-

subject myelination covariance can provide a new method to measure inter-areal 

connectivity specifically pertinent to axonal properties. In addition, this connectivity 

measure allows brain networks to be constructed, and the organizational architecture of such 

networks can be studied accordingly. Moreover, it is of interest to investigate how cross-

subject myelination covariance between brain regions relates to their functional connectivity 

measured by techniques like resting-state functional magnetic resonance imaging (rsfMRI), 

as such effort will shed light onto the structure-function relationship in the human brain 

connectivity.

Recent progress of in vivo MRI has made it possible to non-invasively map the 

myeloarchitecture of the human brain at high spatial resolutions. Specifically, quantitative 

T1 images were found to reflect myelin content as measured by histology (Bock, et al., 

2009). Quantitative T2* maps were also correlated with the distribution of cortical myelin in 

the human brain (Cohen-Adad, 2014; Cohen-Adad, et al., 2012). Enhanced myelin contrast 

was further achieved using the map of T1w/T2w ratio, in which uncorrelated noise in T1w 

and T2w images can be cancelled (Glasser and Van Essen, 2011). This (T1w/T2w ratio) 

myelin mapping method has been widely used in neuroimaging studies, which has revealed 

a critical role of myeloarchitectonics in brain function (Abdollahi, et al., 2014; Grydeland, et 

al., 2013).

In the present study, we systematically characterized cross-individual myelination 

covariance of the human cerebral cortex using myelin maps of 881 subjects from the Human 

Connectome Project (HCP), WU-Minn Consortium. We identified large-scale myelination 

covariance patterns using independent component analysis (ICA). The whole-brain 

myelination covariance network was further constructed, and its topological organization 

was investigated using graph theory. Finally, the relationship between myelination 

covariance and resting-state functional connectivity (RSFC) was quantitatively evaluated.
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Materials and Methods

Dataset

MRI data used in the present study were obtained from the ‘900 Subjects Data Release’ of 

the Human Connectome Project (HCP, https://www.humanconnectome.org/) (Van Essen, et 

al., 2013). T1w/T2w ratio myelin maps were generated using HCP preprocessed structural 

MRI data of 881 healthy subjects (387 males and 494 females; age 22 to 37) (Glasser, et al., 

2016; Glasser and Van Essen, 2011). rsfMRI data used were group-averaged grayordinate-

wise RSFC matrix, obtained from the HCP ‘Extensively Processed fMRI Data’ of 820 

healthy subjects, which is a subgroup of aforementioned 881 subjects (367 males and 453 

females; age 22 to 37 (Smith, et al., 2013a; Smith, et al., 2014).

All data were acquired on a 3T Siemens Skyra MRI scanner. T1w structural images were 

acquired using the 3D magnetization-prepared rapid acquisition gradient echo (3D-

MPRAGE) sequence with the following parameters: repetition time (TR) = 2400 ms, echo 

time (TE) = 2.14 ms, flip angle = 8°, field of view (FOV) = 224 mm × 224 mm, voxel size = 

0.7 × 0.7 × 0.7 mm3 (Glasser, et al., 2013). T2w structural images were acquired using the 

3D sampling perfection with application-optimized contrast using different flip-angle 

evolutions (3D-SPACE) sequence with the following parameters: TR = 3200 ms, TE = 565 

ms, FOV = 224 mm × 224 mm, voxel size = 0.7 × 0.7 × 0.7 mm3 (Glasser, et al., 2013). 

rsfMRI images were acquired using a multi-band echo-planar imaging (EPI) sequence with 

the following parameters: TR = 720 ms, TE = 33.1 ms, flip angle = 52°, FOV = 208 mm × 

180 mm, matrix size = 104 × 90, voxel size = 2 × 2 × 2 mm3, slice number = 72, slice 

thickness = 2 mm, multiband factor = 8 (Feinberg, et al., 2010; Glasser, et al., 2013; Moeller, 

et al., 2010; Setsompop, et al., 2012). More details of the HCP data acquisition protocols can 

be found elsewhere (Glasser, et al., 2013). The HCP project was approved by the 

Institutional Review Board (IRB) of Washington University, and informed consent was 

obtained from each subject. All reported analyses in the present study were also approved by 

the IRB of the Pennsylvania State University.

Image preprocessing

HCP structural MRI data preprocessing was carried out using HCP minimal preprocessing 

pipelines including the PreFreeSurfer, FreeSurfer, and PostFreeSurfer pipelines. Details of 

these pipelines can be found in (Glasser, et al., 2013) and (Fischl, 2012). Registration of 

individual brains to the 2 mm-resolution standard space of CIFTI grayordinates was 

performed by the Multimodal Surface Matching algorithm based on areal features (MSM-

All) of cortical folding, myelin and RSFC maps (Glasser, et al., 2016; Robinson, et al., 2014; 

Smith, et al., 2013b). This method was found to substantially improve the cross-subject 

registration quality, which consequently rendered remarkably sharper group-average results 

(Glasser, et al., 2016; Robinson, et al., 2014; Smith, et al., 2013b). Measurement of myelin 

content was achieved by taking the ratio of T1w over T2w images on a voxel-by-voxel basis 

(Glasser, et al., 2014; Glasser, et al., 2013; Glasser and Van Essen, 2011).

HCP rsMRI data preprocessing was conducted using fMRIVolume and fMRISurface 

pipelines (Glasser, et al., 2013), ICA+FIX denoising (Griffanti, et al., 2014; Salimi-
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Khorshidi, et al., 2014), MELODIC’s Incremental Group Principal Component Analysis 

(MIGP PCA) (Smith, et al., 2014), and Wishart roll-off correction (Glasser, et al., 2016). 

The fMRIVolume pipeline performed gradient-nonlinearity-induced geometric distortion 

correction, head motion correction, cross-modal registration to T1w images, normalization 

to the MNI space, and grand mean intensity normalization (Glasser, et al., 2013). The 

fMRISurface pipeline entered fMRIVolume processed data into the standard CIFTI 

grayordinate space and surface smoothed the data with an FWHM of 2 mm (Glasser, et al., 

2013). The MSM-All algorithm was used to register individual brains into the standard 

space. Artifacts caused by subject motion, cardiac pulsation and the scanner were further 

cleaned by the ICA+FIX pipeline (Griffanti, et al., 2014; Salimi-Khorshidi, et al., 2014). 

Demeaned and variance normalized preprocessed time series were concatenated temporally 

for group analyses, and the MELODIC’s Incremental Group Principal Component Analysis 

(MIGP PCA) algorithm was applied to the concatenated data for dimensionality reduction 

(Smith, et al., 2014). Wishart roll-off correction was performed on MIGP PCA series for 

removing ripple artifact previously found in the group-average results (Glasser, et al., 2016). 

Group-averaged grayordinate-wise RSFC was computed on these PCA series using Pearson 

cross correlation. More details about computing this group-averaged dense RSFC can be 

found in (Glasser, et al., 2016). All image preprocessing procedures mentioned above were 

carried out by the HCP and these preprocessed data are publicly available in ConnectomeDB 

(https://db.humanconnectome.org/).

Extraction of myelination covariance patterns using ICA

Large-scale myelination covariance patterns in the cortex were extracted using ICA. Each 

subject’s myelin map was first normalized (i.e. zero mean and unit variance) (Shafee, et al., 

2015). Normalized myelin maps of all 881 subjects were concatenated into a 59412 × 881 

matrix. Each element of this matrix contained the value of myelin content (i.e., T1w/T2w 

ratios) of a grayordinate (59412 cortical grayordinates in total) for a subject (881 subjects in 

total). A single-session ICA was then performed on this concatenated matrix using FSL’s 

MELODIC tool (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC) (Beckmann, et al., 2005; 

Guo, et al., 2015). The number of independent components was estimated to be 332 using 

the method of Laplace approximation to the model evidence (Lap) (Beckmann and Smith, 

2004). As a result, the whole-brain myelin content matrix was decomposed into 332 ICA 

component maps and a mixing matrix (881 subjects by 332 sources). Two out of 332 

independent components were identified as artifactual components, based on the criterion 

that the spatial covariance patterns of these two components were dominated by single 

subjects (i.e., a single subject had a weight (>15) far greater than any other subjects). Indeed, 

the spatial maps of these two artifactual components failed to show any meaningful patterns 

that could be captured by any anatomical or functional brain structures. These two 

artefactual components were regressed out from the myelin content matrix.

Calculation of the myelination covariance matrix

Myelination covariance between each pair of cortical grayordinates was quantified using the 

Pearson cross-correlation coefficient of their myelin content across all 881 subjects. This 

calculation generated a 59412 × 59412 grayordinate-wise myelination covariance matrix.
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Reproducibility of myelination covariance

Reproducibility of myelination covariance was assessed by a split-group approach. All 881 

subjects were randomly divided into two subgroups: subgroup 1 of 440 subjects (193 males 

and 247 females) and subgroup 2 of 441 subjects (194 males and 247 females). No family 

members were assigned to both subgroups in order to ensure subgroup independence. 

Grayordinate-wise myelination covariance matrix was independently computed for each 

subgroup. Reproducibility of myelination covariance was evaluated by Pearson correlation 

of the corresponding grayordinate-wise myelination covariance values between the two 

subgroups.

Construction of the myelination covariance network

The myelination covariance-based brain network was constructed using brain parcels from a 

multi-modal parcellation of the human cerebral cortex (360 parcels) as nodes (Glasser, et al., 

2016). First, the within-parcel homogeneity of myelination covariance was quantified to 

assess the suitability of this parcellation scheme for constructing the myelination covariance-

based network. For each grayordinate in a given parcel, the Pearson cross-correlation 

coefficient was computed between the myelin content of this grayordinate and the mean 

myelin content of all grayordinates within the parcel across subjects. This correlation 

coefficient was then Fisher Z-transformed and averaged across all grayordinates within the 

parcel. This averaged Z value was transformed back to r value, which was used to quantify 

the within-parcel homogeneity.

Edges of the myelination covariance network were defined using significant myelination 

covariance between parcels. For each subject, the myelin content of each parcel was first 

quantified by regionally averaging the myelin content of all grayordinates within the parcel. 

This step obtained a 360 × 881 data matrix. Second, the myelination covariance between 

each pair of parcels was quantified by the Pearson cross-correlation coefficient between their 

parcel myelin content across all subjects, which generated a between-parcel myelination 

covariance matrix (360 × 360). The statistical significance of between-parcel myelination 

covariance was thresholded at a false discovery rate (FDR) of 0.05 (Genovese, et al., 2002).

Graph analysis of the myelination covariance network

Fundamental global graph properties describing network segregation (average clustering 
coefficient and modularity), network integration (characteristic path length and global 
efficiency), network resilience (assortativity) and small-worldness were calculated at each 

connection density in the range from 0.2 to 0.8 with a step size of 0.01. Specifically, the 

modularity was calculated based on the Louvain community detection algorithm (Blondel, et 

al., 2008). For each density, the myelination covariance network was binarized. Average 
clustering coefficient, characteristic path length and global efficiency were also normalized 

to a random network at the same density, generated by randomizing the original binarized 

network, and this process was iterated for 1000 times. Brain Connectivity Toolbox (https://

sites.google.com/site/bctnet/) was used to compute all these graph metrics. Detailed 

definitions of these metrics were reported in (Rubinov and Sporns, 2010).
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Evaluation of the relationship between myelination covariance and RSFC

The relationship between myelination covariance and RSFC was grayordinate-by-

grayordinate evaluated based on the spatial similarity between whole-brain cortical 

connectivity profiles measured by myelination covariance and RSFC, respectively. For each 

cortical grayordinate, its whole-brain cortical connectivity profiles were separately obtained 

by its cortical myelination covariance and RSFC with all other cortical grayordinates. The 

spatial similarity between the two profiles was then quantified by their Pearson correlation 

coefficient. This analysis generated a spatial map of the correlations between myelination 

covariance and RSFC profiles. To control for the influence of the myelin content variance on 

the between-profile correlation, group-averaged grayordinate-wise values of myelin content 

were also regressed out from this between-profile correlation map. These between-profile 

correlation maps (i.e. without or with the regression of myelin content) were compared 

against well-established RSNs defined by a RSFC-based parcellation (Gordon, et al., 2016).

Results

Reproducibility of grayordinate-wise myelination covariance

We first show that cross-subject myelination covariance was highly robust. Fig. 1a displays 

the grayordinate-wise cortical myelination covariance matrix (59412×59412) that contained 

the myelination covariance value between every pair of cortical grayordinates. Relatively 

strong myelination covariance was observed between homotopic cortical grayordinates 

across contralateral hemispheres. To examine the robustness of myelination covariance, we 

randomly split all subjects into two subgroups. We assigned biologically related subjects to 

the same subgroup to ensure independence of the two subgroups. Both subgroups displayed 

almost identical myelination covariance patterns (Fig. 1b), which were also highly consistent 

with the myelination covariance pattern from all subjects (Fig. 1a). In addition, 

grayordinate-wise myelination covariance values were highly correlated between the two 

subgroups with a significant correlation coefficient (r = 0.89, p ≈ 0). The bivariate tiled 

histogram (Fig. 1c) shows that the vast majority of myelination covariance values from the 

two subgroups were distributed narrowly along the diagonal, evidenced by a least-square 

fitting line with a slope close to 1 (0.97) and the intercept close to 0. Taken together, these 

results indicate that cross-subject grayordinate-wise myelination covariance was highly 

reliable.

Organization of cortical myelination covariance

We next examined inter-subject myelination covariance patterns across the cortex using ICA. 

Fig. 2a shows the spatial patterns of all (330) myelination covariance ICA components. To 

avoid potential overlaps between components, each grayordinate was uniquely assigned to 

the component that it had the largest Z score among all components. 87 of these components 

were bilateral. The number of ipsilateral components in each hemisphere was approximately 

the same (118 left components and 115 right components). A number of well-defined brain 

regions previously reported can be captured by these independent components of 

myelination covariance (Allen, et al., 2011; Guo, et al., 2015; Smith, et al., 2013a; Smith, et 

al., 2009; Yeo and Eickhoff, 2016). For instance, Figs. 2b and 2c show components located 

at the posterior and anterior parts of the primary visual cortex (V1), respectively. 
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Components shown in Figs. 2d and 2e represent ventral and dorsal parts of the primary 

somatosensory cortex (S1), respectively. Figs. 2f and 2g show the lateral and medial portions 

of the primary motor cortex (M1), respectively. In addition to sensory and motor 

components, ICA analysis of myelination covariance revealed functionally well-

characterized regions like the posterior cingulate cortex (PCC, Fig. 2h) and orbital frontal 

complex (OFC, Fig. 2i). Components in Figs. 2j and 2k represent left and right anterior 

cingulate cortex (ACC), respectively. Taken together, our results suggest that myelination 

covariance patterns revealed an organization of the human cerebral cortex similar to 

alternative brain connectivity measures.

Topological features of myelination covariance network

Human brain networks based on various connectivity measures are typically organized in a 

non-trivial manner and contain common topological features like small worldness (Bullmore 

and Sporns, 2009; Wang, et al., 2010). Our data demonstrate that the myelination 

covariance-based network shared this common topological architecture. The myelination 

covariance network was constructed with nodes defined by parcels in a multi-modal 

parcellation of the human cerebral cortex (Glasser, et al., 2016), and edges defined by 

myelination covariance between parcels.

To ensure that this parcellation scheme was appropriate for constructing the myelination 

covariance network, we first examined the within-parcel homogeneity of myelination 

covariance (Fig. 3a). Our data show that most parcels had high within-parcel myelination 

covariance homogeneity (98% parcels’ homogeneity > 0.5). The mean homogeneity (± SD) 

of all parcels was 0.71 ± 0.09. This result shows that the within-parcel homogeneity was 

high for small-size parcels in general, but large-size parcels (> 400 grayordinates) also 

exhibit reasonable homogeneity (> 0.5). These results confirm the validity of adopting this 

multi-modal parcellation scheme (Glasser, et al., 2016) for constructing the myelination 

covariance network.

Using graph theory analysis, we investigated the intrinsic organization of this myelination 

covariance network (Fig. 3c). Fig. 3d summarizes fundamental global graph metrics of the 

myelination covariance network as a function of connection density. Average clustering 

coefficient and modularity were used to describe network segregation properties. 

Characteristic path length and global efficiency were used to characterize network 

integration properties. Small-worldness was adopted to evaluate the balance between 

network segregation and integration. Assortativity was used to assess network resilience. At 

relatively low densities (i.e. sparse network, density < 0.5), the clustering property of the 

myelination covariance network was higher than that of random networks, and the network 

exhibited a strong modular structure. This network also demonstrated relatively high 

efficiency reflected by high normalized global efficiency and low normalized characteristic 

path length. These results indicate that this myelination covariance network has a small-

world topology. Additionally, this network displayed positive assortativity, which suggests 

the presence of a resilient core of interconnected hubs. Taken together, these results indicate 

that the myelination covariance network contained topological features similar to brain 
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networks generated by other connectivity measures like RSFC (Bullmore and Sporns, 2009; 

Wang, et al., 2010) and diffusion tractography (Gong, et al., 2012).

The quantitative relationship between myelination covariance and RSFC

We found that the correlation between myelination covariance and RSFC was dependent on 

specific resting-state networks (RSNs). To quantitatively investigate the relationship between 

the connectivity measures of myelination covariance and RSFC across the brain, we first 

computed the profiles of RSFC and myelination covariance of a given cortical grayordinate 

with all other cortical grayordinates, respectively. The spatial similarity between the brain-

wide myelination covariance and RSFC profiles for this grayordinate was then determined 

using spatial correlation. Fig. 4 shows the map of this grayordinate-wise between-profile 

correlations. To facilitate the comparison of this between-profile correlation pattern to RSNs, 

on the same brain surfaces, well-established RSNs were displayed and color coded. These 

RSNs were defined by a RSFC-based parcellation scheme (Gordon, et al., 2016), in which 

borders of parcels were also delineated on the same map. The correspondence of 

myelination covariance and RSFC seemed rather uniform within each RSN, but displayed 

sharp changes at the borders of different RSNs. For example, myelination covariance-RSFC 

correlation values were relatively homogeneous within the default-mode, visual and 

somatomotor networks, but sharply increased from the default-mode network to the visual 

and somatomotor networks. Importantly, after regressing out the variance of myelin content 

from the myelination covariance-RSFC correlation map, these aforementioned patterns 

remained consistent (Fig. S1), which rules out the possibility that such relationship was 

driven by the variance of myelin content itself. Taken together, these results suggest that the 

correlation between myelination covariance and RSFC was RSN dependent.

In addition to the spatial specificity at relatively large RSN scales, we asked whether the 

spatial pattern of myelination covariance-RSFC correlation within a RSN contained more 

fine-grained functional architecture. To answer this question, the grayordinate-wise between-

profile correlation map was compared against retinotopic and somatotopic organizations, 

obtained from a previously published visual eccentricity map (Glasser, et al., 2016), as well 

as task-fMRI contrast maps of finger tapping, toe squeezing and tongue moving in the HCP 

(900 Subjects Data Release). These task-fMRI contrast maps were thresholded at an 

arbitrary but statistically stringent threshold (Z > 10) to separate hand, foot and tongue areas 

within somato-motor networks. As shown in Fig. 5a, the pattern of myelination covariance-

RSFC correlation within the visual network clearly captured regions corresponding to foveal 

and peripheral visual areas, as shown in the visual eccentricity map. Similarly, the 

myelination covariance-RSFC correlation pattern in the somato-motor network could 

differentiate hand and foot areas revealed by the task-fMRI maps (Fig. 5b, right). Also, the 

myelination covariance-RSFC correlation pattern largely identified the tongue area (Fig. 5c, 

right) in the lateral somato-motor network. These results collectively demonstrate that the 

correlation between whole-brain myelination covariance and RSFC profiles share similar 

transitions in sensory and motor networks, and reveal fine-grained functional architectures 

within RSNs.
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Stronger myelination covariance-RSFC correlation in sensory and motor networks than in 
cognitive and polymodal association networks

We observed that myelination covariance-RSFC correlation was stronger in sensory and 

motor networks including visual, somato-motor, lateral somato-motor and auditory networks 

than in cognitive and polymodal association networks including parieto-occipital, attention, 

salience, default-mode, fronto-parietal, cingulo-opercular and parietal-memory networks. To 

compare the myelination covariance-RSFC correlation across RSNs, Fisher Z-transformed 

correlation values within each parcel were averaged. As shown in Fig. 6a, parcels within 

sensory and motor networks clearly showed higher correlation values than parcels in 

cognitive and polymodal association networks. Then, we averaged Fisher Z-transformed 

correlation values for all grayordinates belonging to the same RSN. Fig. 6b shows the mean 

Z values (± SE) of 12 RSNs. Averaged correlation values were stronger in sensory and 

motor networks (i.e. visual, somato-motor, lateral somato-motor and auditory networks) than 

cognitive and polymodal association networks (i.e. parieto-occipital, attention, salience, 

default-mode, fronto-parietal, cingulo-opercular and parietal-memory networks). One-way 

analysis of variance (ANOVA) was used to determine whether there was statistical 

difference among the mean Z values of these 12 RSNs. ANOVA results showed that these 12 

means were not all equal (p ≈ 0). Specifically, the mean Z values of visual, somato-motor, 

lateral somato-motor, auditory, parieto-occipital, fronto-parietal, and default-mode networks 

were statistically significantly different from each other as well as any other RSNs. For 

attention-related networks (i.e. dorsal attention, ventral attention and salience networks), 

their mean Z values were not significantly different among themselves, whereas these three 

means were significantly different from the other 9 RSNs. The mean Z value of the cingulo-

opercular network was not significantly different from that of the parietal memory network, 

but both of these two networks showed statistically significant difference from the other 10 

RSNs. Collectively, these results demonstrate the RSN-specific relationship between 

myelination covariance and RSFC.

Discussion

This work systematically characterized myelination covariance across the entire human 

cerebral cortex in a large group of subjects (>800) using T1/T2 ratio myelin maps. We first 

demonstrated that cross-individual myelination covariance was highly robust (Fig. 1). We 

then showed that large-scale myelination covariance patterns revealed an organization (Fig. 

2) comparable to that generated by alternative connectivity measures (Allen, et al., 2011; 

Guo, et al., 2015; Smith, et al., 2013a; Smith, et al., 2009; Yeo and Eickhoff, 2016). 

Furthermore, we characterized topological properties of the whole-brain network based on 

myelination covariance and a well-recognized cortical parcellation scheme (Glasser, et al., 

2016)(Fig. 3). Finally, we quantitatively investigated the relationship between myelination 

covariance and RSFC, and found that their correspondence was dependent on individual 

RSNs at both large and fine-grained scales (Figs. 4 and 5). Interestingly, myelination 

covariance-RSFC correlation was higher in sensory and motor networks than in cognitive 

and polymodal association networks (Fig. 6). Taken together, these results demonstrate a 

new method to investigate inter-areal connectivity based on cortical myeloarchitectonics—a 

Ma and Zhang Page 9

Hum Brain Mapp. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



feature characteristic of axon fibers. This work also provides new insight into our 

understanding of the structure-function relationship in the human brain connectivity.

Brain organization of myelination covariance

Although the definitive biological mechanisms underlying cross-population covariance of 

brain morphometric measures are still under active investigation, structural covariance is 

believed to be attributed to coordinated neurodevelopment of connected brain regions 

(Alexander-Bloch, et al., 2013a; Alexander-Bloch, et al., 2013b). Direct anatomical 

connections between brain regions can cause functional co-activation, which in turn lead to 

coordinated neurodevelopment of brain structures and thus covariant brain morphology 

(Alexander-Bloch, et al., 2013a). Therefore, cross-population structural covariance can 

provide a measure of connectivity between regions. Notably, other factors such as genetic 

and environmental influences, which can control synchronized morphological changes 

during development, could also affect inter-regional myelination covariance (Alexander-

Bloch, et al., 2013a).

Previous studies in this line of research predominantly used bulky morphometric measures 

with mixed compartments, like gray matter density or cortical thickness (Alexander-Bloch, 

et al., 2013a; Lerch, et al., 2006; Mechelli, et al., 2005), while such analysis based on a 

specific subdivision like myelin content is rare. To bridge this knowledge gap, in the present 

study we systematically analyzed the covariance of myelin content across the cerebral 

cortex. Our results showed that this axon-related structural covariance can reveal brain 

connectivity organization consistent with other connectivity measures (Smith, et al., 2009). 

For example, ICA analysis uncovered myelination covariance in anatomically and 

functionally well-defined sensory and motor regions like V1, S1 and M1 (Figs. 2b–g), as 

well as cognition-related regions like ACC, PCC and OFC (Figs. 2h–k). These results 

uncovered the connectivity patterns between brain regions determined by their coordinated 

development of myeloarchitecture, and confirm the validity of cross-modality comparison of 

brain connectivity measures.

Whole-brain network based on myelination covariance

Using myelination covariance as a connectivity measure, we constructed a whole-brain 

network and evaluated its topological architecture. The node definition was based on a 

multi-modal parcellation of the human cerebral cortex using structural MRI, task-fMRI, 

T1w/T2w ratio myelin maps and rsfMRI data in the HCP. This 360-parcel scheme was 

established using a semi-automatic approach, in which parcel borders were identified based 

on sharp transitions in cortical myelination, thickness, task fMRI contrasts, RSFC and 

topography (Glasser, et al., 2016). This approach can detect brain region boundaries not 

obvious in any single modality, and the consistency across different modalities also increases 

the confidence of the borders identified in this parcellation scheme (Yeo and Eickhoff, 

2016).

We first confirmed that this node definition is appropriate to use for constructing the 

myelination covariance-based network. Network topological properties are very sensitive to 

different parcellation schemes (Wang, et al., 2009), and inaccurate parcellation can severely 
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damage the network characterization (Smith, et al., 2011). To avoid this pitfall, a parcellation 

scheme used to construct a network ought to be homogeneous within individual parcels. Our 

data show that myelination covariance was highly homogeneous for the vast majority of 

parcels in this multi-modal parcellation scheme (Fig. 3a–b), suggesting that it is appropriate 

to construct and evaluate the myelination covariance network using this cortical parcellation 

scheme.

We found that the resulting myelination covariance network displayed non-random, 

clustered, modular, and efficient properties at sparse connection densities (Fig. 3d). These 

topological properties have been repeatedly demonstrated by brain networks generated using 

various connectivity measures like diffusion tractography and RSFC (Bullmore and Sporns, 

2009; Gong, et al., 2012; Wang, et al., 2010). All of these results collectively suggest that 

myelination covariance-based network is organized in a non-trivial manner and shares the 

common topological architecture of human brain networks.

RSN-dependent myelination covariance-RSFC relationship

The correspondence between myelination covariance and RSFC across the cortex was 

quantitatively evaluated by correlating whole-brain myelination covariance and RSFC 

profiles for each cortical grayordinate. We found that this correspondence was rather 

uniform within each RSN, but could vary sharply across different RSNs. This nature (i.e. 

relatively uniform myelination covariance-RSFC correlation in functionally homogeneous 

units) existed at multiple scales from large-scale networks to fine-grained functional 

architectures like retinotopic and somatotopic organizations.

Interestingly, stronger myelination covariance-RSFC correlation was observed in sensory 

and motor networks than in cognitive and polymodal association networks. This result is 

consistent with a recent study comparing structural covariance of myelination measured by 

magnetization transfer with RSNs measured by magnetoencephalography, and showed 

stronger structure-function relationship in the occipital and parietal lobes but weaker 

relationship in the frontal areas (Hunt, et al., 2016). Our result is also consistent with another 

report comparing gray matter density covariance and RSFC at the network level, which 

demonstrated high spatial overlaps between structure covariance and RSFC in the medial 

and lateral visual cortices as well as the supplementary motor area of the human brain 

(Segall, et al., 2012).

Differences in the distribution of myelination covariance-RSFC correlation across individual 

RSNs might be attributed to their different circuitry structures. Notably, sensory and motor 

networks are usually local networks and characterized by canonical circuit organization, 

where structurally connected areas tend to be close to each other. On the other hand, 

cognitive and polymodal association networks are often distributed and possess a non-

canonical circuit structure (Buckner and Krienen, 2013). Stronger association between 

myelination covariance and RSFC in RSNs possessing canonical circuit organization might 

suggest that short-distance connections similarly affect RSFC and myelination covariance. 

Conversely, long-distance connections may have more diverse effects on RSFC and 

myelination covariance in RSNs with the non-canonical circuit structure. These results can 
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help us better understand the structure-function correspondence in different connectivity 

measurements.

Potential implication in studying axon development

Because myelination covariance might reflect coordinated neurodevelopment of 

myeloarchitecture between connected brain regions, results of the present study may provide 

a new avenue to investigating axon fiber development in the human brain. MRI studies have 

shown that brain regions co-varying in cortical thickness were also correlated in their rate of 

cortical thickness change during development (Alexander-Bloch, et al., 2013b), suggesting 

that structural covariance can provide a measure of coordinated neurodevelopment. 

Importantly, it has been shown that myelination covariant regions were also synchronously 

myelinated during the development of the neonatal brain (Bozek, et al., 2016). Considering 

that myelination is specific to axons, myelination covariance analysis might provide great 

value to the investigation of coordinated axon fiber development between connected brain 

regions.

Conclusions

The present study has systematically characterized myelination covariance in the human 

cerebral cortex. We identified reproducible myelination covariance patterns across the 

human cerebral cortex, and demonstrated the non-trivial topological architecture of the 

myelination covariance network. Our study also revealed a RSN-dependent relationship 

between myelination covariance and RSFC. Myelination covariance and RSFC were found 

to be more strongly correlated in sensory and motor networks, which are dominated by a 

canonical circuit structure, than in cognitive and polymodal association networks, which 

possess a noncanonical circuit structure. Taken together, the present study has established a 

new connectivity measure based on the covariance of the axon-related myeloarchitectonic 

feature. These results can shed light on the structure-function relationship in brain 

connectivity organization. They may also be useful for studies of coordinated axon 

development.

The significance of the present study can be further extended to the research of neurological 

disorders. Accruing evidence has shown that cortical demyelination is implicated in multiple 

brain disorders like multiple sclerosis (Hulst and Geurts, 2011), suggesting that cortical 

myeloarchitecture might be a potential biomarker for these brain diseases. As a result, 

mapping the myelination covariance pattern of the human cerebral cortex in a healthy group 

of subjects has provided a critical reference point that can facilitate the identification of 

abnormal brain myeloarchitecture-related endophenotypes in disease states.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
a, Grayordinate-wise myelination covariance matrix of all subjects. b, Grayordinate-wise 

myelination covariance matrices of subgroups 1 and 2. c, Correlation of grayordinate-wise 

myelination covariance strength (r values) between two subgroups. No subjects between 

subgroups have kinship.
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Figure 2. 
a, Spatial patterns of non-artifactual ICA components with each component displayed in a 

different color. b–k, Spatial maps of representative ICA components (thresholded at Z>5) of 

myelination covariance displayed on inflated brain surfaces. V1, primary visual cortex; S1, 

primary sensory cortex; M1, primary motor cortex; PCC, posterior cingulate cortex; OFC, 

orbital frontal complex; ACC, anterior cingulate cortex.
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Figure 3. 
a, Map of parcel homogeneity of myelination covariance. b, Myelination covariance 

homogeneity value plotted against the corresponding parcel size (in the number of 

grayordinates). c, Myelination covariance network (thresholded at the connection density of 

0.1) displayed in sagittal, axial and coronal views, respectively. Each node represents a brain 

parcel located at its centroid position with the node size proportional to the number of 

grayordinates in this parcel. The thickness of edge is proportional to the strength of 

myelination covariance with red edges representing positive covariance and blue edges 
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representing negative covariance. BrainNet Viewer was used for the display of this network 

(Xia et al., 2013). d, Global topological metrics of the cortical myelination covariance 

network as a function of connection density.
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Figure 4. 
Grayordinate-wise myelination covariance-RSFC correlation map displayed on inflated 

(columns 1 and 2) and flattened surfaces (column 3). To facilitate the comparison of this 

correlation map to RSN patterns, on the same brain surfaces, the borders of parcels 

generated by a RSFC-based parcellation scheme (Gordon, et al., 2016) are delineated and 

color coded based on the RSN they belong to.
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Figure 5. 
Fine-grained features in the myelination covariance-RSFC correlation map. a, The left two 

columns are myelination covariance-RSFC correlation in the visual cortex displayed on 

spherical surfaces. The right two columns are the visual eccentricity contrast map (Glasser, 

et al., 2016). b, Left two columns are myelination covariance-RSFC correlation in the 

somato-motor cortex (thresholded at 0.55 < r < 0.65) displayed on inflated surfaces. Right 

two columns are hand and foot areas obtained by fMRI activation patterns (Z>10) during 

finger tapping and toe squeezing movement, respectively. c, Left two columns are 

myelination covariance-RSFC correlation in the lateral somato-motor cortex (thresholded at 

0.45 < r < 0.55). Right two columns are the tongue area obtained by the fMRI activation 

pattern (Z>10) during tongue movement.
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Figure 6. 
a, Parcel-wise mean correlation map displayed on inflated and flattened surfaces. The 

myelination covariance-RSFC correlation values of all grayordinates within each parcel 

(Gordon, et al., 2016) were averaged and the mean correlation values were displayed for all 

parcels in the map. b, Mean correlation values averaged across all grayordinates within each 

RSN. The parcellation scheme and network definition are shown in the inset (Gordon, et al., 

2016).
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